
Lightweight Visualization of Software Features with HAnS-viz
Johan Martinson

Ruhr University Bochum
Germany

Kevin Hermann
Ruhr University Bochum

Germany

Riman Houbbi
Ruhr University Bochum

Germany

David Stechow
Ruhr University Bochum

Germany

Thorsten Berger
Ruhr University Bochum and

Chalmers | University of Gothenburg
Germany, Sweden

ABSTRACT
Features offer a way to plan software development, but their loca-
tions in software assets are often not known. Existing techniques,
such as feature-oriented software development, enable traceabil-
ity of features by implementing features modularly, but are hard
to adopt, since they require heavyweight tooling. We believe that
feature traceability should be added during development, using
lightweight tooling close to the developers’ activities. However,
adding traceability requires encouragement—ideally in terms of
techniques that provide immediate benefits to developers.

We present HAnS-viz, an IntelliJ IDE plugin that provides feature-
oriented visualizations that support developers understand and rea-
son about software systems at the feature level. The visualizations
present different kinds of feature characteristics and their location
in code. Building on our previous work, HAnS, it uses embedded
feature annotations that developers create as they write features to
lift code-level assets to feature-level representations. A demo video
is available at https://youtube.com/watch?v=e4j40dvJQiQ.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Software maintenance tools.

KEYWORDS
feature location, feature traceability, visualization
ACM Reference Format:
JohanMartinson, KevinHermann, RimanHoubbi, David Stechow, and Thorsten
Berger. 2025. Lightweight Visualization of Software Features with HAnS-
viz. In Proceedings of 29th International Systems and Software Product Line
Conference (SPLC’25). ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Feature-driven development processes use the notion of features [8,
11, 20, 21] to plan and organize releases of software systems [3].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC’25, September 01–September 05, 2025, A Coruña, Spain
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Besides creating additional features for these systems, developers of-
ten require evolving or maintaining existing features to add further
functionality to the system or to fix defects such as security vulner-
abilities, which requires quick response to minimize damages and
costs. Although developers know which feature they have to work
on, they still require its location in the assets of the system. In fact,
feature location is one of the most common activities of developers,
as the location within the assets of the system remains unknown,
since they are rarely recorded [10, 13, 22, 29, 35]. Due to the lack of
documentation, locating features in the codebase becomes a signifi-
cantly difficult task, especially if it was implemented a long time
ago or the responsible developer left the organization. Manually
recovering feature locations after they have been implemented is
laborious and error-prone, as features are often scattered over mul-
tiple assets [27], and the knowledge about them fades over time.
Automatic techniques produce too many false positives and do not
scale well in large systems to be usable in practice [1, 5, 6, 17, 29].

Opposed to manually recovering features from the source code,
annotating assets using embedded feature annotations has shown
to be effective in saving feature location costs [9, 18]. In this pro-
cess, developers annotate the assets along with working on the
feature, while their location is still fresh in their minds. These an-
notations have a standardized notation and record the location
of a feature as well as the relation to specific assets like files and
directories. Instead of showing different configuration options that
variability annotations offer, feature annotations explicitly specify
what feature an asset realizes. Since the annotations are embed-
ded within the source code, they co-evolve with the assets when
they are copied, reused or evolved. This emphasizes the benefit in
recording feature locations during development as annotating them
in source code outweighs the cost of retroactively recovering them.

To effectively create embedded feature annotations, developers
require tool support that is close to their development activities.
HAnS [24] is an IntelliJ IDE plugin that offers editing support for
embedded feature annotations. However, although it equips de-
velopers with tools to establish traceability between features and
their assets, it still lacks functionalities that assist them in under-
standing software at the feature-level. Such functionalities can help
developers to make features more comprehensibile to them.

Our long-term goal is to raise the level of abstraction at which
software systems are managed, establishing features as a better
interface to software systems. We present HAnS-viz, an IntelliJ IDE
plugin offering visualizations for features of software projects that
can be used by developers to identify entry points for changes. Our

https://orcid.org/0000-0002-4097-4374
https://orcid.org/0009-0004-6207-4045
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


SPLC’25, September 01–September 05, 2025, A Coruña, Spain Johan Martinson, Kevin Hermann, Riman Houbbi, David Stechow, and Thorsten Berger

file structure feature model

1 Playing_Area

1 Direction.java
2 Controls, Move

1

2

1
2
3

folder mapping
file mapping
fragment mapping

Snake
  .feature-model
  src/
    graphics/
      .feature-to-folder
    logic/
      .feature-to-file
      DataOfSquare.java
      Direction.java
      KeyboardListener.java
      SquareToLightUp.java
      ThreadsController.java        //&line [Food]

17   private Tuple foodPosition
479 //&begin [Food]
480 foodPosition = new Tuple(
       Window.getWindowHeight...
530 //&end [Food]

3

Snake
  Controls
  GameState
  DataTypes
  Snake
    Move
      Collision
    Position
    Tail
  Playing_Area
    Tile
      Food
        Spawn
      Blank
      Snake
    Update

Figure 1: Embedded feature annotation system [9, 33]

visualizations are designed to describe software systems at the fea-
ture level using feature traceability information, which developers
create while they write code. They offer developers an overview
of a project’s features, their scattering across the codebase, and
their tangling, without requiring knowledge of the codebase. Being
integrated directly into IntelliJ, it is close to developer’s coding
activities, requiring no external or heavyweight tools to work with
features. HAnS-viz is publicly available on Github1.

2 BACKGROUND
We present how features can be traced, and what characteristics
are commonly visualized.

2.1 Feature Traceability
Feature visualizations require feature traceability data to be in place.
As an extension to HAnS, we employ embedded feature annotations,
but our visualizations work independently of the feature traceability
technique. Embedded feature annotations advocate recording of
features while writing code, when the knowledge about its location
is fresh in the developers mind [33]. Code assets are mapped to
their corresponding features by directly embedding them into the
assets through a lightweight embedded feature annotations system
illustrated in Fig. 1. Based on embedded feature annotations, HAnS-
viz assumes the following information to be available to operate,
however, not all of them must be present in the project:
Folder mappings: A folder is mapped to a feature.
File mappings: A file is mapped to a feature.
Fragment mappings: A code fragment is mapped to a feature.
Files and folders are mapped to features through textual files, while
fragment mappings are integrated as comments within code. Our
visualizations utilize this feature traceability data for several op-
erations, such as the recovery of all feature locations within the
codebase, or the refactoring of feature names.

2.2 Feature Characteristics
Scattering and tangling are widely considered undesirable charac-
teristics of features [3, 4, 15, 28, 32]. A feature is considered to be
scattered, when it is not implemented in a modularized way and
distributed over the codebase [27]. Therefore, their maintenance
requires analyzing and changing multiple locations in the code-
base [28]. Features are tangled when a single software asset realizes
1github.com/isselab/HAnS-viz

Figure 2: Tree view showing features in their hierarchical
order

multiple features [34]. Likewise, feature tangling reduces compre-
hensibility, ease of evolution, and reusability of assets [32]. To this
end, HAnS-viz visualizes various feature characteristics:
Lines of code: The size of a feature in the codebase
Scattering degree: The degree to which a feature is distributed

over the codebase
Tangling degree: The degree to which a feature intersects with

other features in the codebase

3 THE HANS-VIZ PLUGIN
To raise the abstraction level of software assets from code to the
feature level HAnS-viz uses traceability data to offer a series of
feature visualizations to developers directly in the IntelliJ IDE.

3.1 Tree View and Tree Map View
When working with features, considering their hierarchical struc-
ture is essential. The hierarchical structure is typically depicted as
a tree, which shows the relationship between parent and child fea-
tures. This tree could be conveyed as an indented text-file, however,
visualizing it in a tree view makes features more tangible to users
and gives them an overview of features of a system. HAnS-viz uses
a tree view, which shows the hierarchical relations of all features
in the project, based on the underlying feature-model (Fig. 2).

Our tree view is interactive and provides editing support for the
feature model by providing functionalities for adding, refactoring,
moving and deleting features. When deleting features, the view
offers a choice in deleting features either only from the feature
model along with their traceability information, or along with the
annotated code. To avoid breaking functionality of tangled features,
the visualization checks if the feature is tangled with other features,
and guides the user through each location and asks to resolve them,
similar to how developers solve merge conflicts.

Alternatively, to obtain information beyond the hierarchy repre-
sentation, such as line count, HAnS-viz displays features in a tree
map, as they are ideal for displaying large hierarchical structures
in a confined space [19]. The size of each tree map field is based on
the number of lines of code of each feature (Fig. 3).

3.2 Scattering View
Visualizing the location of scattered features enhances comprehen-
sion of them. HAnS-viz visualizes the feature locations in a graph
that contains a central node connected to other nodes that map the
locations of the feature in different files and packages (Fig. 4). The

github.com/isselab/HAnS-viz


Lightweight Visualization of Software Features with HAnS-viz SPLC’25, September 01–September 05, 2025, A Coruña, Spain

Figure 3: Tree map view showing features based on their
hierarchical order and size

width of each edge connecting the feature to its files corresponds
to the feature’s coverage, indicating each file’s contribution. This
visualization allows developers to quickly understand the scattering
and distribution of feature implementations across the codebase.

3.3 Tangling Views
Whenever developers make changes to assets, they always need to
consider how they impact other features. Feature traceability tech-
niques relate assets to features, so that they can immediately per-
ceive what features are affected by changes to their assets. This al-
lows them to estimate what other features are impacted by changes.

Determining and visualizing the tangling of features aids in ob-
taining a simplified and clear overview of features affected by a
change. HAnS-viz provides tangling views (Fig. 5) developers can
use to quickly gain an overview of tangled features and their size in
two ways: via a view that shows the relation between all features,
and via a view that shows the tangling of feature clusters. The
first tangling view is organized as a circular graph to provide an
overview of all intertwined features of the project in a clearly ar-
ranged way (Fig. 5a). Each node represents a feature, and each edge
between the nodes indicates tangling. However, for large projects or
features with a high degree of tangling, displaying them in clusters
through a non-circular graph may offer a clearer overview (Fig. 5b).

Figure 4: Scattering view showing to what extent each file
implements a feature

(a) Circular tangling view (b) Non-circular tangling view

Figure 5: Tangling views showing what feature each feature
is tangled with

4 PRELIMINARY EVALUATION
HAnS-viz aids developers in understanding features in a software
system. Therefore, we evaluated its usability in a user study.
Participants. We recruited 15 students (8 graduate and 7 under-
graduate) as suitable stand-ins for professionals [30, 31].
StudyDesign.We asked participants to solve a series of tasks using
the views, and rate their experiencewith the tool via a questionnaire.
As a subject system, we employed the repository of HAnS, which
offers 28 features implemented in around 6,000 lines of annotated
Java source code spread over 129 files and 24 folders.
Tasks.We asked participants to solve tasks with each of our views.
1) Tree View. Participants identified 3 features, then named 1 child
and 1 sibling feature of 2 given features.
2) Tree Map View. Participants located 2 features, identified the 3
largest ones by size, and determined another’s largest child feature.
3) Circular Tangling View. Participants identified a feature’s tangling
degree and its tangled features.
4) Non-Circular Tangling View. Participants identified a feature’s
tangling degree and the most tangled associated feature.
5) Scattering View. Participants examined a feature and identified
the feature coverage of one of the files it appears in.
Analysis. All tasks were provided via a digital form with 5-point
Likert scale questions on the user experience when using each view.
The questionnaire included open-ended questions for qualitative
insights. As a post-task questionnaire, we employed the System
Usability Scale (SUS) [12] to assess the usability of HAnS-viz.
Results. All participants were able to solve the tasks for each view.
The visualizations were well received by the participants, resulting
in an average SUS score of 78. Table 1 shows the mean results of the
5-point Likert-scale questions. The tree view was particularly well
received by the participants, who expressed that it was easy to use
(4.3), and felt confident in using the view (3.9), as well as would like
to use this view frequently (4.3). One participant stated that they
could easily see the structure of the project, and find the necessary
features using the tree view. Still, the other views, particularly the
tree map view and circular tangling view received means similar
to the tree view. Here, one participant states “It is easy to locate the
biggest features in the project with the tree map view” and it “also
gives important information about the project structure.” They also
expressed that the circular tangling view “gives a very nice overview
about all features and connections between them.”



SPLC’25, September 01–September 05, 2025, A Coruña, Spain Johan Martinson, Kevin Hermann, Riman Houbbi, David Stechow, and Thorsten Berger

Question T TM CT NCT S

I would like to use this view frequently 4,3 3,7 3,6 3,3 3,3
I found the view unnecessarily complex 1,6 1,9 2,4 1,3 1,3
I thought the view was easy to use 4,3 4,1 3,9 3,5 3,5
I found the view very awkward to use 1,5 2,1 2,1 1,3 1,3
I felt very confident using the view 3,9 3,9 3,7 3,7 3,7
I found the view too cluttered 2,1 2,5 2,5 1,2 1,2
It was not pleasing to interact with the view 1,5 2,1 2,2 1,3 1,3

Table 1: Mean results for each question for each view. T =
Tree View, TM = TreeMap View, CT = Circular Tangling View,
NCT = Non-Circular Tangling View, S = Scattering View

5 RELATEDWORK
Previous work investigated techniques for tracing and visualizing
features. FAXE extracts embedded feature annotations and proposes
feature-based partial commits to trace features to commits [33]. The
Eclipse plugin Colligens maps C preprocessor directives to a fea-
ture model and shows the number of files and lines of code which
implement a feature [25]. Moreover, FLOrIDA extracts feature an-
notations from artifacts to visualize feature metrics such as feature
size, scattering or tangling in different views [2]. Similarly, fea-
turedashboard uses the same metrics to visualize features-to-asset
relationships and common features between projects [14]. Feature-
Vista interactively visualizes to what extent classes in the codebase
contribute to a feature and how features interact with each other [7].
FeatureIDE is another Eclipse plugin that uses a preprocessor to
load configurations to enable or disable feature in a system [26].
CIDE provides further support in highlighting feature-specific code
and hiding code fragments for improved visibility on code [23].
As an extension, we implemented a feature evolution timeline in
HAnS-viz that visualizes the commit history for features [16].

6 CONCLUSION
We presented HAnS-viz, an IntelliJ IDE plugin that offers visualiza-
tions to assist developers in comprehending software at the feature
level. As an IDE plugin, it is lightweight and close to the activities of
developers. Our visualizations utilize traceability information from
a software project to visualize features and their characteristics.
Users expressed satisfaction with HAnS-viz when using it to under-
stand features. While HAnS-viz assumes the presence of embedded
feature annotations, other traceability techniques could be used as
well. However, proactively recording feature locations has shown
to be more effective than retroactively recovering them [9, 29].

ACKNOWLEDGMENTS
We thank Philipp Kuzmiers, and Mariana Hohashvili for their con-
tributions on the visualizations. Partially funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) un-
der Germany’s Excellence Strategy - EXC 2092 CASA - 390781972.

REFERENCES
[1] Hadil Abukwaik, Andreas Burger, Berima Andam, and Thorsten Berger. 2018.

Semi-Automated Feature Traceability with Embedded Annotations. In ICSME.
[2] Berima Andam, Andreas Burger, Thorsten Berger, and Michel R. V. Chaudron.

2017. FLOrIDA: Feature LOcatIon DAshboard for extracting and visualizing
feature traces. In VAMOS.

[3] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines: Concepts and Implementation.

[4] Sven Apel, Thomas Leich, and Gunter Saake. 2008. Aspectual Feature Modules.
TSE (2008).

[5] Lotfi ben Othmane, Golriz Chehrazi, Eric Bodden, Petar Tsalovski, and Achim D.
Brucker. 2017. Time for Addressing Software Security Issues: Prediction Models
and Impacting Factors. Data Science and Engineering (2017).

[6] Lotfi ben Othmane, Golriz Chehrazi, Eric Bodden, Petar Tsalovski, Achim D.
Brucker, and Philip Miseldine. 2015. Factors Impacting the Effort Required to Fix
Security Vulnerabilities. In ISC.

[7] Alexandre Bergel, Razan Ghzouli, Thorsten Berger, and Michel R. V. Chaudron.
2021. FeatureVista: Interactive Feature Visualization. In SPLC.

[8] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Adeline Silva,
Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. 2015. What is a
Feature? A Qualitative Study of Features in Industrial Software Product Lines. In
SPLC.

[9] Thorsten Berger, Wardah Mahmood, Ramzi Abu Zahra, Igor Vassilevski, Andreas
Burger, Wenbin Ji, Michał Antkiewicz, and Krzysztof Czarnecki. 2025. Cost and
Benefit of Tracing Features with Embedded Annotations. TOSEM (2025).

[10] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E. Webster. 1994. Program
understanding and the concept assignment problem. Commun. ACM (1994).

[11] Jan Bosch. 2000. Design and Use of Software Architectures: Adopting and Evolving
a Product-Line Approach.

[12] John Brooke. 1996. SUS – a quick and dirty usability scale.
[13] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.

Feature location in source code: a taxonomy and survey. Journal of Software:
Evolution and Process (2013).

[14] Sina Entekhabi, Anton Solback, Jan-Philipp Steghöfer, and Thorsten Berger. 2019.
Visualization of feature locations with the tool featuredashboard. In SPLC.

[15] Favre. 1996. Preprocessors from an abstract point of view. In ICSM.
[16] Kevin Hermann, Johan Martinson, and Thorsten Berger. 2025. Lightweight

Visualization of Software Features with HAnS-viz. In SPLC.
[17] Rattikorn Hewett and Phongphun Kijsanayothin. 2009. On modeling software

defect repair time. EMSE (2009).
[18] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. 2015.

Maintaining feature traceability with embedded annotations. In SPLC.
[19] Brian Johnson and Ben Shneiderman. 1998. Tree-maps: A space filling approach

to the visualization of hierarchical information structures. Technical Report.
[20] Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Peterson. 1990.

Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Report.
[21] Jacob Krüger, Wanzi Gu, Hui Shen, Mukelabai Mukelabai, Regina Hebig, and

Thorsten Berger. 2018. Towards a Better Understanding of Software Features
and Their Characteristics: A Case Study of Marlin. In VAMOS.

[22] Jacob Krüger, Thorsten Berger, and Thomas Leich. 2019. Features and How to
Find Them: A Survey on Manual Feature Location.

[23] Christian Kästner, Salvador Trujillo, and Sven Apel. 2008. Visualizing Software
Product Line Variabilities in Source Code. In SPLC.

[24] Johan Martinson, Herman Jansson, Mukelabai Mukelabai, Thorsten Berger,
Alexandre Bergel, and Truong Ho-Quang. 2021. HAnS: IDE-Based Editing Sup-
port for Embedded Feature Annotations. In SPLC.

[25] Flávio Medeiros, Thiago Lima, Francisco Dalton, Márcio Ribeiro, Rohit Gheyi,
and B Andfonseca. 2013. Colligens: A Tool to Support the Development of
Preprocessor-based Software Product Lines in C. In CBSoft.

[26] Jens Meinicke, Thomas Thüm, Reimar Schröter, Sebastian Krieter, Fabian Ben-
duhn, Gunter Saake, and Thomas Leich. 2016. FeatureIDE: Taming the Prepro-
cessor Wilderness. In ICSE.

[27] Leonardo Passos, Jesus Padilla, Thorsten Berger, Sven Apel, Krzysztof Czarnecki,
and Marco Tulio Valente. 2015. Feature Scattering in the Large: A Longitudi-
nal Study of Linux Kernel Device Drivers. In 14th International Conference on
Modularity (MODULARITY).

[28] Rodrigo Queiroz, Leonardo Teixeira Passos, Marco Túlio Valente, Sven Apel, and
K. Czarnecki. 2014. Does feature scattering follow power-law distributions?: an
investigation of five pre-processor-based systems. In FOSD.

[29] Julia Rubin and Marsha Chechik. 2013. A Survey of Feature Location Techniques.
[30] Per Runeson. 2003. Using students as experiment subjects - An analysis on

graduate and freshmen student data. EASE (2003).
[31] Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. 2015. Are Students Repre-

sentatives of Professionals in Software Engineering Experiments?. In ICSE.
[32] Claudio Sant’Anna, Alessandro Garcia, Christina Chavez, Garcia Chavez, Carlos

Lucena, and Arndt Staa. 2003. On the reuse and maintenance of aspect-oriented
software: An assessment framework. SBES (2003).

[33] Tobias Schwarz, Wardah Mahmood, and Thorsten Berger. 2020. A Common
Notation and Tool Support for Embedded Feature Annotations. In SPLC.

[34] Periklis Sochos, Matthias Riebisch, and Ilka Philippow. 2006. The feature-
architecture mapping (FArM) method for feature-oriented development of soft-
ware product lines. In ECBS.

[35] Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. 2013. How de-
velopers perform feature location tasks: a human-centric and process-oriented
exploratory study. Journal of Software: Evolution and Process (2013).


	Abstract
	1 Introduction
	2 Background
	2.1 Feature Traceability
	2.2 Feature Characteristics

	3 The HAnS-viz Plugin
	3.1 Tree View and Tree Map View
	3.2 Scattering View
	3.3 Tangling Views

	4 Preliminary Evaluation
	5 Related Work
	6 Conclusion
	Acknowledgments
	References

