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ABSTRACT

Software systems are becoming increasingly complex, and so does
their evolution. Development processes often use the notion of
features to plan and organize the development of software systems.
While features facilitate understanding and communicating about
software systems, the connection to code is often lost, challenging
their evolution. Developers often need to recover the location of
features in code, which is laborious and error-prone, especially for
scattered features. The vision of feature-oriented software evolu-
tion advocates maintaining traceability between features and the
codebase during development, which requires techniques to make
features more comprehensible to stakeholders.

In this work, we show how traceability links can be utilized to
lift the abstraction level of software assets to the feature level. We
present a visualization for facilitating comprehension of software
evolution by visualizing their evolution through a timeline, ad-
dressing a significant gap in realizing the vision of feature-oriented
software evolution. Our visualization fosters system evolution com-
prehension, and improve feature documentation by providing de-
velopers with short term benefits of recording feature locations.
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1 INTRODUCTION

Whether to satisfy customer demand or to fix defects, such as secu-
rity vulnerabilities, developers frequently add, maintain, or evolve
features [9, 11, 17, 18] during software development. Features offer
a way to facilitate the comprehension of software functionalities,
which are often scattered over the codebase, or otherwise require
extensive domain knowledge to understand them. As such, they aid
stakeholders in understanding software without deep knowledge
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about the codebase. Feature-driven development processes use the
notion of features to plan and organize the development process [4].

To facilitate system comprehension, it is therefore crucial to raise
the level of abstraction to a level that all stakeholders involved in a
software project understand. Features can be used as a common no-
tion to facilitate system comprehension, since they can be leveraged
to express software components at different levels of abstraction,
ranging from low level technical details to high-level concepts.

Feature-oriented software evolution advocates establishing trace-
ability links between features and a software’s assets by making
features explicit in code to enable analysis of its architecture, and
the impact of changes [26]. Manually recovering traceability links
after features have been implemented is laborious and error-prone,
as they are often scattered over multiple assets [27]. Automatic tech-
niques have shown to produce too many false positives and do not
scale well in large systems to be usable in practice [2, 6, 7, 15, 28].
Traceability links can be established by relating code assets to
their corresponding features during development through, for in-
stance, embedded feature annotations, which developers integrate
into their code when the location of the features is still fresh in
their minds [30]. Opposed to manually recovering features from
the source code, annotating assets during development has shown
to be effective in saving feature location costs [16].

However, developers rarely document the location of features
they are working on, and knowledge about them deteriorates over
time. As knowledge about them fades, the effort to recover feature
locations increases over time, especially when the developer respon-
sible for a feature has left the organization. Even though the saved
effort outweighs the effort in creating traceability information [16],
the lack of short term benefits could be an impediment for estab-
lishing traceability links during development, since developers may
not notice their advantages as they write code. Our long-term goal
is to raise the level of abstraction at which software systems are
managed, establishing features as an interface to software systems.

Our research objective is to establish a feature evolution timeline
that enables developers to reason about software evolution at the fea-
ture level, and provide them with short term benefits for recording
feature locations during development. We present a feature evolu-
tion timeline that visualizes software and its evolution at the fea-
ture level using feature traceability information, which developers
create while they write code. It provides an overview to enable
stakeholders to reason about features without knowledge about
the codebase, addressing a significant gap in the realization of the
vision of feature-oriented software evolution [26]. Finally, we evalu-
ated the usability and effectiveness of our timeline by implementing
it in a prototype and conducted a controlled experiment with users.

2 BACKGROUND

We now present the prerequisites for feature visualizations.
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2.1 Feature Traceability

Feature visualization requires feature traceability data to be in place.
In this work, we employ embedded feature annotations [10, 16,
30], but our visualization works independently of the used feature
traceability technique. Embedded feature annotations advocate
recording feature locations while writing code, when the knowledge
about the feature’s location is still fresh in the developers mind.
Code assets are mapped to their corresponding features by directly
embedding them into the assets through a lightweight embedded
feature annotations system. Documenting features first requires a
feature model, which organizes features in a separate file based on
their hierarchy. We expect the following information to be available
to operate, however, not all of them must be present in the project:

Folder mappings: A folder is mapped to a feature.
File mappings: A file is mapped to a feature.
Fragment mappings: A code fragment is mapped to a feature.

Files and folders are mapped to features through textual files, while
fragment mappings are integrated as comments within code. We
utilize this traceability data to locate changes made to features.

2.2 Feature Visualizations

Previous work investigated numerous techniques for tracing and vi-
sualizing features [25, 29]. FeatureIDE is an Eclipse plugin that uses
preprocesser directives to load configurations to enable or disable
features in a system [24]. Furthermore, the Eclipse plugin Colligens
maps C preprocesser directives to a feature model and shows the
number of files and lines of code which implement a feature [23].
Moreover, FLOrIDA is a tool, which extracts traceability informa-
tion from assets to visualize feature metrics such as feature size,
scattering or tangling in different views [3]. Featuredashboard uses
the same metrics to visualize relationships between features and
assets as well as common features between projects [13]. Feature-
Vista provides tool support, that visualizes to what extent classes
in the codebase contribute to a feature and how features interact
with each other [8]. CIDE provides further support in highlighting
feature-specific code and hiding code fragments for improved visi-
bility on code [19]. Similarly, FeatureMapper provides a view that
shows what assets realize a feature through a UML model [14].
Feature survival charts [31] provide an overview on when a
feature was introduced or removed, but do not provide support
for understanding the evolution history between these points of
time [20, 26]. To this end, we developed a novel timeline to aid
developers in understanding how features evolve over time.

3 FEATURE EVOLUTION TIMELINE

As software systems expand, managing and evolving them grows
increasingly complex. Therefore, research has focused on struc-
turing software evolution around features [17, 26]. While feature
traceability techniques facilitate feature location, developers still
encounter challenges in understanding feature evolution. Tradi-
tional version control systems, such as Git, track changes at the file
and code level, but not at the feature level. In the absence of tools
that aid developers with this task, they must manually track feature
histories by navigating Git’s command-line interface (CLI). This
process, as we will show, is both time-consuming and error-prone,
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Figure 1: Feature Evolution Timeline

and highlights the need for visualizations that enable developers to
understand the history of individual features.

3.1 Extracting Feature-Related Commits

To track the evolution of features, and subsequently visualize their
evolution, we need to explicitly know a feature’s location, and
when it was added, modified or deleted. Therefore, we used Git to
extract the traceability data from the commit history of a project
to associate features with their corresponding files, folders, and
commits. We extracted the feature location within commit histories,
which provide insights into the addition, modification, and deletion
of features. We utilized the Git repository data to extract metadata,
such as commit timestamps, authors, and messages, as well as to
categorize changes by type (e.g., code annotations or file mappings).
This tracking ensures an understanding of feature evolution and
the relationships between features and their implementation.

Deleted features are specifically interesting and presents chal-
lenges as it may not be obvious when a feature has been deleted.
To track when a feature was deleted, we checked whether a feature
was removed from the feature model and recorded their final com-
mit details. All this information about the adding, changing, and
deleting of features ensures that changes are not overlooked and
that the evolution of features can be fully understood.

3.2 Visualizing Feature Evolution

We propose a feature evolution timeline which visualizes feature
evolution across Git commits over the whole project history. The
visualization (Fig. 1) enables developers to analyze the evolution
of features using a timeline chart. The vertical axis represents the
chronological order of commits, while the horizontal axis lists all
extracted features. Each feature-commit pair is represented by a
data point, which is color-coded and annotated to indicate the
type of change, such as changes at the code, file, or folder level.
The view is interactive, allowing developers to filter data by time
ranges, features, or types of annotations. When hovering over a
data point, commit metadata such as the hash, author, timestamp,
and message is displayed. The view provides a clear and structured
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representation of feature changes over time, enabling developers
to track the introduction, modification, and removal of features.
Additionally, the Deleted Features View shows features that have
been removed from the project, displaying the commit in which they
were last present. This functionality supports tracing the history
of removed features and understanding their removal, making it
particularly useful for new developers by providing a clear and
concise way to navigate historical changes in the repository.

3.3 Evaluation

We conducted a controlled experiment with users to investigate how
the comprehension of feature evolution can be assisted by using a
timeline compared to using traditional Git CLI. We implemented our
timeline in HAnS-viz, an Intelli] plugin for feature visualization [21].
All data related to our experiment is publicly available [1].
Research Question. To investigate the usability of using our time-
line for understanding feature evolution related tasks, our con-
trolled experiment investigates the following research question:
RQ: How usable is the feature evolution timeline for understanding
feature evolution compared to traditional Git CLI?

Hypotheses. We investigate the following hypothesis.

Hy: A feature evolution timeline is more usable compared to tradi-
tional Git CLI for understanding feature evolution.

We formulate our corresponding null hypothesis as follows.

Hpy: A feature evolution timeline is equally usable compared to
traditional Git CLI for understanding feature evolution.
Variables. The goal of our controlled experiment is to measure
the task completion times, and usability of the feature evolution
timeline and Git CLI for understanding feature evolution. Therefore,
there is one independent variable, which is the modality used to
complete tasks related to understanding feature evolution. In our
setting, it has two possible values: the feature evolution timeline
and Git CLIL The dependent variables are the task correctness,
completion time, and the usability of the use modality.
Participants. We recruited 14 students from our institution’s fac-
ulty of computer science for our experiment. Following a within-
subjects design, we randomly assigned them to two groups, with
group A consisting of 7 participants (4 graduate, 2 undergraduate, 1
PhD), and group B as well (3 graduate, 3 undergraduate, 1 PhD). All
participants rated their experience with programming and Git on
a 5-point Likert-scale prior to the experiment. They expressed an
average programming experience level of 3.5 (mean) + 0.8 (standard
deviation), and an average experience level with Git of 3.4 + 1.0.
Experiment Design. Group A first solved the tasks using the Git
CLL before solving the tasks using the feature evolution timeline.
For Group B, we changed the order by asking participants to first
solve the tasks using the feature evolution timeline, and then us-
ing the Git CLI. Employing two groups minimizes period effects
(e.g., fatigue) and carryover effects (e.g., changing opinions about a
tool) to affect our results. We provided participants with a repos-
itory containing the installation files and a guide for the feature
evolution timeline along with introductory documents explaining
their concepts and functionalities. Then, we asked participants to
download the repository of our subject system, a small Snake game,
which contains around 300 lines of fully annotated java code in
8 files and 3 folders with 17 features, and a commit history of 71
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commits. While it is small in size, it provides a suitable commit
history for a controlled experiment. A large commit history could
quickly overwhelm participants that use the Git CLIL, which could
impact the results. After training, we asked participants to perform
warm-up tasks using both modalites to familiarize themselves with
them, to ensure that they are properly trained.

Participation in the experiment was voluntary, and did not in-
volve any advantage or disadvantage to participants. The circum-
stances of the experiment were explained to participants prior to
their agreement to participate. If participants were unable to solve
a task, or a task took longer than 10 minutes to solve, we asked
them to skip it. All participants were assured that their data would
only be published in aggregated or anonymized form.

Tasks. We asked participants to complete 6 tasks:

1) Understanding evolution of a feature. We asked participants to
identify the commit hash, in which a feature was first added. We
asked participants to solve this task once for fragment annotations
(Task 1), file annotations (Task 2), and folder annotations (Task 3).
For the fragment annotation task, we additionally asked them to
enter the number of commits that performed changes to it.

2) Understanding feature change impact. We asked participants to
identify the commit hash, in which a feature was added, and what
other features were changed during the same commit (Task 4).

3) Understanding deletion of features. We asked participants to iden-
tify the commit hash, in which a feature was deleted (Task 5), and
to identify two other features deleted from the project (Task 6).
Analysis. Participants gave answers by filling out a digital ques-
tionnaire after completing each task. For each task, we asked par-
ticipants to track the time they required to complete it. Afterward,
we asked them to fill out the System Usability Scale to assess the
usability of the modality, and asked them to answer open-ended
questions about their experience to receive further qualitative data.

3.4 Results.

Task Correctness. We notice a large discrepancy in task complete-
ness and correctness when comparing the two modalities.

Overall, only 5 participants were able to solve all tasks correctly
when using the Git CLI, with 5 participants being unable to solve
tasks within the given timeframe. Most notably, 5 participants were
unable to correctly identify the number of commits that changed a
feature. When asked to list all features that were changed during
a commit that introduced a feature, 4 participants were unable to
correctly list them. Finally, 3 participants were unable to identify
commits that deleted a feature. Using the feature evolution timeline,
11 participants solved all tasks correctly, with a total of 3 individual
errors, resulting in a significantly higher task correctness rate.

Our experiment shows that using a feature evolution timeline
is a simple and effective way for understanding feature evolution
compared to traditional git CLI. Especially when investigating what
changes to a feature impacted other features, the feature evolution
timeline proved to be less error-prone than the Git CLL since it offers
visual guidance for, and does not require using any commands.
Task Completion Times. The task completion times for our ex-
periment are presented in Fig. 2 and Fig. 3. We only consider the
times for correctly solved the task, since incorrectly solving them
may contain actions that do not represent correct usage.
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For Git CLI, we observe an average task completion time of 22
minutes and 43 seconds for group A, and 22 minutes and 41 seconds
for group B. Not surprisingly, participants were able to solve all
tasks much faster when using the feature evolution timeline, with
group A requiring an average of 2 minutes and 35 seconds (879%
faster), and group B 5 minutes and 43 seconds (397% faster).

Task 1 required, on average, the most time to complete for both
groups when using Git CLI with group A requiring 8 minutes
and 13 seconds, and group B 5 minutes and 24. Since it required
examining a series of commits one by one, it involved a lot of effort
to investigate how many commits modified a feature. In contrast,
the timeline visualizes which and how many commits modified a
given feature, and does not require multiple commands and reading
lines of code. The same reasoning applies to the other tasks as well.

While the comparison of the task completion times does not

reveal surprising results, it shows that feature evolution can be
understood efficiently through a feature evolution timeline. Tradi-
tional tools such as the Git CLI severely lack the functionalities to
effectively understand feature evolution in reasonable time.
SUS Scores. The SUS scores are presented in Fig. 4. We observe that
all participants rated the feature evolution timeline significantly
better than the Git CLI in terms of usability. The mean SUS score of
the Git CLI from group A is 38.2 + 8.6, while they rate the feature
evolution timeline with a SUS score of 82.9 + 6.9 on average. For
group B, we observe a mean SUS score for the Git CLI of 35.4 +
18.5 and for the feature evolution timeline a mean score of 79.6
+ 9.1. The scores show that Git CLI completely fails in providing
acceptable usability for understanding feature evolution, while the
feature evolution timeline achieves near excellent usability [5].
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Figure 4: SUS scores

Qualitative Data. Participants expressed satisfaction with the
feature evolution timeline. Five participants stated the feature evo-
lution timeline was easy and straightforward to use. Independently,
five participants claimed the timeline provides a clear and well-
structured overview over the evolution of features. In contrast,
participants were strongly dissatisfied with the Git CLI. Seven par-
ticipants mentioned difficulties in using the Git CLI, with 2 of them
claiming it was barely suitable for understanding feature evolution.
One participant summarized that, “it was a horrible experience”.
The qualitative data supports our quantitative data, showing that
our timeline provides a fast and easy to use method to understand
feature evolution, while the Git CLI lacks the functionality to do so.

3.5 Hypothesis Evaluation

Table 1 shows the result of our hypothesis tests. We computed
pairwise differences in task times and SUS scores between the two
modalities, and assessed normality using the Shapiro-Wilk test
(p = 0.05). When normality was satisfied (p2 > 0.05), we used a
paired t-test, else we applied the non-parametric Wilcoxon signed-
rank test instead. We used a significance level of a = 0.05 for all
statistical tests. Recall, that we only consider the task completion

G Task w p1 Test t p2 n
A Task1 0959 0.811 t-test 15.043 0.000 6
A Task2 0.765 0.028 Wilcoxon 0.000 0.031 6
A Task3 0.938 0.619 t-test 5528 0.001 7
A Task4 0947 0.716 t-test 5.561 0.005 5
A Task5 0.880 0.228 t-test 6.279  0.001 7
A Task6 0.881 0.274 t-test 12.582  0.000 6
A SUS 0.957 0.791 t-test -12.417 0.000 7
B Task1 0.803 0.122 t-test -3.635 0.068 3
B Task2 0.904 0.431 t-test -2.429 0.072 5
B Task3 0.813 0.055 t-test -0.683  0.520 7
B Task4 - - - - - 2
B Task5 0.936 0.630 t-test -2.780 0.039 6
B Task6 0.905 0.407 t-test -4.868 0.005 6
B 7

SUS 0.956 0.783 t-test 5.299  0.002

Table 1: G = group, W = Shapiro-Wilk test statistic, p; = p-
value for assessing normality, Test = applied test based on
normality, Test Stat = test statistic, p, = p-value for asessing
significance. -’ indicates insufficient data.
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times if the task was correctly solved. Since only two participants
in Group B completed task 4, we could not test for normality.

Our results show that the timeline significantly improves task
performance and usability for Group A. For Group B, no significant
differences were found in the first three tasks, due to incorrectly
solved tasks using Git, reducing sample size and statistical power.

In summary, using a feature evolution timeline leads to statisti-
cally significant improvements in usability and task performance
compared to the traditional Git CLI, supporting the hypothesis that
our timeline enhances users’ ability to understand feature evolution.

4 DISCUSSION

From our experiment, we can conclude, that using traditional ver-
sion control systems such as Git are not suitable for correctly un-
derstanding feature evolution, even for systems as small as around
300 lines of code with feature annotations. Not surprisingly, the fea-
ture evolution timeline is less error-prone, more efficient, and more
usable than using the Git CLI for understanding feature evolution.

4.1 System Comprehension

We explored how developers can comprehend the history of feature
evolution using a feature evolution timeline. Such a timeline was
also proposed by Passos et al. [26]. While previous work focused
on the extraction of changes made to features over time [12], such
a timeline was not visualized or empirically validated before. Par-
ticipants were able to identify commits that changed features, and
efficient than when using the traditional Git CLL. Although they
were not familiar with the system, they were able to complete tasks
such as identifying the commits that added, changed, or deleted a
feature when using the feature evolution timeline. Our experiment,
therefore, shows that a feature evolution timeline can effectively
aid developers in comprehending a system’s evolution, which is
otherwise not effectively possible by e.g., using the Git CLI.

A feature evolution timeline enables the comprehension of software
evolution at the feature level without knowledge about its code.
Finding 1

4.2 Incentives for Recording Feature Locations

Establishing traceability links by e.g., using embedded feature anno-
tations requires effort when writing them, which saves feature loca-
tion costs when developers need to evolve or maintain features [16].
However, such benefits become only visible to developers in the
future, and not when they create them. They, require lightweight
tooling for editing to reduce overhead [22], and short term bene-
fits to give them incentives in using them. To give developers an
incentive, our timeline must be useful and usable.

Bangor et al. provide a scale for interpreting the SUS score, with a
score of at least 70 being acceptable, and least 85 being excellent [5].
The average SUS score of our prototype implementation for our
timeline is close to an excellent rating. Therefore, our timeline is
useful and usable for understanding feature evolution.

Our timeline is usable and useful for understanding feature evo-
lution, which may give an incentive to developers to record feature
locations by establishing traceability links during development.
Finding 2
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4.3 Future Work

We identified future work directions in the field of feature evolution.
Feature Traceability. Our results show how feature traceability
information can be used to improve the comprehension of feature
evolution. However, feature traceability techniques have not found
adoption in practice yet. Future work should investigate how de-
velopers can be further encouraged in applying such techniques.
Feature deletion. Our feature evolution timeline overapproxi-
mates feature deletions by marking all features absent from the
model as deleted. Future work should better distinguish features
that were deleted, merged, split, or refactored.

5 THREATS TO VALIDITY

We now discuss threats to validity of our work.

Internal Validity. Participants’ prior experience with Git could
impact the result of our experiment. Participants who quickly un-
derstood the Git CLI’s or evolution timeline’s functionality during
warm-up may perform better, while others may need more time.Still,
our experiment shows that a feature evolution timeline enables de-
velopers to understand feature evolution with less training required.
External Validity. The sample size of our experiment may threaten
the generalizability of our work. In particular, we observed a high
standard deviation in task completion times and SUS scores when
participants used the Git CLI. However, the results of our feature
evolution timeline show a significantly lower standard deviation.

6 CONCLUSION

We presented a feature evolution timeline that assists developers
in comprehending the evolution of software at the feature level.
Our visualization utilizes traceability information from a software
project and its commit history to visualize the evolution of features
over time. We implemented our prototype as an IntelliJ plugin and
evaluated it in a controlled experiemnt with users. The timeline
was found to be both useful and usable for feature evolution com-
prehension, which is crucial to give developers incentives to adopt
feature traceability techniques. Lifting the level of abstraction of
software components to the feature level is an imperative step in
realizing the vision of feature-oriented software evolution, to which
we contribute a mean to make features tangible to developers.

While our prototype assumes embedded feature annotations,
other traceability methods could also be applied. However, proac-
tively recording feature locations during development has shown to
be more effective than retroactive recovery [28]. To support wider
adoption, future work should reduce the overhead of such tech-
niques—e.g., by using machine learning to assist developers during
development and provide immediate benefits.
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