
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

FM-PRO: A Feature Modeling Process
Johan Martinson, Wardah Mahmood, Jude Gyimah, and Thorsten Berger

Abstract—Almost any software system needs to exist in multiple variants. While branching or forking—a.k.a. clone & own—are simple
and inexpensive strategies, they do not scale well with the number of variants created. Software platforms—a.k.a. software product
lines—scale and allow to derive variants by selecting the desired features in an automated, tool-supported process. However, product
lines are difficult to adopt and to evolve, requiring mechanisms to manage features and their implementations in complex codebases.
Such systems can easily have thousands of features with intricate dependencies. Feature models have arguably become the most
popular notation to model and manage features, mainly due to their intuitive, tree-like representation. Introduced more than 30 years
ago, thousands of techniques relying on feature models have been presented, including model configuration, synthesis, analysis, and
evolution techniques. However, despite many success stories, organizations still struggle with adopting software product lines, limiting
the usefulness of such techniques. Surprisingly, no modeling process exists to systematically create feature models, despite them
being the main artifact of a product line. This challenges organizations, even hindering the adoption of product lines altogether.
We present FM-PRO, a process to engineer feature models. It can be used with different adoption strategies for product lines, including
creating one from scratch (pro-active adoption) and re-engineering one from existing cloned variants (extractive adoption). The resulting
feature models can be used for configuration, planning, evolution, reasoning about variants, or keeping an overview understanding of
complex software platforms. We systematically engineered the process based on empirically elicited modeling principles. We evaluated
and refined it in a real-world industrial case study, two surveys with industrial and academic feature-modeling experts, as well
as an open-source case study. We hope that FM-PRO helps to adopt feature models and that it facilitates higher-level, feature-oriented
engineering practices, establishing features as a better and more abstract way to manage increasingly complex codebases.

Index Terms—feature modeling, software engineering processes, features, product lines, configurable systems.

✦

1 INTRODUCTION

Software systems often need to exist in multiple variants—
accounting for varying customer requirements, hardware, or
operating environments. Variants also allow experimenting
with new ideas and optimizing non-functional properties,
such as cost, performance, or power consumption. Organi-
zations often use branching or forking—a.k.a. clone & own
[1]–[4] as a simple and cheap strategy. However, it does
not scale with the number of variants, quickly causing high
maintenance efforts [5], [6]. Developers lose the overview
over the variants [7] and are mainly occupied with integrat-
ing changes across variants, instead of developing new fea-
tures [8]. Engineering software platforms—a.k.a. software
product lines [9]–[13]—scales, allowing to automatically de-
rive individual variants by selecting the desired features in a
configurator tool. However, platforms are difficult to adopt
and evolve, relying on mechanisms to manage features, their
constraints (e.g., dependencies), and their implementation
in code, often using conditional compilation (e.g., #ifdef),
feature toggles [14], [15], or configurable build systems [16].
Large systems can easily have thousands of features with
intricate constraints [17], [18], requiring proper engineering
practices and model-based representations.

• J. Martinson is with the Faculty of Computer Science at Ruhr University
Bochum, Germany.
E-mail johan.martinson@rub.de

• W. Mahmood is with the Department of Computer Science and Engineer-
ing, Chalmers | University of Gothenburg, Sweden.

• J. Gyimah is with the Faculty of Computer Science at Ruhr University
Bochum, Germany

• T. Berger is with the Faculty of Computer Science at Ruhr University
Bochum, Germany and Department of Computer Science and Engineer-
ing, Chalmers | University of Gothenburg, Sweden.

Feature models can be seen as the most prominent
modeling language for features and their constraints. In-
troduced over three decades ago [19], they quickly became
popular in academia and industry due to their intuitive,
tree-like notation. Figure 1 shows a small feature model.
It is an excerpt (18 of 108 features) from the configurable
open-source SSL server axTLS. Features are organized in
a hierarchy and represent abstract units of functionality
that are meaningful to stakeholders [20]. Features can be
mandatory (contained in all variants), optional (contained
in some variants), part of a feature group (OR/XOR group),
or part of cross-tree constraints (shown below the tree).

Feature models provide various benefits. As input to
interactive configurator tools, they allow configuring the de-
sired variant by selecting features. In addition, feature mod-
els allow keeping an overview understanding of the code-
base, support system design [21], help evolving and main-
taining complex platforms, support communication among

axTLS

BigInt

CRT ReductionAlg

classical montgomery Barret

SlidingWindow

HTTP-Server

debug CGI

CGIext LUAScript

authorization

Platform

Cygwin Linux Win32

Barret ⇒ debug

Cygwin ⇒ ¬montgomery

Legend:

Abstract Feature

Concrete Feature

Mandatory

Optional

Or Group

Alternative Group

Fig. 1: Feature model excerpt of axTLS (SSL server)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

stakeholders [22], and drive quality assurance [23], [24].
Over the years, many companies have adopted product-

line platforms and feature models, as witnessed by many
case studies, experience reports, or surveys collected in the
Product Line Hall of Fame (splc.net/fame.html), in books
[11], [25], online catalogs [26], and meta-studies [8], [27].
Feature modeling is supported by commercial and open-
source tools [28], such as pure::variants [29], Gears [30],
FeatureIDE [31], or UML tools with profiles for feature mod-
eling [32], [33]. It is also considered in standards, such as
AUTOSAR, ISO26580:2021, the OASIS Variability Exchange
Language, and OMG’s upcoming SysML V2.

Since their introduction, feature models have gained
increasing popularity and have given rise to many notations
[34], [35] and tools [29], [30], [36], [37]. Figure 1 shows the
traditional notation, but many variations and extensions
exist, including textual languages [38], such as Clafer [34],
Kconfig [39], CDL [18], or UVL [40], [41]. Over the decades,
the research community has contributed many variants and
extension of feature modeling [42], as well as it has built
thousands of techniques for model configuration [39], [43]–
[45], synthesis [46], [47], analysis [24], [48]–[50], and evolu-
tion [51], [52]. The community has also started various ini-
tiatives, such as the INCOSE Product Line Working group,
the MODEVAR community initiative for a common feature-
modeling language [53], and a (now abandoned) OMG ini-
tiative on the common variability language CVL [54]–[56].

Unfortunately, despite these success stories, initiatives,
and supporting tools, organizations still struggle with
adopting platforms and feature models in the first place,
limiting the usefulness of all these contributions. Since
developers are not accustomed to thinking in terms of
features in their routine development activities, they
already find it challenging to identify what qualifies as a
feature and if it should be modeled as such. Many processes
for product-line engineering exist [10], [12], [57]–[60], most
of which including “domain requirement engineering” as a
core activity in the scoping of the platform. However, they
lack concrete guidelines on feature model construction.
Consequently, feature models are mainly created manually,
since they contain highly domain-specific knowledge
(especially the features and their organization in a
hierarchy) and gather information (especially constraints)
that is typically scattered across the codebase in different
artifacts, such as code, requirements, feature databases,
or configuration files. As such, it is surprising that no
modeling process to systematically create and manage
feature models exists. To the best of our knowledge, only
modeling principles [61], as a result of our previous work,
and modeling guidelines [62] have been presented.

To address this gap, we present FM-PRO, a feature
modeling process to systematically create feature models.
It covers different adoption strategies for platforms,
including re-engineering a platform from existing cloned
variants. It covers the three adoption strategies for software
platforms and helps the different stakeholders (e.g.,
modeler, domain expert, developer, and method expert)
engineer feature models, including planning, training, and
quality-assurance activities. The process is organized into
activities, sub-activities, questions, and phases, and as
such, provides systematic guidelines to the stakeholders

involved. We systematically engineered the process by
analyzing existing, empirically elicited modeling principles
[61] and triangulating this analysis with our own practical
and research experiences. We evaluated and refined FM-
PRO with an open-sourced product line case, together with
a real-world industrial platform-adoption effort, taking
qualitative and quantitative feedback from industrial and
academic feature-modeling experts into account. To the best
of our knowledge, this is the first process for feature model
construction. Our process can be seen as an extension of the
existing processes for platform adoption [10], [12], [57]–[60].

We contribute:
• the feature-modeling process FM-PRO, described in

its own technical documentation [63];
• evidence of applicability, stemming from an open-

source case study evaluation; empirical data from an
industrial case study, an open-source case study and
an assessment by 27 research and industrial experts on
feature modeling; and

• an online appendix containing the evaluation data [64].
On a final note, we hope that our work helps adopt

feature models and facilitates feature-oriented engineering
practices, establishing features as a more abstract way
to interface with, and manage, increasingly complex
codebases. For instance, cyber-physical or information
systems have massive variability, benefiting from systematic
engineering practices as FM-PRO provides. In addition,
modern software will be increasingly generated based on
AI techniques, requiring raising the level of abstraction
from code to the domain—that is, the feature level, to
implement and manage software artifacts.

2 BACKGROUND AND RELATED WORK

We briefly introduce the necessary background on variant-
rich systems and software platforms, their adoption and
engineering practices, as well as features, feature models,
and the feature modeling principles FM-PRO is built upon.

2.1 Variant-Rich Systems and Platforms

Platform Adoption. FM-PRO supports the different adop-
tion strategies for product-line platforms [57], [65]. Proactive
adoption involves planning and creating a platform from
scratch. Reactive adoption involves starting with one variant
and incrementally migrating it to a platform by making
features optional and adding new ones (a.k.a. featurization
[66]). Extractive adoption, as the most frequent strategy in
practice [6], [26], [67], [68], involves extracting the features
from variants that have previously been realized using
clone & own. All strategies require creating a feature model,
but using different sources for identifying features, their
relationships in the hierarchy, and constraints. For instance,
in proactive adoption, since no implemented variants exist,
organizations will primarily need to rely on the knowledge
of domain experts. In extractive adoption, since many fea-
tures would already have been implemented, organizations
need to identify features from existing artifacts [5], [69], [70].

Once adopted, the platform integrates all features of the
possible variants, typically using a dedicated architecture,
variability mechanisms to realize variation points, the

https://splc.net/fame.html

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

feature model, an interactive configurator tool, and a
configurable build system. Notably, our modeling process
does not prescribe a strategy for platform adoption,
which has already been done by many existing processes
and frameworks against different adoption strategies
(as cited above). Instead, it refines the processes for
platform adoption by contributing concrete activities
facilitating creation of a feature model from scratch (i.e.,
in proactive adoption) as well as extracting it from one or
multiple variants (i.e., in reactive and extractive adoption
respectively). Finally, it is also suited for an incremental
adoption of product lines [68], [71], [72].

2.2 Features and Feature Models
Feature. Features abstractly represent the commonality
and variability of variants in a product-line platform.
While many definitions exist [10], [11], [19], [59], [73]–[75],
we refer to features as entities relevant and understood
by many stakeholders. They represent a domain concept
and are units of reuse and communication [20], [76].
Implemented features often cross-cut unless they are
modularized [77], which illustrates their flexibility. Modern
agile development processes, such as SCRUM, XP or FDD
[78]–[80] use features to plan, design, and evolve systems.
Creating feature teams [81] allows developers to gather
more specific knowledge to become more agile.
Feature Model. Feature models are hierarchical structures
of features and their constraints. Introduced as part of the
domain analysis technique FODA [19], [82], they have since
become popular [8], [67], [83], as also witnessed by the
first paper on FODA [19] surpassing 5,800 citations (note:
Google Scholar’s citation count recently broke for it). Recall
from Fig. 1 that features can be either mandatory (contained
in all variants) or optional (contained in some variants), that
they can be part of a feature group, typically OR (at least one
feature should be selected), XOR (only one feature should be
selected), and MUTEX (none or one feature can be selected).
Additional, so-called cross-tree constraints, which cannot
be expressed using these means, are added as expressions
(typically using Boolean logic) below the diagram. Beyond
these basic concepts, in some languages, features can also
have different types beyond Boolean, then requiring more
expressive constraints [84], and some feature modeling
languages support advanced concepts, such as feature
attributes and non-Boolean features. FM-PRO does not sup-
port those advanced feature modeling concepts. However,
since it does not prevent them, FM-PRO can be used with
feature modeling languages of different expressiveness, as
long as they support the basic concepts (cf. Sec. 4).
Tools and Textual Feature Models. Recall that a variety
of feature modeling tools and different variations of
the feature-modeling notation exist [42]. Since the
traditional graphical notation shown in Fig. 1 hardly
scales, configurator tools typically use different notations,
usually showing the feature hierarchy as a tree menu. Since
textual feature-modeling languages are even easier to edit
and manage (e.g., through version-control systems), we
conducted one of our evaluations (the industrial case study)
with a textual language.

Textual modeling languages offer several advantages for
feature modeling, particularly in industrial settings. They

1 AXTLS
2 or Pla t fo rm
3 Linux
4 Win32
5 CygWin
6 HTTPServer
7 debug ?
8 a u t h o r i z a t i o n
9 or CGI ?

10 CGIext ?
11 LUAscr ipt ?
12 B i g I n t
13 SlidingWindow ?
14 CRT ?
15 xor Reduct ionAlg
16 Montgomery
17 [! Cygwin]
18 classical
19 Barret
20 [debug]

Fig. 2: The axTLS feature model from Fig. 1 in Clafer

are easier to edit and manage, especially when integrated
with version-control systems [38], [85]. Among textual
languages, Clafer [86] and UVL [40], [41] are prominent ex-
amples. UVL is a more recent language, whereas Clafer has
a more concise and simple syntax (which is also harder to
violate). Both UVL and Clafer support basic and advanced
feature modeling concepts and come with tool support.
UVL1 comes with an LSP, a web interface, translators,
as well as IDE (Visual Studio and Eclipse) and analysis
framework integrations. Clafer2 offers a compiler and an
analysis framework (e.g., instance generator, optimizer),
web interfaces, and IDE integration for JetBrains IDEs (e.g.,
IntelliJ IDEA, PyCharm, Rider) [87]. Our experience shows
that the minimal syntax of Clafer is easier to adopt for
developers in industry, especially when using it does not re-
quire adopting additional tooling. Since UVL’s syntax is less
succinct (e.g., more keywords), enforces a more stringent
structure, and disconnects constraints from feature declara-
tions, which made it harder to understand, we chose Clafer
for our industrial case study, while all other textual feature
modeling languages are also applicable with FM-PRO.

Figure 2 shows our axTLS model from Fig. 1 expressed
in Clafer’s minimal textual syntax. Each line defines
one feature, with indentation representing the hierarchy.
Optional features are suffixed with a ?. Feature groups
are denoted by the keyword or, xor, or mutex. Cross-tree
constraints are declared in brackets and are implied by
their nesting scope (e.g., Barret requires debug). See the
Clafer documentation for further details [86]. Still, FM-PRO
is notation-agnostic, which we show by using the tool
FeatureIDE in the open-source case study, which offers the
graphical notation shown in Fig. 1.

2.3 Feature Modeling Principles

Modeling notations typically come with a modeling process,
describing when, where, and how to apply the notation.
Processes provide guidelines and an order of activities, as
well as they describe the role performing such. For feature
models, to the best of our knowledge, only our modeling
principles [61] and other modeling guidelines [62] have
been presented, but no process.

1. https://universal-variability-language.github.io
2. https://www.clafer.org

https://universal-variability-language.github.io
https://www.clafer.org

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

The principles aim to address the challenges in building
and evolving feature models, offering a structured approach
to manage the complexity of software product lines effec-
tively. They are divided into eight groups; PP: Planning
and Preparation, T: Training, D: Dependencies, IS: Infor-
mation Sources, MO: Model Organization, M: Modeling,
MME: Model Maintenance and Evolution, and QA: Quality
Assurance. The following will give an overview on what
principles they, the individual principle-definitions can be
found in the appendix.
PP: Planning and Preparation. The six principles (PP1–PP6)
emphasize the importance of identifying relevant stakehold-
ers and defining the purpose of the feature model. They
also highlight the need for unifying domain terminology
and establishing clear communication among stakeholders.
T: Training. It is crucial to ensure that modelers are well-
equipped to handle feature modeling tasks. The three prin-
ciples suggest conducting pilot projects and providing itera-
tive learning opportunities. Training sessions help modelers
understand the principles and apply them effectively in
practice.
IS: Information Sources. The three principles recommend
leveraging domain knowledge from existing artifacts, con-
ducting workshops with domain experts, and applying both
bottom-up and top-down modeling approaches. Utilizing
diverse information sources ensure that the feature model is
well-informed and accurate.
MO: Modeling Organization. Organizing features hierar-
chically and grouping related features into clusters are es-
sential for managing complexity. The principles also empha-
sizes modularity and scalability, ensuring that the feature
model can accommodate future changes.
M: Modeling. This group of 11 principles (M1–M11) fo-
cuses on the core activities of feature modeling, such as
identifying and defining features, ensuring distinctiveness,
and mapping features to software assets. It also stresses
the importance of clear dependency declarations, regular
validation and verification, and maintaining traceability be-
tween features and requirements.
D: Dependencies. Clearly defining dependencies between
features is crucial to avoid conflicts and ensure consis-
tency. These two principles (D1–D2) highlights the need
for precise dependency declarations and regular checks to
maintain the integrity of the feature model.
QA: Quality Assurance. Quality assurance involves regular
validation and verification of the feature model to ensure
it meets the intended requirements. These three principles
(QA1–QA3) recommends using automated tools for consis-
tency checks and maintaining up-to-date documentation to
support ongoing quality assurance efforts.
MME: Model Maintenance and Evolution. The final
three principles (MME1–MME3) addresses the need for
regular updates and maintenance of the feature model.
It emphasizes planning for evolution to accommodate
changing requirements and keeping documentation
current. Ensuring the model evolves with the software
product line is essential for long-term success.

3 METHODOLOGY

We designed, evaluated, and refined the process using the
following methodology. Since evaluating a modeling pro-

cess is generally challenging, our methodology was inspired
by design science [88], with an initial evaluation and refine-
ment cycle, followed by an expert evaluation and finally
an open-source case study at the end. First, we synthesized
our process from our feature modeling principles [61], that
we elicited from 10 interviews with industrial practitioners
from nine companies, as well as the analysis of the relevant
literature (105 papers). Next, we combined a hands-on and
very practical evaluation with practitioners by applying our
process to an industrial case study in real-time. Further-
more, based on the feedback from our industrial evaluation,
we refined the process, and evaluated it with the aid of aca-
demic and industrial feature modeling experts. We also con-
ducted an open-source case study to evaluate FM-PRO in a
controlled setting. Further details, raw data, and additional
explanations are available in our online appendix [64].

3.1 Data Sources

Our methodology relied on the following data sources.
Feature Modeling Principles. In our previous work [61],
we presented 34 principles of feature modeling. These are
modeling heuristics that we extracted and synthesized from
the literature and from interviews with modeling experts
stemming from nine different companies. An example of
a principle is “M1: Focus first on features that distinguish
variants,” which suggests that when identifying features,
companies should focus on variability instead of commonal-
ity between variants to make the activity easier to perform.
The principles covered the following categories: planning
and preparation (PP), training (T), information sources
(IS), model organization (MO), modeling features (M),
modeling dependencies (D), quality assurance (QA), and
model maintenance and evolution (MME). We synthesized
FM-PRO to align with and adhere to these principles.
Authors’ Experiences. Our own experiences with product-
line engineering and feature modeling range between 5
and 16 years. We have collaborated with many industries
building variant-rich software systems, in funded research
projects (also large framework projects with up to 30
partners), in action research (company visits with close
interaction), and in empirical studies (e.g., via interviews
or artifact/longitudinal studies). We are also embedded in
the research community, having contributed methods and
tools, as well as empirical insights over the years.
Industrial Partner. To evaluate FM-PRO’s applicability
and effectiveness in real setting, we applied it at our
industrial partner, a medium-sized company with around
700 employees. The organization comprises 200 developers,
over 300 application specialists (combining the role
of requirements engineer and tester), and other roles
that focus on software architecture, business analysis,
management, or product delivery. The company builds
large information systems for logistics companies. Its goal is
to establish feature modeling as a starting point to making
their variants configurable, deriving variants based on
customer requirements by enabling and disabling features,
i.e., performing re-active adoption. Our data source was
one of their long serving (10+ years) products (comprising
around 1250 files, 210k lines of code and 48 features) and a
team of 6 employees (4 developers, 1 application specialist,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

1 interaction designer) collaborating with 5 researchers to
systematically apply the process and collect qualitative and
quantitative feedback. One author was employed at the
company and had expert knowledge of the subject product.
ESPLA Catalog and Experimental Data. For our open
source case study, our data sources primarily came from
the Extractive Software Product Line Adoption (ESPLA)
Catalog [26] which is a collaborative catalog of case studies
on extractive product line adoption and reuse. The Github
repository linked to our product line of choice, i.e., Video.js,
contained an aggregation of case study data gathered during
the evaluation of a strategy (RiPLE-HC) [89], which was
designed to handle variability on both the feature modeling
and code level of JavaScript-based systems. Through RiPLE-
HC, feature-based code organization and preprocessing
annotations can be used to handle fine-grained variability.
Thus, in their case study evaluations, they created a product
line from scratch and transformed a selection of them from
the qualitas.js corpus JavaScript systems dataset. Based on
that, we randomly selected a product line from the dataset
provided, for use in our open-source case study.
Research Experts in Feature Modeling. We used qualitative
and quantitative feedback of 20 experts known in
the academic and industrial research community. We
recruited the experts as follows. We contacted experts
from our knowledge of the literature, of feature-modeling
standardization or community initiatives (e.g., CVL [54],
as well as respective books or catalogs of case studies, cf.
Sec. 1), as well as tool vendors (e.g., pure::systems). We also
sought through the proceedings of the last 14 instances
of the Systems and Software Product Line Conference
(SPLC), the flagship conference in software product-line
engineering, and 12 instances of VaMoS, another well-
recognized workshop and (since 2020) working conference
on variability modeling. We searched for experience reports
and industrial track papers where authors reported their
experiences with applying feature modeling in substantial
real-world projects. While all experts have published on
feature modeling, 11 of them are industrial practitioners,
whereas six of them are academic researchers. Three of the
20 experts chose to stay anonymous.
Industrial Experts in Feature Modeling. Similarly to the
research experts we used qualitative and quantitative feed-
back from 7 industrial experts with various roles from a
large company with an average of 3–5 years experience in
feature modeling. The company builds infotainment sys-
tems for the automotive industry and has a decade long
history of both using feature models and modeling their
systems.

3.2 Process Design

We structured the process into distinct phases, each phase
focusing on a different component of feature modeling.
The phases contain activities, composite activities with sub-
activities, and questions. The different types of activities can
be optional depending on the context or circumstances.

We started with carefully analyzing our feature-
modeling principles to identify concrete modeling activities
the modelers and other involved stakeholders would need
to perform. Subsequently, we defined those activities, also

suggesting who should perform them based on our own ex-
perience in feature modeling. This resulted in multiple fine-
grained activities. Specifically, principles that suggested an
action were directly translated into activities. For example,
the principle PP1 (Identify relevant stakeholders) directly
translated into the activity “Identify stakeholder”, while
the principle PP6 (Keep the number of modelers low) also
inspired the design of this activity. For tasks that only fit cer-
tain contexts, we designed optional activities. If an activity
required a decision to be made, we added a relevant ques-
tion that would help the modelers in making that decision.
For activities requiring multiple sub-tasks, we created com-
posite activities comprising multiple sub-activities. We pro-
vide examples to the above-mentioned elements in Sec. 4.

Next, based on the similarity of activities and the context
they were suited in, we structured the activities into distinct
phases. To make the process simplistic and more applicable,
we aimed for a small number of phases. When assigning
an activity to a phase, we determined whether the activity
intuitively fit the general idea of the phase. We decided
on the position of the activity in the phase based on the
dependencies between different activities (e.g., activities
might require some result or insights that previous activities
provide). We made some activities mandatory and others
optional based on their relevance in different contexts as
well as their required effort. For each activity, we added a
short description, details on how to perform it, the involved
stakeholders, and the expected outcomes.

3.3 Industrial Case Study
Following the formulation of the first version of FM-PRO,
we evaluated it by applying it at our industrial partner.
To commence the collaboration, all researchers visited the
company. One author presented the general idea of software
product-lines, configurable software systems, and the rele-
vance of feature models in that context. We also met with the
other participants of our evaluation (identified by the author
working in the company), which were the industry stake-
holders including four developers, one application special-
ists, and one interaction designer. Lastly, we received an in-
troduction of the product that would act as the software sys-
tem we would analyze and construct the feature model for.

After the introductory meeting, we provided the par-
ticipants with a description of the process to make them
familiar with it. Additionally, as a preparatory task, we
asked them to fill out a questionnaire. The questionnaire
comprised questions pertaining to the clarity, applicability,
and effectiveness of the process. The aim of the question-
naire was to determine how the process was perceived
by the participants in different aspects (e.g., clarity of the
formulation). The questionnaire comprised sections, each
relevant to one activity. The rationale for planning the
industrial evaluation at the granularity of activities is that
industrial practitioners (developers, designers, modelers),
when following the process, will go through the process ac-
tivity by activity. Then, it is important that we get feedback
about the clarity and applicability at the activity level so we
identify potential area of improvement, making sure each
activity, and consequently, the entire process is applicable in
industrial context. In our questionnaire, each section com-
prised (the same) eight questions. The first four questions

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

were designed to be answered on a five-point Likert scale
(fully disagree, disagree, neutral, agree, fully agree), and
aligned with the aspects we wanted to evaluate. The last
four questions aimed at getting subjective opinions from the
participants, and were therefore designed to be open-ended.
I1. The formulation of the step is clear (Clarity)
I2. The step is applicable to our project (Applicability)
I3. The step comes at the right place in the process (Order in
process)
I4. The step is useful (Usefulness)
I5. How much effort (in person-hours) would the activity
require?
I6. What challenges do you expect when performing the
activity?
I7. What suggestions for improvement do you have for this
activity?
I8. Are there any other comments?

We executed the process using different formats. We
used a workshop format when the activities involved collab-
oration among the stakeholders. We also conducted one-to-
one, semi-structured interviews with participants to extract
features from their expertise. We deliberately avoided a
workshop format and opted for interviews to allow varying
points of view on the process and eliminate the risk of
participants’ views to be influenced by those of each other.
We interviewed the industrial participants (cf. Sec. 3.1).

Following the process, we manually inspected the prod-
uct’s codebase to identify features, followed by a validation
step with an expert. To this end, we conducted a total of
three meetings with one of the core product developers
who had three years of experience working with the
product under analysis. The first meeting involved product
introduction, where the developer walked us through
the product’s user interface and provided an overview of
its functionality. In the second meeting, the focus shifted
towards obtaining understanding of the product’s codebase.
This meeting allowed us to explore the underlying structure
and architecture of the product, enabling us to comprehend
its functionalities more effectively. The last meeting
involved feature model validation, where we presented the
created feature model to the developer to gain feedback
on the identified features, feature relationships, and
cross-tree constraints. The meetings also helped us in
identifying which features would be considered optional
and which would be mandatory. We conducted the
extraction independent of the developer, in-between the
three meetings. For the actual modeling, we used Clafer
[34] (explained in Sec. 2). As mentioned above (in Sec. 2),
we use Clafer for its simplicity. The textual notation allows
modelers to easily create, edit, and manage feature models.

Following the completion of the process execution, we
asked the participants to edit their responses in the ques-
tionnaire if required to provide more updated feedback and
insights.

3.4 Process Refinement

The execution of the process resulted in a diverse range of
feedback. First, the participants’ responses to the question-
naire provided insights into the clarity, intuitiveness, and
applicability of the process. Second, the challenges we faced

during the process execution helped us identify areas of
improvement in the process. Lastly, the experts’ responses
to the survey (specifically the open-ended questions) also
helped us identify potential areas of improvement. Most of
the refinements were related to the clarity of an activity, the
amount of emphasis we put on a certain activity, or the order
of an activity in the process. In some instances, we realized
that guidelines were lacking on how to perform a certain
activity. In other instances, there were guidelines, but they
were incomplete.

We incorporated the feedback in various ways. First,
we added more clarity in the activity descriptions by
elaborating them further and putting more emphasis on the
aspects that were deemed vague. Second, in some instances,
we re-arranged the activities in the phase to make the
order of activities more intuitive and applicable. Lastly, we
proposed new activities in response to the identification
of missing guidelines. None of the activities was removed,
since each activity was deemed useful and applicable by
our participants. Notably, we refined the process twice,
once after the industrial evaluation, and once after the
feedback from the expert survey.

3.5 Expert Assessments

We assessed FM-PRO through a survey answered by experts
in the research community and by industrial experts. In the
survey, we formulated the questions focusing on the same
evaluation metrics as those in the industrial evaluation
(i.e., clarity, applicability, and order in process), requiring
five-point Likert scale responses. To gain an understanding
on the perceptibility of the process from an experts’ point
of view, we also added a question about intuitiveness of
the activities in each phase. Aiming for a broader feedback
and considering the time constraints of the experts, in
contrast to the industrial evaluation, we formulated the
questions per phase (instead of per activity). As a result, the
survey comprised four main sections (with two additional
sections for introduction and optionally providing contact
details). In addition to the questions pertaining to the
evaluation metrics, we also asked experts for qualitative
feedback, allowing more detailed and subjective responses.
Specifically, we asked the following questions:

E1. The formulation of activities in the phase is clear
(Clarity)

E2. Overall, this phase is applicable in industry (Applica-
bility)

E3. The order of activities in the phase is logical (Order)
E4. The activities in the phase are intuitive (Intuitiveness)
E5. Is there something that needs improvement in this

phase?

3.5.1 Research Expert Assessment

We shared the refined process description with 20 research
experts, asking them for both quantitative and qualitative
feedback. For conducting the survey, we contacted the
experts through email, sending them a link to the process
(in a PDF document) as well as the questionnaire (realized
in the form of an online Google form).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

3.5.2 Industrial Expert Assessment
We shared the refined FM-PRO from the research expert
evaluation with 7 industrial experts, asking them for both
quantitative and qualitative feedback. In contrast to the
evaluation with the research experts, we instead conducted
a workshop session where the participants got to read the
process one phase at a time and then answer questions in
a questionnaire about each phase. Similarly to the research
expert assessment (Sec. 3.5.1) we also shared the process as
a PDF and the questionnaire was realized in the form of an
online Google form.

3.6 Open-Source Case Study
To evaluate the the final FM-PRO-revision, we conducted
an experiment with a subject that had no prior experience
with feature models or FM-PRO. With a reactive adoption
approach, we selected a software platform case, that fit our
needs (i.e. open-source, reusable assets, LOC, modules etc.),
to apply and evaluate FM-PRO on. Our platform selec-
tion process was characterized by meticulously searching
through the online ESPLA catalog [26] to find a system
that sufficed in terms of size and number of features. The
ESPLA catalog presents case studies and artefacts related
to extractive product line adoption. Then we reviewed and
verified existing features already identified within the prod-
uct line case. This review process involved the inspection
of each feature via interactions with a running instance of
the system, as well as a step-by-step module inspection and
analysis on the codebase level. We then proceeded to model
all gathered and verified features. Our modeling efforts
required a strong understanding of feature relationships
regarding the perceived hierarchy. Furthermore, we contin-
ued to model all observable dependencies, relationships and
constraints. Then, last but not least, we implemented general
model refinements through critical feature reviews to verify
feature positions in the model tree.

4 FM-PRO OVERVIEW

We present a high-level description of FM-PRO. The process
itself is contained in its own technical documentation [63].
Our final process model comprises 30 activities in four
phases: Pre-Modeling (11 activities, 4 questions), Domain
Analysis and Scoping (4 activities, 1 question), Modeling (12
activities, 1 question), and Maintenance and Evolution (3
activities). Figure 3 shows a high-level overview of the fea-
ture modeling process. The more detailed Fig. 4, 5, 6 and 10
illustrate all the activities and questions involved in the
four phases. In the overall process, the Pre-Modeling phase
plays a pivotal role as it involves activities pertaining to the
planning and setup required for the process, and precedes
other phases in the process. An example of a sub-activity
in this phase is “Define model purpose,” which involves
establishing the purpose of the feature model explicitly,
thereby setting the focus of modeling. As such, we posi-
tioned the activity at the beginning of the entire process,
preceding all other activities pertaining to modeling. Instead
of making the process sequential, we designed it such that
the phases Domain Analysis and Scoping and Modeling could
be performed in parallel. The Domain Analysis and Scop-
ing phase involves identifying the features to be modeled,

Pre-Modeling

Domain Analysis & Scoping Modeling

Maintenance and Evolution

Fig. 3: High-level overview of FM-PRO

along with their relationships and constraints, whereas the
Modeling phase involves modeling them into (one or more)
feature models. Finally, the Maintenance and Evolution phase
allows modelers to refine and extend the created feature
model based on stakeholder feedback and in response to
incoming changes (e.g., new feature requests). This phase is
continuous and can be iteratively performed.

As mentioned above (Sec. 3.2), our process comprises
optional activities; activities that are only suitable in some
contexts. An example of such an activity is “Identify con-
straints” that requires modelers to specify the cross-tree con-
straints in the feature model. While an important activity, we
deem it optional, since modeling constraints can be expen-
sive, and not required if experts (with significant knowledge
of the constraints) will use the model for, for example,
configuring products. Additionally, as mentioned above,
we supplemented the activities requiring decisions with
questions that would help developers in making a choice.
In the above-mentioned example, modelers can decide if
they should identify the constraints or not by answering the
question of who will be the end-users of the feature model.
Lastly, as mentioned above, for activities involving multiple
sub-tasks, we designed them to be composite activities, each
comprising multiple sub-activities. An example of a com-
posite activity is “Identify features,” a core activity in the
Modeling phase, which is split into top-down and bottom-
up feature identification as sub-activities (explained below).

We designed our process model to cater for all the adop-
tion strategies (Sec. 1)—proposing top-down and bottom-up
analyses (in Domain Analysis and Scoping phase, Section 6)
for feature identification. We recommend that companies
use a combination of both if some variants already exist.
The top-down approach is well-suited for proactive adop-
tion, where modelers are required to perform dedicated
domain analysis and scoping. Here, the identified features
determine the focus of the domain, and as such, provide
an economic benefit and align with the business strategy
of the company. The bottom-up approach is well-suited
for reactive and extractive adoption, where the company
already has a variant or set of (similar or even cloned)
variants in place. There, modelers should start with pairwise
diffing between two variants, taking one of them as the
base variant. The identified differences can be translated
into variation points, which can directly be embedded in
the code assets using any variability mechanism (e.g., pre-
processor directives) to make them configurable.

FM-PRO focuses on creating feature models and does
not prescribe a specific language. FM-PRO supports Boolean

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

TABLE 1: Industrial evaluation: Overview of participants’ ratings for the studied aspects

activity clarity applicability order in process usefulness
Define model purpose

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5Identify stakeholders
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5Provide training
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5Establish a forum and workshop format
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5Define decomposition criteria
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5Unify domain terminology
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5Identify features
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5Identify constraints
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5Model modularization
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5Define coarse feature hierarchy
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5Add features
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5Model constraints
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5Define views
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5Validation
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5Model version control
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 51 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

features, a feature hierarchy, and constraints in terms of
mandatory and optional features, feature groups (OR and
XOR), and cross-tree constraints. Furthermore, it advocates
for model modularization via simple model inclusion mech-
anisms (where one can have different files for one model).
As such, a feature modeling language should support those
basic concepts. Note that, while FM-PRO does not support
modeling advanced feature-modeling constructs, such as
feature attributes, non-Boolean constraints, cloned features,
and arbitrary group cardinalities, it does not prevent using
them. Notably, these constructs are rare and did not appear
in the initial interviews. For instance, non-Boolean con-
straints appear to some extent in systems software [84], [90].

On a final note, while maintenance and evolution is
beyond the scope of FM-PRO, it contains such a phase
to raise awareness for it. However, given the complexity
of those activities, especially the co-evolution of the
feature-model and the codebase, which can be challenging
[91], creating a model evolution and maintenance process
(FM-PRO-EVO) is valuable future work.

5 PRE-MODELING

We present the design of the Pre-Modeling phase, its indus-
trial evaluation, and the final expert assessment. Thereby,
we present the refinements we made in the phase and how
the principles and our experiences influenced our design
decisions. Notably, we structure our paper along the phases
instead of the steps we took to design, evaluate, and refine
each phase in order to put more emphasis on each phase,
what it provides, and how it relates to the comprised ac-
tivities and the other phases. Additionally, we strive to be
more transparent and intuitive with the evolution of each
phase after the multi-fold evaluation. Figure 4 shows all Pre-
Modeling activities in their final order after all refinements.

5.1 Design of FM-PRO
We derived the first activity “Define model purpose” from
principle PP3 (Define the purpose of the feature model),
which, as the name implies, requires the modelers to estab-
lish the motive for creating a feature model. We made this

an opening activity, since having a clear model purpose sets
the direction of the process execution, and makes it easier
to conduct the subsequent activities. Next, we derived the
second activity “Identify stakeholders” from principle PP1
(Identify relevant stakeholders), which requires identifying
experts with deep knowledge about the system(s) to be
modeled. Taking guidance from principle PP6 (Keep the
number of modelers low), we suggest using a low number
of modelers, sometimes as low as one person. Additionally,
taking guidance from D2 (If the main users of a feature
model are end-users, perform feature-dependency model-
ing), we recommend modelers to only perform feature-
dependency modeling if the feature model is to be used
by the end-users in order to allow only correct configura-
tions. We derived the third activity “Provide training” from
principles T1 (Familiarize with the basics of product-line
engineering), T2 (Select a small sub-system to be modeled
for training), and T3 (Conduct a pilot project). The activity
comprises three sub-activities: “Tool and notation training,”
“Product-line education,” and “Pilot project.” Next, we
defined the fourth activity “Create expectation and change
management” to allow reiterating through the motivation
and establishing a clear communication plan for detailing
the necessary changes in the structure and architecture of
the platform as well as the individual variants. The activity
was not inspired from any principle; however, we deem
it as a natural successor to the previous activity, since a
communication plan is crucial to bring all the stakeholder on
the same page. Next, we derived the fifth activity “Establish
workshop and forum format” from principles IS1 (Rely on
domain knowledge and existing artifacts to construct a
feature model), QA1 (Validate the obtained feature model in
workshops with domain experts), and M1 (Use workshops
to extract domain knowledge). Next, we derived the sixth
activity “Define decomposition criteria” from the principle
PP4 (Define criteria for feature to sub-feature decomposi-
tion). We make this activity optional, since features can be
organized in a hierarchy naturally based on their relation-
ships and constraints, and as such, having a decomposition
criteria might not be suitable in all cases. Lastly, we derived
the activity “Unify domain terminology” from the principle

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

Pre-Modeling

P1: Identify stakeholders

P2: Conduct introductory meeting

P3: Define model purpose

P4: Provide Training

P5: Create change and expectation management

P6: Establish a forum and a workshop format

P7: Define decomposition criteria

P8: Unify domain terminology

legend

Activity

Optional Activity

Composite Activity

Decision affecting the
following activities

Who are the model users?

Initiated from inside or outside?

Aware of model benefits?
Motivated?

Familiar with notation?

Applicable for use case?

Fig. 4: Overview of phase Pre-Modeling (activities in final
order after refinements)

PP2 (In immature or heterogeneous domains, unify the
domain terminology). We make this activity optional as
well, and only recommend performing it if the terminology
is diverse and ambiguous.

5.2 Industrial Case Study
After concretizing the design of FM-PRO’s Pre-Modeling
phase, we proceeded to evaluate the applicability of this
phase in practice, via an industrial based evaluation. This
activity aided in quantifying rhe estimated average effort
required to realise the FM-PRO Pre-Modeling phase.

5.2.1 Results
Table 1 shows a graphical representation of participant rat-
ings for all activities in our process. Notably, Table 1 only
comprises the ratings for the activities contained in the first
version of the process; the version which was modified later
for the expert evaluation. For the activity “Define model
purpose,” participants provided a high average rating for
all aspects (clarity: 4.29, applicability: 4.43, order in process:
4.14, usefulness: 4.29). One participant disagreed with the
order of the activity in the process, however, they did
not provide any rationale. The estimated average effort by
the participants was 15 minutes. For the activity “Identify
stakeholders,” participants also provided high ratings for
all aspects (clarity: 4.71, applicability: 4.42, order in pro-
cess: 4.42, usefulness: 4.42). One participant expressed the
concern that it is possible that some stakeholders remain
unaware of features which are very customer-specific. The
estimated average effort by the participants was 10 minutes.
For the “Provide training” activity, the ratings followed
the same trend (clarity: 4.71, applicability: 4.14, order in
process: 4.14, usefulness: 4.57). The participants’ feedback
suggested that the activity was time-taking and could be
planned more efficiently. e.g., by sharing an agenda before
training and improving the quality of the presentation. The

estimated average effort by the participants was almost an
hour (57 minutes). Participants also struggled with the sub-
activity “Tool and notation training” attributing to the fact
that the process lacked concrete guidelines on conducting
it. With respect to the activity “Establish workshop and
forum format,” we received similar ratings (clarity: 4.57,
applicability: 4.29, order in process: 4.29, usefulness: 4.43).
One participant gave neutral responses to both clarity and
usefulness, even disagreeing with its applicability and or-
der in the process. The estimated average effort by the
participants was approximately 20 minutes. In reality, we
drastically changed the execution of the phase, also opting
for one-to-one interviews in the latter phases due to the chal-
lenges we faced when coordinating group sessions. For the
activity “Define decomposition criteria,” three participants
did not provide any ratings for any of the aspects (clarity: 4,
applicability: 4.25, order in process: 4.25, usefulness: 4.5). We
assume that the activity lacked clarity in its explanation. The
estimated average effort by the participants was roughly
45 minutes. Additionally, one participant commented that
the decomposition criteria should be decided at a higher
level, and that developers are not well-suited to make
the decision. For the activity “Unify domain terminology,”
participants unanimously agreed on all four aspects (clarity:
5, applicability: 4.5, order in process: 4.5, usefulness: 4.75),
one comment stating that the activity is especially useful
in larger companies. Similar to the previous activity, the
estimated average effort by the participants for this activity
was also roughly 45 minutes.

5.2.2 Own Reflections
Despite the usefulness of feature models agreed upon, the
employees were unclear on how to utilize them in practice.
As a result, core decisions, such as “Define model purpose”
and “Identify stakeholders” , were made by voting rather
than taken by a responsible authority. This led to varying
and at times conflicting responses. Additionally, without
any explicit instruction to participate in the process, many
employees chose to utilize their time in performing their
routine tasks rather than spending it on feature modeling.
In line with this, execution of the activity “Create expecta-
tion and change management” also led to vague responses.
Participants mentioned that the expectations might change,
however, it was unclear who would be in charge of manag-
ing changing expectations, and who to report to in such a
scenario.

5.2.3 Process Refinement
In response to the feedback from the industrial evaluation as
well as to our own observations, we made a few refinements
in the phase. We slightly modified the description of the ac-
tivity “Provide training.” In order to enhance the effective-
ness of the training, we recommend sharing the agenda of
the training meeting beforehand as well as focusing on the
quality of the materials employed in training. We also added
an optional activity “Conduct an Introductory meeting” in
the process, that involves conducting an introductory meet-
ing in the host company. We recommend that the meeting
should focus on motivating the stakeholders on the benefits
of having a feature model. If the conductor of the process is
an external person (or group), they can use the meeting as

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

an opportunity to meet with the participants, get an intro-
duction to the project, and present a road-map of the steps
to be followed when executing the process. It is important to
lay a solid foundation in this step, because this sets the mo-
mentum for the later phases. We make it an optional activity
because while important, it is possible that the stakeholders
are already aware of the importance of feature models due
to the maintenance and evolution challenges they are facing.
Lastly, this meeting should also be used to appoint an au-
thority figure. Such a figure can be both internal or external
to the company, however, it is important that the authority
figure is someone who is trusted and followed by the po-
tential stakeholders. The above-mentioned refinements were
incorporated in the second version of the process which was
sent to the experts for the secondary evaluation.

5.3 Expert Evaluation
After incorporating participant feedback and applying the
above-mentioned refinements, we presented the second
version of our process to the experts. We now present an
overview of the expert feedback for this phase.

5.3.1 Research Expert Results
Our experts provided high ratings to all four aspects (clarity:
4, applicability: 4, order in process: 5, intuitiveness: 4).
Table 2 shows a summary of the median participant ratings
per phase on all aspects. Notably, the order of activities
in the phase received the lowest rating, with feedback
suggesting to conduct the introductory meeting only after
the stakeholders have been identified. Additionally, some
experts suggested that the activity “Define model purpose”
should also only be conducted after the identification of the
relevant stakeholders. One expert suggested adding the po-
tential benefits of feature models already in the introduction
of the process to establish the motivation from the start.
Another expert strongly advised on adding another role in
the process description; a method expert who will have sig-
nificant knowledge of the variability of the software system.
Moreover, an expert suggested adding that the authority
figure could be a business champion, who would ensure that

TABLE 2: Expert assessment: Overview of ratings per phase

Research Experts
phase clarity applicability order intuitiveness

Pre-Modeling
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Domain Ana-
lysis & Scoping

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5Modeling
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Maintenance
& Evolution

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Industrial Experts
phase clarity applicability order intuitiveness

Pre-Modeling
Domain Ana-
lysis & Scoping
Modeling
Maintenance
& Evolution

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

the practices followed are aigned with the business goals,
and will support the feature modeling.

5.3.2 Industrial Expert Results
The industrial experts provided high median ratings to all
four aspects (clarity: 4, applicability: 4, order in process:
4, intuitiveness: 4). Table 2 shows a summary of median
participant ratings per phase on all aspects. The industrial
experts scores are similar to the research experts scores but
their suggestions are mostly regarding the clarity of the
activities. They suggest to elaborate “Define decomposition
criteria” and “Unify domain terminology” by providing
example techniques. One suggestion regarding the order
of activities where to move some questions before training
is provided. A final suggestion was to make the activities
“Define decomposition criteria” and “Unify domain termi-
nology” mandatory instead of optional.

5.3.3 Process Refinement
Based on the expert feedback, we also made some more
refinements in the process, which led to its final version. We
re-ordered the first few activities in the phase, specifically,
the phase in its final version starts with the activity “Identify
stakeholders” followed by the optional activity “Conduct
an Introductory meeting.” After the introductory meeting,
we recommend modelers to “Define model purpose”
and “Provide training.” Furthermore, we extended the
introduction of the process by adding the various purposes
feature models can serve in order to build a motivation
for feature modeling. In the activity “Identify features,”
we added the role of method experts as suggested by one
of our experts, also adding a description of the role. We
extended the activity “Conduct an Introductory meeting”
to elaborate that the authority figure could also be a
business champion. Finally, we added a question at the
end of the Pre-Modeling phase, asking whether FM-PRO is
applicable, which is a decision that should be made by the
stakeholders involved in that phase.

5.4 Open-Source Case Study
In this study, FM-PRO pre-modeling activities were gen-
erally not applicable to the scenario at hand. For starters,
the only identified stakeholder in this context, is a close
collaborator included in the evaluation process of FM-PRO.
This stakeholder neither has vast experience in feature
modeling nor did he have any familiarity with FM-PRO
prior to this open-source case study. We begun by holding
an introductory meeting with the subject the we provided
him with the official technical documentation of FM-PRO.
However, pre-modeling activities such as training provision
as well as change and expectation management planning
were not explicitly provided nor applicable in this instance.

6 DOMAIN ANALYSIS AND SCOPING

We now discuss how we engineered the Domain Analysis
and Scoping phase, following the same structure as above.
Figure 5 shows all Domain Analysis and Scoping activities in
their final order after all refinements.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

Domain Analysis & Scoping

D2: Identify Constraints

D1: Identify features

D1.1: Bottom-up identification

legend

Activity

Optional Activity

Composite Activity

Decision affecting the following activities

Sub-Activity of a composite activity

Need for cross-tree constraints?

D1.2: Top-down identification

Fig. 5: Overview of phase Domain Analysis and Scoping
(activities in final order after refinements)

6.1 Design of FM-PRO
Taking inspiration from principle PP5 (Plan feature mod-
eling as an iterative process), we designed the phase to be
iterative, and concurrent to the Modeling (cf Sec. 7.1) phase.
We also took inspiration from M1 (Use workshops to extract
domain knowledge) for this phase, however, as explained
above, upon encountering challenges in the execution, we
propose switching to one-to-one interviews in Sec. 6.2.3.
We derived the first activity “Identify features” from
principles M6 (A feature typically represents a distinctive,
functional abstraction), M2 (Focus first on identifying
features that distinguish variants), and M10 (Prefer Boolean
type features for comprehension). Inspired from principles
M3 (Apply bottom-up modeling to identify differences
between artifacts) and IS1 (Rely on domain knowledge
and existing artifacts to construct a feature model), we
define the sub-activity “Top-down feature identification.”
Additionally, inspired from principle M4 (Apply top-down
modeling to identify differences in the domain), we create a
sub-activity for “Bottom-up feature identification.” Taking
inspiration from principle M5 (Use a combination of top-
down and bottom-up modeling), we recommend companies
to perform both analyses if there are already a few variants
in place. Lastly, based on principle M11 (Document the
features and the obtained feature model), we recommend
modelers to document the features to be modeled in the
next phase (cf Sec. 7.1). We derived the second activity
“Identify constraints” based on principles D1 (If the
models are configured by (company) experts, avoid feature-
dependency modeling) and D2 (If the main users of a
feature model are end-users, perform feature-dependency
modeling). We recommend modelers to perform the activity
only if the model is to be used by end-users of the products.

6.2 Industrial Case Study
As mentioned above (Sec. 3.3), we conducted both
interviews (i.e., top-down analysis) and manual code
inspection (i.e., bottom-up analysis), which led to two
feature models to be merged.

6.2.1 Results
Our final feature model comprised 48 features in total,
17 of which were mandatory whereas 22 were optional.
There was significant overlap between the feature models,
however, both differed in terms of the used terminology
as well as feature hierarchy. The features extracted from
interviews were business-oriented and coarse-grained. The
features extracted from user interface were also relatively
coarse-grained, and were mainly domain-oriented. Lastly,
the features extracted from code inspection were technical,
fine-grained, and solution-oriented.

For the activity “Identify features,” participants
generally agreed on all four aspects, with clarity and
usefulness receiving two “neutral” votes each (clarity: 3.83,
applicability: 4.6, order in process: 4.5, usefulness: 4.3). The
estimated average effort of the activity was 46.6 hours. Upon
investigation, we found out that the estimates corresponded
to the different strategies for feature identification, with
lower estimates corresponding to top-down analysis, and
higher ones to bottom-up analysis. For the activity “Identify
constraints,” all aspects received high ratings (clarity: 4.3,
applicability: 4.6, order in process: 4.6, usefulness: 4.3), with
usefulness receiving two neutral votes. This aligns with our
notion that the activity is only useful if the end-users of
the feature model are not experts, because otherwise, the
knowledge of constraints would already be in the experts’
minds, and as such, would not require expensive constraint
identification. The estimated average effort of the activity
was 26 hours, with one comment stating that the larger
the code base, the greater the tangling of features will be,
requiring longer times for constraint identification.

6.2.2 Own Reflections
Very early in the bottom-up analysis, we discovered that
the process comprised insufficient guidelines on extracting
features when there is only one variant in place (i.e., reactive
adoption), which was the case in the company. It was also
unclear what data sources to consider when extracting fea-
tures from a stand-alone variant. Consequently, we devised
a strategy to extract features from the variant under analysis,
which we present as a potential refinement in Sec. 6.2.3.

As mentioned above, we observed coordination and
scheduling challenges during the Pre-Modeling phase.
Specifically, it was difficult to find timeslots where all
stakeholders were simultaneously available. Consequently,
we adapted our methodology to conduct the Domain
Analysis and Scoping as well as modeling phases in a one-
to-one interview format, iteratively for each participant. We
present this adaptation as a refinement in Sec. 6.2.3.

As mentioned above, we conducted one-to-one
interviews with our participants. This lead to four
feature models from two developers and two customer
representatives. The feature models differed greatly,
with the ones from the developers comprising very
technical features, and those from customer representatives
comprising features capturing expected customer
interaction. The process lacked guidelines on how to merge
such feature models. Consequently, merging the different
perspectives was challenging, as combining hard-wired
features with descriptive, interactive features is difficult.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

Additionally, the feature models from the top-down and
bottom-up analyses also needed to be merged to have the
unified feature model. The process also lacked guidelines
on how to approach this. Consequently, we improvised,
and devised a strategy for merging the feature models from
different types of analyses. We present our strategy as a
potential refinement in the following section (Sec. 6.2.3).

6.2.3 Process Refinement
We extended the sub-activity “Bottom-up feature
identification” to also cater for single variants (as in
reactive adoption), where performing a commonality and
variability analysis is not a viable solution (as in extractive
adoption). Modelers can start with the analysis of the
user interface to gain an overview understanding of the
variant as well as interact with the system to identify the
functionality meaningful to end-users. Next, they can look
into the codebase to identify functionality corresponding to
the identified features. It is possible that they find distinct
features from the codebase that were not apparent from the
user interface analysis. They can consider other sources to
identify features and their dependencies as well, including
commit messages, pull requests, and user stories. For identi-
fying feature groups, modelers can look into the conditional
inclusion at the code level. Once all features are modeled,
modelers can consult product documentation to consolidate
the terminology of the identified features if needed.

In the first version of FM-PRO, we suggested a workshop
format for process execution. We observed that while a
workshop format was successful for the introductory
meeting and the kick-off meeting (i.e., phase 1), it did not
scale well for the later phases. Consequently, for top-down
analysis, we changed the activity to prescribe one-to-one
interviews for feature and constraint identification to
facilitate coordination and allow for varying points of view.
We recommend keeping the number of consulted experts
low to scale the interviews and prevent the challenges when
merging multiple feature models.

We added an activity “Merging multiple feature models”
in the Domain Analysis and Scoping phase. When merging
feature models from different stakeholders, modelers can
consult the product’s documentation to resolve conflicts
regarding terminology. For conflicts in feature relationships
and constraints, modelers should prioritize the stakeholders
that will likely be the end-users of the feature model. Of
course, it is natural to defer some decisions until the
validation stage, and factor in the stakeholders’ opinion
when making them. When merging the feature models
from the top-down and bottom-up analyses, it is likely that
modelers will find features in the latter that refine features
from the former. Again, in the event of conflicts, modelers
can refer to the product’s documentation as well as relevant
stakeholders. We also recommend conducting the merging
iteratively, and ideally, versioning the evolution to enable
modelers to track changes at a finer level.

6.3 Expert Evaluation
Through a survey involving both academic and industrial
feature modeling experts, useful feedback was gathered in
the form of ratings that led to relevant process improve-
ments of our Domain Analysis and Scoping phase.

6.3.1 Research Expert Results
Our experts provided high median ratings to this phase
with respect to all aspects (clarity: 4.5, applicability: 4,
order in process: 5, intuitiveness: 4). Firstly, multiple experts
recommended against not identifying constraints if the end-
users of the model were experts (already having knowledge
of the constraints). The reasons were multi-fold. One expert
remarked that the feature model loses its value if it cannot
be used for automated product derivation. Another expert
commented that it is likely that the constraints which the ex-
perts are not sure about get forgotten, and consequently, not
recorded at all. Additionally, one expert stated that experts
leaving the company at some point could also result in loss
of information pertaining to the constraints if not recorded.
Secondly, one expert remarked that while interviews are a
viable solution for top-down feature extraction for small-
and medium-sized systems, they might not scale for very
large software systems. Having many experts could lead to
many feature models to be merged, with potentially a large
number conflicts. Thirdly, one expert remarked that during
feature identification, one of the most difficult aspects is
to find suitable abstractions, and recommended identifying
features by the capabilities3 they provide, typically those
aligning with business value. Lastly, one expert stated that
there is a lack of guidance on feature granularity.

6.3.2 Industrial Expert Results
Our industrial experts provided the following median rat-
ing’s clarity: 4, applicability: 3, order in process: 4 and intu-
itiveness: 4. Worth noting regarding the neutral score of ap-
plicability is that no suggestions where made to improve or
change this phase. Instead the experts pointed out concerns
about the sub-activity “Bottom-up feature identification”
taking substantial effort in time escpecially with respect to
alignment on what the term feature means. Moreover, the
experts also suggested that modeling constraints should be
a mandatory activity.

6.3.3 Process Refinement
We made four improvements in the Domain Analysis and
Scoping phase. First, we extended the description of the
activity “Top-down feature identification” to recommend
modelers to conduct interviews by grouping the same
types of experts into one interview (e.g., one interview
with developers and another with product managers). This
helps eliminate conflicting viewpoints and lead to a lower
number of feature models to be merged. Later, modelers
can switch back to the workshop format for, e.g., the “Val-
idation” activity. Secondly, we leave the decision of iden-
tifying and modeling constraints to the modelers, adding
guidelines that can help them decide. Specifically, in the
activity “Identify constraints”, we recommend modelers to
not model constraints if they want to save the cost and
effort to identify and model them. However, in other cases,
they should be modeled based on the above-mentioned
reasons by our experts (cf. Sec. 6.3). Thirdly, for “Bottom-up
feature identification”, we specified that for finding suitable

3. Capabilities are special features, which are not directly imple-
mented, but are abstractions that indicate the functionality a feature
provides.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

feature abstractions, modelers can refer to the capabilities
the features should provide. Lastly, for “Identify features”,
we added that it is up to the modelers to decide on their
level of granularity—a core strength of features, since they
completely abstract over implementation artifacts.

6.4 Open-Source Case Study
Here, we selected our preferred product line, extracted
feature relationships and meta-data, while identifying the
overall relevance of such system extraction.

Our product line of choice is Video.js4. The Video.js system
can be found within the Qualitas.js Dataset5) as part of the
ESPLA catalog [26]. As one of the six open source systems
manually transformed into a software product line using
the RiPLE-HC [92] approach, the experimental data from
that study shows and offers a total of 13 features, organised
into 38 modules represented by 7939 LOC. Our selection
goal was to find a small to medium sized project with a
heterogeneous set of features, dependencies and constraints.
Per the scope of FM-PRO, we sought to derive a feature
model from the assets accrued and validate it accordingly.

In the feature identification step, we realized that the
embedded Video.js features had already been identified and
made readily available to the stakeholder performing this
evaluation via the RiPLE-HC GitHub repository, through
direct sources, such as an experiment conducted to analyze
the impact of RiPLE-HC on code organization and feature
location maintenance tasks.

From the documented modules6 of Video.js it was
quite difficult to identify and extract existing constraints.
However, with the relationships, it was fairly easy to
identify or infer mandatory, optional, OR, and alternative
relationships from the artifacts available. Some inferences
were obvious while others required a bit more effort
through code analysis.

7 MODELING

We engineered the Modeling phase as follows. Figure 6
shows all Modeling activities in their final order after all
refinements.

7.1 Design of FM-PRO
Taking inspiration from principle MO1 (The depth of the
feature-model hierarchy should not exceed eight levels), we
recommend modelers to aim for a shallower depth than
eight levels in the feature model. Additionally, taking inspi-
ration from principle MO3 (Split large models and facilitate
consistency with interface models), we suggest modelers
to decompose the feature model into smaller ones if the
identified features and dependencies are large and complex.
We derived the first activity “Model modularization” to pro-
vide guidelines on decomposing feature models. We suggest
modelers to use a feature decomposition criteria when de-
composing feature models, e.g., different feature models for
each purpose. Next, we derived the second activity “Define

4. https://github.com/videojs/video.js/tree/main
5. http://aserg.labsoft.dcc.ufmg.br/qualitas.js/
6. https://docs.videojs.com/

Modeling

M4: Model Constraints

M1: Model Modularization

M1.1: Define structure of model files

Separate feature-model files or not?

M1.2: Maintain consistency
between model files

M2: Define coarse feature hierarchy

M3: Add features

M5: Merging multiple feature models M6: Define views

M7: Validation
Symbol Description

Activity

Optional Activity

Composite Activity

Optional Composite Activity

Decision affecting following activities

Sub-Activity of a composite activity

M7.1: Stakeholder Reviewing

M7.3: Regression Testing

M7.2: Preform Product Derivations

Fig. 6: Overview of phase Modeling (activities in final order
after refinements)

coarse feature hierarchy” from principles MO5 (Maximize
cohesion and minimize coupling with feature groups) and
MO2 (Features in higher levels in the hierarchy should be
more abstract). We defined the third activity “Add features”
to provide guidelines on adding the identified features in
the feature model. Taking inspiration from principle M8
(Define default feature values), we recommend defining
default values for features when documenting them to fa-
cilitate feature model configuration. We derived the fourth
activity “Model constraints”by taking inspiration from prin-
ciples MO3 (Split large models and facilitate consistency
with interface models) and MO4 (Avoid complex cross-tree
constraints). The activity is optional, and only required if
modelers have performed constraints identification (“Iden-
tify constraints”) in the Domain Analysis and Scoping phase.
Next, we derived the fifth activity “Define views”directly
from principle M9 (Define feature model views), that sug-
gests creating stakeholder-specific views by selecting only
a subset of features that is relevant. Lastly, we grouped all
sub-activities related to feature model validation in the sixth
activity “Validation.” The activity comprised three sub-
activities. The first sub-activity “Stakeholder reviewing”was
inspired from principle QA1 (Validate the obtained feature
model in workshops with domain experts). The second sub-
activity “Perform product derivation”was inspired from
principle QA2 (Use the obtained feature model to derive
configurations). Lastly, the third sub-activity “Regression
testing”was inspired from principle QA3 (Use regression
tests to ensure that changes to the feature model preserve
previous configurations).

7.2 Industrial Case Study
The modeling activities in our industrial case study were
carried out as follows and led to the following outcomes.

For the activity “Model modularization,” participants
provided high average ratings on all aspects (clarity: 4.6,
applicability: 4.3, order in process: 4.5, usefulness: 4.3). The
estimated average effort of the activity was approximately
6.5 hours. Regarding the activity “Define coarse feature hier-
archy,” participants provided high average ratings (clarity:
4.6, applicability: 4.6, order in process: 4.5, usefulness: 4.3),
with order in process and usefulness receiving one and
two neutral votes respectively, each lacking a rationale. The

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

estimated average effort of the activity was approximately
13 hours. For the “Add features” activity, we observed
a similar pattern (clarity: 4.5, applicability: 4.6, order in
process: 4.5, usefulness: 4.3). All participants estimated the
activity to take roughly eight hours. Regarding the activity
“Model constraints,” we received almost similar ratings to
the previous activity (clarity: 4.6, applicability: 4.6, order
in process: 4.5, usefulness: 4.3). The estimated average ef-
fort of the activity was approximately 6 hours. “Define
views”was the lowest rated activity in the process (clarity:
3.16, applicability: 3.3, order in process: 2.83, usefulness: 3.3).
One participant suggested using examples to enhance the
understandability of the activity as well as demonstrating
how the views will look like after performing this activity.
Only one participant estimated the effort of the activity,
approximating it to take 30 hours. The high estimate could
potentially be explained by the lack of details on how and
when to conduct it. The activity “Validation”received high
ratings (clarity: 4.6, applicability: 4.3, order in process: 4.5,
usefulness: 4.5), the applicability and usefulness receiving
one neutral vote each without explanation. One partici-
pant suggested that validation through product derivation
should also discuss how to think about variations with
only one variant in place, which was the case in the com-
pany. The estimated average effort of the activity was 42
hours. We hypothesize that since the activity was long-
term, and could be performed repeatedly and in multi-
ple ways (i.e., “Stakeholder reviewing”, “Perform product
derivation”, and “Regression testing”), the participant gave
a high ballpark figure.

Based on our interactions with one of the industrial
participant, creating the feature model facilitated the
development of a collective understanding within the
company regarding which features should be considered
optional and which constitute the core product. Initially,
the system lacked any variations, resulting in features now
identified as optional being mandatory for each customer
of the product. This undertaking served as a catalyst for
launching initiatives aimed at transitioning towards a more
adaptable and variable system platform.

7.2.1 Process Refinement
We made slight modifications in this phase. In the introduc-
tion of the Modeling phase, we elaborate that (in addition
to modeling the identified features and constraints,) the
phase also involves validating that the features are mod-
eled correctly and lead to valid configurations. This makes
the activities “Perform product derivation”and “Regression
testing”more suitable for the Modeling phase.

7.3 Expert Evaluation
Research modeling experts provided useful feedback
through a survey in the form of ratings that led to relevant
process improvements of our Modeling phase.

7.3.1 Research Expert Results
The experts provided high median ratings on all aspects
(clarity: 4, applicability: 4, order in process: 4, intuitiveness:
5). One expert remarked that instead of defining default
feature values (in the activity “Add features”) as we

recommend, it is easier to define default configurations.
Another expert remarked that the activities “Define views,”
“Perform product derivation,” and “Regression test-
ing”should be seen separately from the purely modeling-
related activities. In contrast to this, one expert remarked
that “Perform product derivation”can already be applied
right after the activity “Model constraints,” which would
help experts understand if the newly added constraints lead
to valid configurations. Additionally, one expert suggested
that it would be useful to clarify when conducting the
activity “Define views”would be helpful. Lastly, one
expert suggested that the activities “Merging multiple
feature models”and “Perform product derivation”should
be optional, as they are only required in certain contexts.

7.3.2 Industrial Expert Results
The industrial experts also provided high median ratings
on all aspects (clarity: 4, applicability: 4, order in process:
4, intuitiveness: 4). One expert mentioned that merging of
different models was not clear to them and suggested that
we could clarify it by providing an example. The expert
also suggested that solving basic problems by different
perspectives during merging feels to late in the process.
Additionally, two experts remarked that regression testing
was unclear and might be more suited to the Maintenance
and Evolution phase instead.

7.3.3 Process Refinement
We made three additional improvements in this phase.
First, we extended the activity “Add features” by also
suggesting that modelers can define default configurations
instead of defining default feature values. However, since
configuration is typically achieved via reconfiguration,7

we believe that defining default feature values is more
beneficial. Second, we extended the description of the
activity “Define views” to clarify that it should be performed
when the feature model becomes too large to only view
a subset of features in order to facilitate configuration.
Finally, we made both the activities “Merging multiple
feature models”and “Perform product derivation”optional,
and clarified when to perform them. When merging
multiple feature models, in a top-down modeling case,
selecting the best model candidates for the merger, is
decided by the stakeholders identified. In a bottom-up
modeling scenario on the other hand, model validation and
merging is specifically delegated to the developers. Overall,
in the event of any contention relating to mergers and
model validation, the final authority lies in the hands of the
feature modeling domain expert in charge of the process.

7.4 Open-Source Case Study
Our open-source case study was realized as follows. We
begun by describing the modeling process. The following
activities defined our Video.js modeling phase. (i) Model
modularization. (ii) Coarse feature hierarchy definition.
(iii) Creation of an initial model version of the system.
(iv) System model refinements.

7. An initial configuration is automatically created using an algo-
rithm based on default feature values, and then modified by users to
create the final configuration.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

TABLE 3: Feature groups

function module associated functionalities

Base control-bar control-bar.js, live-display.js, play-
toggle.js, progress-control.js, time-
display.js, volume-control.js, volume-
menu-button.js

Base media flash-extern.js, flash.js, html5.js,
loader.js, media.js

BigPlayButton – big-play-button.js, button.js
FullScreen control-bar full-screen-toggle.js
FullScreen – full-api.js
LoadingSpinner – loading-spinner.js
Mute control-bar mute-toggle.js
PlaybackRate control-bar playback-rate-menu-button.js

We performed model modularization via code inspec-
tions, manual documentation analysis, and checking observ-
able system characteristics. Connections between features
were inferred. Likewise, via the same methods, we were
able to trace the origins and associations that exist amongst
feature source code files, to understand the potential hierar-
chy of the embedded functionalities. Table 3 lists a selection
of internal capabilities captured within Video.js modules.
Class properties, such as inheritance and extensions, were
also used to further decompose functionalities gathered into
coherent sub-trees. For instance the Base function containing
two modules; namely control-bar and media can be observed.

To model an initial coarse feature hierarchy from pre-
vious domain analysis and feature organisation activities,
we begun by creating feature decompositions from the
system functionalities previously analysed. This step was
supported by the official Video.js documentation as well as
existing experimental data on features and their relation-
ships, available on GitHub.
Decompositions such as mandatory, optional and OR
groups were applied to multiple stand-alone features and
sub-trees. For example in Fig. 7, the parent ControlBar fea-
ture has three optional sub features modeled in addition.
Nonetheless, forming such model decompositions came
with a few challenges. For example, in some group cases,
it was quite easy to find a feature within the pool of
available features that sufficed as a top-level feature for that
decomposition. i.e., the ControlBar feature being a parent
to the PlayRate, Mute and Fullscreen features. However in
other cases where a feature did not strongly correlate to
any available feature, an interim top-level feature which
sufficiently abstracts that selection of the sub-features in
question was assigned.

ControlBar

PlayRate Mute Fullscreen

Fig. 7: ControlBar sub-tree

The first version of the Video.js model was created
by merging the features identified together with their
decompositions into one working model. The initial

model we created was primarily constructed based on our
intuition of how the various decomposed features and
groups fit together. Figure 8 shows our very first model of
Video.js, formed by merging all our decomposed features
and feature groups.

VideoJS

Base

ControlBar

PlayRate FullScreen

APIs

Webkit Mozilla OldWebkit Microsoft

Mute

Media

MediaLoader

LoadingSpinner

BigPlayButton

AutoSetup

Fig. 8: Initial Video.js model

After successfully creating an initial version of our
model, we proceeded to perform further model refinements
by reviewing each feature to verify whether they can be
absorbed by another feature, or intuitively moved to another
branch or sub-tree in the hierarchy.

Considering Fig. 9, redundant intermediate features such
as Media and MediaLoader were completely removed from
the hierarchy. Features such as LoadingSpinner and APIs
together with all its sub-features were moved to the BigPlay-
Button feature branch. These modeling decisions were influ-
enced by more in-depth codebase inspections and capability
reassessments of Video.js via interactions with a running
instance of the application.

VideoJS

Base

ControlBar

PlayRate Mute Fullscreen

BigPlayButton

LoadingSpinner APIs

Mozilla OldWebkit Microsoft Webkit

AutoSetup

Fig. 9: Final Video.js model

8 MAINTENANCE AND EVOLUTION

As structured above, we now discuss how we engineered
the Maintenance and Evolution phase. Figure 10 shows all
Maintenance and Evolution activities in their final order after
all refinements.

8.1 Design of FM-PRO
Taking guidance from principle MME1 (Use centralized
feature model governance), we suggest that the feature

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

Maintenance & Evolution
Symbol Description

Activity

Optional Activity

Composite Activity

Optional Composite Activity

Decision affecting following activities

Sub-Activity of a composite activity

ME1: Model version control

ME2: Remove features

ME3: Optimizations

Fig. 10: Overview of phase Maintenance & Evolution (activ-
ities in final order after refinements)

model should only be governed and evolved by a limited
number of stakeholders. Additionally, taking inspiration
from principle MME3 (New features should be defined
and approved by domain experts), we suggest that new
features should be added only after their approval from
domain experts. We derived the first activity “Model
version control” directly from principle MME2 (Version the
feature model in its entirety), recommending modelers to
version entire feature models instead of individual features.
Next, we derived the second activity “Remove features” to
provide guidelines on removing features. The activity was
not inspired from any principle, however, we deem feature
removal an important task, and believe that modelers need
to be cautious when removing features so as to do it in an
effective manner. We derived the last activity “Optimiza-
tions” to recommend modelers to refactor the feature model
to optimize the hierarchy and constraints when needed.

8.2 Industrial Case Study
Since this phase is continuous and longitudinal, it was
beyond the scope of this work and we did not execute
this phase in the company. Recall our note on the scope
of the process and our discussion below. To provide some
guidance, we still included the activities of this phase in the
questionnaire but kept them optional. Only two participants
filled the questionnaire for the activity “Model version con-
trol,” providing high average ratings to all aspects (clarity:
4.5, applicability: 5, order in process: 5, usefulness: 5). One
participant estimated the effort of the activity to be 15 hours.

8.3 Expert Evaluation
Our research and industrial expert evaluation results, with
related process refinements introduced are outlined in this
section. We highlight key findings and insights gathered
from the analysis conducted in preceding phases.

8.3.1 Research Expert Results
From our experts, we received high median ratings to all
activities in this phase with respect to all aspects (clarity:
5, applicability: 4, order in process: 4, intuitiveness: 4.5).
Three experts remarked that the phase could be elaborated
more, one remarking that it is rather abstract than the other
phases. One expert remarked that some activities in the
phase could be performed in parallel. Most other comments
were suggestions for refinement. For example, one expert
remarked that when removing a feature, it is important to

make it part of the change process, as a defect in one variant
can be a feature in another one. Another expert suggested
adding drivers behind maintaining the feature model. One
expert suggested establishing clear communication channels
between developers and modelers so the modelers can be
notified of changes that need to be reflected in the feature
model. Lastly, one expert remarked that feature model main-
tenance is especially tricky when features are linked to the
code in any way.

8.3.2 Industrial Expert Results
Our industrial experts provided high median ratings to all
aspects in this phase (clarity: 5, applicability: 4, order in pro-
cess: 5, intuitiveness: 4). Two industrial experts suggested
to put more information on how to “Remove feature” and
“Optimizations” as they were expecting more guidence for
these activities. Another expert stated that the phase was
clear and straight forward.

8.4 Process Refinement
This phase only provides very basic support. We acknowl-
edge that it can be extended to add more details in the
activities as well as the introduction of Maintenance and
Evolution in the process (e.g., adding the driving forces).
However, in FM-PRO, we consider feature model evolution
as an isolated activity, where modelers and other stake-
holders have discussed and agreed upon a change already,
such as deletion of a feature. We consider it an isolated
activity mainly because of two reasons. First, feature model
maintenance and evolution beyond the actual model editing
activities are beyond the scope of feature model construc-
tion. This means that while FM-PRO primarily focus on the
process of constructing the feature model, the ongoing tasks
of maintaining and evolving the model are treated sepa-
rately. Still, we provide some guidelines on how the feature
models can be versioned and updated to guide modelers in
maintaining and evolving feature models. Second, feature
model maintenance and evolution, especially in relation to
regular software evolution as well as modern development
practices (e.g., continuous development, iterative develop-
ment, and SCRUM) is arguably broad enough to constitute
a process of its own. Consequently, we kept the phase brief,
only adding the clarification that some activities can be
performed concurrently based on feedback. Creating a ded-
icated and holistic process for feature model maintenance
and evolution constitutes valuable future work.

9 DISCUSSION AND FUTURE WORK

We now discuss our findings and experiences, provide fur-
ther suggestions for using FM-PRO, and describe valuable
future research directions and extensions of FM-PRO.

9.1 Evolution and Maintenance
As mentioned above (Sec. 8.4), the focus of FM-PRO (and
the principles that steer it) is feature model creation, specif-
ically when adopting or transitioning towards a platform.
Feature model evolution, as pointed out by our experts, is
a long-running and frequent activity. One expert remarked
that the Maintenance and Evolution phase requires activities

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

about feature evolution. An example of feature evolution
is the default value of a feature being changed to true,
implying that while initially introduced as a novelty, the
feature became mandatory. Another expert suggested that,
a use case where there is an existing feature model, which
is being refined by adding another feature model, might
be useful. Additionally, considering that features can be
explicitly linked to code assets, it can happen that after
changes in code, there are changes that need to be made in
the feature model. Moreover, and as one expert suggested,
using an existing feature in a variant can be more complex
and tricky than using a newly added feature. In fact, the
co-evolution of code and models, as well as refactoring, is
an open research problem [93]–[95] and requires dedicated
automated support. In our future work, we aim to present
FM-PRO-EVO, a process for feature model maintenance and
evolution. We intend to specify manual support for the
above-mentioned scenarios that can be used as a guideline
by tool developers, for implementing support for auto-
mated feature model maintenance and evolution, especially
in relation to the codebase. FM-PRO-EVO also needs to
incorporate change management, as we discuss next.

9.2 Process Integration
Future work comprises process integration. Based on results
expected from future longitudinal studies of applying the
process on industrial cases, we can extend the process to of-
fer guidelines on integrating the process with existing agile
development processes, such as SCRUM, XP, CI/CD, and
FDD. Additionally, the process can be extended to elaborate
how to align the application with ordinary change manage-
ment. For example, one of our experts suggested that when
removing a feature, it is important to make this a part of the
change process. The rationale is that a defect in one product
could be considered a feature in another product. Therefore,
until all variants comprising the feature have accepted it as
a commodity, the feature should not be removed. Similarly,
during clean-up, features that always get selected can be
removed as a selectable feature and introduced as a core
feature, also through a well-defined change process.

Additionally, one expert remarked that it is important to
establish clear communication channels between the devel-
opers and modelers so the latter can be notified of changes
in code that require a change in the feature model. In
future work, in FM-PRO-EVO, we aim to offer guidelines
to establish such communication challenges that facilitate
the co-evolution of code and feature models.

Lastly, one expert remarked that some additional guide-
lines on change tracking of feature models can be useful. A
future direction for FM-PRO-EVO is to include elaborations
on how version-control systems and ordinary file informa-
tion (e.g., last modified time of a file) can be used to track
the changes in the feature model.

9.3 Effort Estimation and Cost/Benefit Assessment
For our industrial case study, adding the average effort
estimates by the participants per phase, the Pre-Modeling,
Domain Analysis and Scoping, Modeling, and Maintenance and
Evolution phases take 3, 72, 105, and 15 hours respectively.
While these estimates are telling, they are subjective and

as such, cannot be used when planning the construction of
the feature model should a company decide to undertake
the endeavor. One of our experts expressed the concern
that conducting a five-day workshop with 10 people can
easily lead to 50 work days, which is equivalent to two
person-months of a project. While we argue that such effort
is required one time only, we believe that more realistic
estimates are needed for better planning.

A future direction is to conduct longitudinal studies
of the process application for getting more realistic effort
estimates. Based on that, we can refine activities by, for
example, putting thresholds on the number of people (e.g.,
the maximum team-size in SCRUM is 10 people), as well as
the maximum amount of time to spend on an activity or a
phase. Additionally, we point future researchers to conduct
cost and benefit assessments of creating a feature model
using our process (for example, with respect to feature
location time and product delivery time). The results of such
studies in projects of different scales can themselves act as
guidelines on whether such an effort is worthwhile and if
so, what are the expected benefits.

9.4 Tools
FM-PRO is designed to be tool-independent, only requiring
a feature-modeling language that has at least the concepts
listed in Sec. 4. We believe that a textual modeling language
is best to model features. Textual modeling languages are
generally favored in industry due to their simplicity and
ease of adoption. They provide a clear and straightforward
way to represent features without the overhead of graphical
tools. Among several textual modeling languages Clafer
[34] and UVL [40], [41] are among the most notable. Clafer
is known for its minimal and concise syntax, making it
easier for developers to learn and use, while also offering
decent tools support. On the other hand, UVL, a more
recent community initiative, offers extensive tool support
and a more structured syntax. While UVL’s comprehensive
tool support can be advantageous, its less succinct syntax
(e.g., keyword-heavy) and stringent structure can make
textual models harder to understand.

Regardless of which modeling language is used, the
following tools can support FM-PRO. In the phase Pre-
Modeling, Confluence8 can be used to collaboratively orga-
nize all the planning and pre-modeling related information,
such as the form or workshop organization. Next, in the
phase Domain Analysis and Scoping, miro9 can be used
collaboratively to perform visually intuitive mind-mapping
activities, for instance, to quickly record identified features
and annotate relevant findings. In the next phase, the feature
models can also be created visually, such as using Fea-
tureIDE,10 which provides the original visual representation
of feature models, while also allowing to visually represent
constraints. In this phase, Git is useful for recording and
then merging collaboratively created feature models, while
it also supports the phase Maintenance and Evolution phase
with model versioning, refactoring, and general change

8. https://www.atlassian.com/software/confluence
9. https://miro.com/
10. https://featureide.github.io

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

management. If used, the tools should be part of the activity
“Tool and notation training” .

While FM-PRO is designed to be tool-independent,
valuable future work would be to establish tool support
for the process itself, guiding applicants through its
different phases and activities. By integrating functionalities
from the tool mentioned above into a coherent tool, we
can enhance the usability and adoption of FM-PRO in
existing development processes. Ideally, such a tool should
incorporate a collaboration mode, visualizations, and
version control. An integrated tool would streamline the
workflow, reduce context switching, and provide a unified
platform for all FM-PRO activities, thereby facilitating
better collaboration and efficiency.

10 THREATS TO VALIDITY

Construct Validity. Evaluating a process is challenging. A
general problem is that applying a new process is sub-
stantial effort for a company, which companies usually
only invest when a process is proven to be effective. FM-
PRO falls into this category, since it requires substantial
investment not only into the modeling, but also in adopting
a product-line strategy, which usually involves software
re-engineering effort. To enhance validity, without being
able to fully perform the process (which would require
longitudinal studies, which is a paper on its own and subject
to our future work), we used diverse constructs, comprising
two kinds of case studies and two kinds of expert surveys,
triangulating from the results. We also used an iterative
methodology. Furthermore, another threat is that the indus-
trial participants in the industrial expert assessment were
not knowledgeable enough to judge the process. However,
we only selected those with years of feature modeling
experience with a company that has been applying feature
modeling for decades already. Their input is complemented
with the researcher survey, which provides a cross-company
perspective and included a feature-modeling tool vendor.
External Validity. A threat to external validity is that
the process is too specific to our evaluation companies
and to the various companies that we interviewed prior
to establishing the principles (which were the basis for
the process). Regardless, the latter were very diverse,
including different kinds of companies [61], thus by
design the process already accounts for diverse application
environments. To account for the problem that the
evaluation could be too specific, we not only performed
an industrial case study with one company, but also an
open-source case study, an expert evaluation with industrial
experts from another company that has been performing
feature modeling for decades, as well as with researchers
from the community, to obtain a cross-industry perspective.

For the evaluation in the industrial case study, we
applied the process to one of its software systems only.
However, the case was substantial and complex, and we
used multiple methods to collect data. In addition, the
company had a core interest in migrating to a product-
line platform, currently facing various challenges (e.g.,
delivering unnecessary code because there is no means to
configure the product at runtime) that could potentially
be solved by having a feature model. In fact, right

after our study, the company took the initiative to start
migrating the code as well. Additionally, we used multiple
methods to collect data (e.g., workshops, interviews,
code inspection). As such, our findings should hold for
companies comparable in size and products.

For the evaluation with the open-source case study, there
is the threat of the case being too artificial. However, we
semi-systematically sifted through the ESPLA catalog to
identify a substantial case. For the assessment with the
industrial experts, a threat is that the participant roles are
too specific or that the participants lack experience. How-
ever, we only invited experts on feature modeling who
have years of experience, but also account for different roles
in the company. Finally, our researcher survey could have
targeted only a specific set of researchers. However, we
not only used community contacts, but also systematically
searched through publications of the relevant venues since
2020, assuring a diverse set of reviewers.
Internal Validity. Researchers and industrial participants
might be biased in favor of the process. However, since
one author was also employed at the company, and did not
design the process, the successful creation of a feature model
was more important. Consequently, the author provided
deeper insights. A threat might be that the industrial
participants in the industrial case study made mistakes
during feature modeling. This could have happen when
they were either not familiar enough with he subject system
or with feature modeling. However, we made sure that the
participants were the most relevant for this subject system,
each having significant experience with it. Moreover, we
provided training to equip participants with the required
knowledge for effective participation. In the open-source
case study, a threat is that the modeler was biased.
However, he was neither involved in creating the process
itself, nor conducting the other evaluations. While he knew
feature models, he first read the process when conducting
the case study, avoiding bias. In the expert evaluations, a
potential threat is that the respondents were biased towards
the authors. However, the respondents were not required
to provide their names, and among the 20 researcher
experts, only two were previous co-authors, but any conflict
of interest had already expired when the survey was
conducted. Finally, an additional threat is that we incorrectly
analyzed the data. However, we organized several meetings
to cross-check and discuss not only the methodology, but
also the results, to enhance internal validity.

11 CONCLUSION

We presented FM-PRO [63], the first modeling process for
feature models, which are among the most intuitive mod-
eling techniques to organize features and their constraints.
Feature models are the lingua franca for modeling portfolios
of system variants called software product lines. Despite
thousands of (mainly academic) techniques building upon
feature models, no modeling process had been contributed
so far, despite feature modeling being a largely manual
process, since models are highly domain-specific, containing
domain information about features that is not contained in
the codebase [17]. In multiple iterations, we systematically

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

designed FM-PRO and evaluated it on a substantial indus-
trial case, an open-source case and with feature-modeling
experts from both academia and industry. Our process
extends the existing processes for product-line adoption,
and as such, can be incorporated in companies creating a
platform from scratch or transitioning to a platform from a
set of closely related systems. Our concrete activities present
a clear road-map for feature model creation, which when
followed correctly, lead to shared in-depth understanding of
the software system as well as the variability it comprises.

Future work (as discussed) comprises the integration
of FM-PRO with existing development processes, defining
effective process integration patterns. Furthermore, as also
noted by our experts, FM-PRO focuses on the adoption
of feature models and platforms, while the maintenance
and evolution typically causes long-term effort and other
challenges (e.g., the consistent co-evolution of code and
feature model). We plan to conduct longitudinal studies
and develop a feature-model maintenance and evolution
process (FM-PRO-EVO). Alongside the FM-PRO-EVO we
plan to create a coherent tool that aid users of the process in
completing the activities in FM-PRO and FM-PRO-EVO.

ACKNOWLEDGMENTS

We thank our experts Slawomir Duszynski, Rick Rabiser,
Jabier Martinez, Thomas Fogdal, Rafael Capilla, Heiko
Koziolek, Niels Jørgen Strøm, Mehrdad Saadatmand,
Stefan Stanciulescu, Mathieu Acher, Danilo Beuche,
Michael Kircher, Philippe Collet, Tobias Beichter and
Jesper Lysemose Korsgaard for their valuable insights
and constructive feedback which helped us improve our
process. We also thank our thesis students Leonhard
Wermert, Malik Hanan Ahmed, and Malik Wadeed for
helping with our evaluations.

REFERENCES

[1] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and
K. Czarnecki, “An exploratory study of cloning in industrial
software product lines,” in CSMR, 2013.

[2] R. Koschke, P. Frenzel, A. P. Breu, and K. Angstmann, “Extending
the reflexion method for consolidating software variants into
product lines,” Software Quality Journal, vol. 17, pp. 331–366, 2009.

[3] J. Businge, O. Moses, S. Nadi, and T. Berger, “Reuse and mainte-
nance practices among divergent forks in three software ecosys-
tems,” Empirical Software Engineering, vol. 27, no. 2, p. 54, 2022.

[4] Ş. Stănciulescu, S. Schulze, and A. Wąsowski, “Forked and in-
tegrated variants in an open-source firmware project,” in 2015
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2015, pp. 151–160.

[5] J. Rubin, K. Czarnecki, and M. Chechik, “Managing cloned vari-
ants: a framework and experience,” in Proceedings of the 17th
International Software Product Line Conference, 2013, pp. 101–110.

[6] T. Fogdal, H. Scherrebeck, J. Kuusela, M. Becker, and B. Zhang,
“Ten years of product line engineering at danfoss: Lessons learned
and way ahead,” in SPLC. ACM, 2016.

[7] J. Krüger, M. Mukelabai, W. Gu, H. Shen, R. Hebig, and T. Berger,
“Where is my feature and what is it about? a case study on
recovering feature facets,” Journal of Systems and Software, vol. 152,
pp. 239–253, 2019.

[8] T. Berger, J.-P. Steghöfer, T. Ziadi, J. Robin, and J. Martinez, “The
state of adoption and the challenges of systematic variability
management in industry,” Empirical Software Engineering, vol. 25,
pp. 1755–1797, 2020.

[9] P. Clements and L. Northrop, Software product lines. Addison-
Wesley Boston, 2002.

[10] K. Pohl, G. Böckle, and F. Van Der Linden, Software product line
engineering: Foundations, Principles, and Techniques. Springer, 2005,
vol. 10.

[11] F. J. Van der Linden, K. Schmid, and E. Rommes, Software product
lines in action: the best industrial practice in product line engineering.
Springer, 2007.

[12] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-Oriented
Software Product Lines, 2013.

[13] D. M. Weiss and C. T. R. Lai, Software product-line engineering: a
family-based software development process. Addison-Wesley Long-
man Publishing Co., Inc., 1999.

[14] M. T. Rahman, L.-P. Querel, P. C. Rigby, and B. Adams, “Feature
toggles: practitioner practices and a case study,” in Proceedings of
the 13th international conference on mining software repositories, 2016,
pp. 201–211.

[15] J. Meinicke, C.-P. Wong, B. Vasilescu, and C. Kästner, “Exploring
differences and commonalities between feature flags and configu-
ration options,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Software Engineering in Practice,
2020.

[16] T. Berger, S. She, R. Lotufo, K. Czarnecki, and A. Wasowski,
“Feature-to-code mapping in two large product lines,” in 14th In-
ternational Software Product Line Conference (SPLC), 2010, extended
Abstract.

[17] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki, “Where do
configuration constraints stem from? an extraction approach and
an empirical study,” IEEE Transactions on Software Engineering,
vol. 41, no. 8, pp. 820–841, 2015.

[18] T. Berger, S. She, R. Lotufo, A. Wąsowski, and K.-t. Czarnecki, “A
study of variability models and languages in the systems software
domain,” vol. 39, no. 12, pp. 1611–1640.

[19] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” Software En-
gineering Institute, Carnegie Mellon University, Tech. Rep., 1990.

[20] T. Berger, D. Lettner, J. Rubin, P. Grünbacher, A. Silva, M. Becker,
M. Chechik, and K. Czarnecki, “What is a feature? a qualitative
study of features in industrial software product lines,” in Proceed-
ings of the 19th international conference on software product line, 2015,
pp. 16–25.

[21] P. Kajsa and P. Návrat, “Design pattern support based on the
source code annotations and feature models,” in Proceedings of the
38th international conference on Current Trends in Theory and Practice
of Computer Science, 2012, pp. 467–478.

[22] D. Beuche, H. Papajewski, and W. Schröder-Preikschat, “Vari-
ability management with feature models,” Science of Computer
Programming, vol. 53, no. 3, pp. 333–352, 2004.

[23] M. F. Johansen, Ø. Haugen, and F. Fleurey, “Properties of real-
istic feature models make combinatorial testing of product lines
feasible,” in Model Driven Engineering Languages and Systems: 14th
International Conference, MODELS 2011, Wellington, New Zealand,
October 16-21, 2011. Proceedings 14. Springer, 2011, pp. 638–652.

[24] M. Mukelabai, D. Nesic, S. Maro, T. Berger, and J.-P. Steghöfer,
“Tackling combinatorial explosion: A study of industrial needs
and practices for analyzing highly configurable systems,” in 33rd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2018.

[25] A. Wasowski and T. Berger, Domain-specific Languages: Effective
Modeling, Automation, and Reuse. Springer, 2023.

[26] J. Martinez, W. K. Assunção, and T. Ziadi, “Espla: A catalog of
extractive spl adoption case studies,” in Proceedings of the 21st
International Systems and Software Product Line Conference-Volume
B, 2017.

[27] C. Marimuthu and K. Chandrasekaran, “Systematic studies in
software product lines: A tertiary study,” in 21st International
Systems and Software Product Line Conference - Volume A, ser. SPLC
’17, 2017.

[28] R. Bashroush, M. Garba, R. Rabiser, I. Groher, and G. Botterweck,
“Case tool support for variability management in software prod-
uct lines,” ACM Computing Surveys, vol. 50, no. 1, pp. 14:1–14:45,
2017.

[29] D. Beuche, “Modeling and building software product lines with
pure:: variants,” in Software Product Line Conference, International.
IEEE Computer Society, 2008, pp. 358–358.

[30] C. W. Krueger, “Biglever software gears and the 3-tiered spl
methodology,” in Companion to the 22nd ACM SIGPLAN conference
on Object-oriented programming systems and applications companion,
2007, pp. 844–845.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

[31] J. Meinicke, T. Thüm, R. Schröter, F. Benduhn, T. Leich, and
G. Saake, Mastering Software Variability with FeatureIDE. Springer.

[32] T. Ziadi, L. Hélouët, and J.-M. Jézéquel, “Towards a UML profile
for software product lines,” in Software Product-Family Engineering.

[33] T. Ziadi and J.-M. Jézéquel, “Software product line engineering
with the UML: Deriving products,” in Software Product Lines.
Springer, pp. 557–588.

[34] K. Bąk, Z. Diskin, M. Antkiewicz, K. Czarnecki, and A. Wąsowski,
“Clafer: unifying class and feature modeling,” Software & Systems
Modeling, vol. 15, pp. 811–845, 2016.

[35] C. Seidl, T. Winkelmann, and I. Schaefer, “A software product
line of feature modeling notations and cross-tree constraint lan-
guages,” Modellierung 2016, 2016.

[36] M. Antkiewicz and K. Czarnecki, “Featureplugin: Feature mod-
eling plug-in for eclipse,” in Proceedings of the 2004 OOPSLA
workshop on eclipse technology eXchange, 2004, pp. 67–72.

[37] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Le-
ich, “Featureide: An extensible framework for feature-oriented
software development,” Science of Computer Programming, vol. 79,
pp. 70–85, 2014.

[38] M. H. t. Beek, K. Schmid, and H. Eichelberger, “Textual variability
modeling languages: an overview and considerations,” in Pro-
ceedings of the 23rd International Systems and Software Product Line
Conference-Volume B, 2019, pp. 151–157.

[39] P. Franz, T. Berger, I. Fayaz, S. Nadi, and E. Groshev, “Configfix:
Interactive configuration conflict resolution for the linux kernel,”
in 43rd International Conference on Software Engineering, Software
Engineering in Practice track (ICSE/SEIP), 2021.

[40] C. Sundermann, K. Feichtinger, J. A. Galindo, D. Benavides, R. Ra-
biser, S. Krieter, and T. Thüm, “Tutorial on the universal variability
language,” in Proceedings of the 26th ACM International Systems and
Software Product Line Conference-Volume A, 2022, pp. 260–260.

[41] C. Sundermann, S. Vill, T. Thüm, K. Feichtinger, P. Agarwal,
R. Rabiser, J. A. Galindo, and D. Benavides, “Uvlparser: Extending
uvl with language levels and conversion strategies,” in Proceedings
of the 27th ACM International Systems and Software Product Line
Conference - Volume B, 2023.

[42] T. Berger and P. Collet, “Usage scenarios for a common feature
modeling language,” in First International Workshop on Languages
for Modelling Variability (MODEVAR), 2019.

[43] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged configuration
using feature models,” in Software Product Lines: Third International
Conference, SPLC 2004, Boston, MA, USA, August 30-September 2,
2004. Proceedings 3. Springer, 2004, pp. 266–283.

[44] A. Hubaux, D. Jannach, C. Drescher, L. Murta, T. Männistö,
K. Czarnecki, P. Heymans, T. Nguyen, and M. Zanker, “Unifying
software and product configuration: A research roadmap,” in
CONFWS, 2012.

[45] H. Gomaa and M. E. Shin, “Automated software product line
engineering and product derivation,” in 2007 40th Annual Hawaii
International Conference on System Sciences (HICSS’07). IEEE, 2007,
pp. 285a–285a.

[46] S. She, R. Lotufo, T. Berger, A. Wąsowski, and K. Czarnecki,
“Reverse Engineering Feature Models,” in International Conference
on Software Engineering, ser. ICSE. ACM, 2011, pp. 461–470.

[47] N. Andersen, K. Czarnecki, S. She, and A. Wąsowski, “Efficient
synthesis of feature models,” in International Software Product Line
Conference, ser. SPLC, 2012.

[48] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis
of feature models 20 years later: A literature review,” Information
systems, vol. 35, no. 6, pp. 615–636, 2010.

[49] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “A clas-
sification and survey of analysis strategies for software product
lines,” ACM Computing Surveys, vol. 47, no. 1, pp. 6:1–6:45, 2014.

[50] F. Ensan, E. Bagheri, and D. Gašević, “Evolutionary search-based
test generation for software product line feature models,” in
Advanced Information Systems Engineering: 24th International Con-
ference, CAiSE 2012, Gdansk, Poland, June 25-29, 2012. Proceedings
24. Springer, 2012, pp. 613–628.

[51] M. Acher, P. Collet, P. Lahire, and R. B. France, “Familiar: A
domain-specific language for large scale management of feature
models,” Science of Computer Programming, vol. 78, no. 6, pp. 657–
681, 2013.

[52] ——, “Composing feature models,” in International Conference on
Software Language Engineering, ser. SLE. Springer, 2010, pp. 62–81.

[53] D. Benavides, R. Rabiser, D. Batory, and M. Acher, “First interna-
tional workshop on languages for modelling variability (modevar

2019),” in Proceedings of the 23rd International Systems and Software
Product Line Conference-Volume A, 2019, pp. 323–323.

[54] Ø. Haugen, A. Wąsowski, and K. Czarnecki, “Cvl: common vari-
ability language,” in Proceedings of the 16th International Software
Product Line Conference-Volume 2, 2012, pp. 266–267.

[55] CVL Submission Team, “Common variability language (CVL),
OMG revised submission,” 2012, available at https://doi.org/10.
1109/SPLC.2008.25.

[56] O. Haugen and O. Ogard, “BVR – better variability results,” in
International Conference on System Analysis and Modeling. Springer,
pp. 1–15.

[57] J. Krüger, W. Mahmood, and T. Berger, “Promote-pl: a round-trip
engineering process model for adopting and evolving product
lines,” in Proceedings of the 24th ACM Conference on Systems and
Software Product Line: Volume A-Volume A, 2020, pp. 1–12.

[58] K. Czarnecki, “Overview of generative software development,”
in International workshop on unconventional programming paradigms.
Springer, 2004, pp. 326–341.

[59] K. C. Kang, J. Lee, and P. Donohoe, “Feature-oriented product line
engineering,” IEEE software, vol. 19, no. 4, pp. 58–65, 2002.

[60] L. M. Northrop, “Sei’s software product line tenets,” IEEE software,
vol. 19, no. 4, pp. 32–40, 2002.

[61] D. Nesic, J. Krueger, S. Stanciulescu, and T. Berger, “Principles of
feature modeling,” in FSE, 2019.

[62] K. Lee, K. C. Kang, and J. Lee, “Concepts and guidelines of feature
modeling for product line software engineering,” in International
Conference on Software Reuse, ser. ICSR, 2002.

[63] “FM-PRO Technical Documentation,” Chair of Software
Engineering, Ruhr University Bochum, Tech. Rep., 2024.
[Online]. Available: http://se.rub.de/fmpro

[64] “Online Appendix,” https://github.com/isselab/
2024-fmpro-appendix.

[65] C. Krueger, “Eliminating the adoption barrier,” IEEE Software,
vol. 19, no. 4, pp. 29–31, 2002.

[66] L. Passos, L. Teixeira, N. Dintzner, S. Apel, A. Wąsowski, K. Czar-
necki, P. Borba, and J. Guo, “Coevolution of variability models and
related software artifacts,” Empirical Software Engineering, vol. 21,
no. 4, pp. 1744–1793, 2016.

[67] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki,
and A. Wąsowski, “A survey of variability modeling in industrial
practice,” in Proceedings of the 7th International Workshop on Vari-
ability Modelling of Software-intensive Systems, 2013, pp. 1–8.

[68] H. P. Jepsen, J. G. Dall, and D. Beuche, “Minimally invasive
migration to software product lines,” in 11th International Software
Product Line Conference (SPLC 2007). IEEE, 2007, pp. 203–211.

[69] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. Le Traon,
“Bottom-up technologies for reuse: automated extractive adoption
of software product lines,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). IEEE,
2017, pp. 67–70.

[70] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed,
“The ecco tool: Extraction and composition for clone-and-own,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 2. IEEE, 2015, pp. 665–668.

[71] S. Grüner, A. Burger, T. Kantonen, and J. Rückert, “Incremental
migration to software product line engineering,” in Proceedings
of the 24th ACM Conference on Systems and Software Product Line:
Volume A-Volume A, 2020.

[72] W. Mahmood, D. Strueber, T. Berger, R. Laemmel, and M. Muke-
labai, “Seamless variability management with the virtual plat-
form,” in 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, 2021, pp. 1658–1670.

[73] S. Apel and C. Kästner, “An overview of feature-oriented software
development.” J. Object Technol., vol. 8, no. 5, pp. 49–84, 2009.

[74] I. Jacobson, M. Griss, and P. Jonsson, Software reuse: architecture,
process and organization for business success. ACM Press/Addison-
Wesley Publishing Co., 1997.

[75] J. Savolainen and J. Kuusela, “Violatility analysis framework for
product lines,” in Proceedings of the 2001 symposium on Software
reusability: putting software reuse in context, 2001, pp. 133–141.

[76] J. Krüger, T. Berger, and T. Leich, Features and How to Find Them:
A Survey of Manual Feature Location. Taylor & Francis Group,
LLC/CRC Press, 2018.

[77] L. Passos, J. Padilla, T. Berger, S. Apel, K. Czarnecki, and M. T.
Valente, “Feature scattering in the large: A longitudinal study of
linux kernel device drivers,” in 14th International Conference on
Modularity (MODULARITY), 2015.

https://doi.org/10.1109/SPLC.2008.25
https://doi.org/10.1109/SPLC.2008.25
http://se.rub.de/fmpro
https://github.com/isselab/2024-fmpro-appendix
https://github.com/isselab/2024-fmpro-appendix

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

[78] F. Anwer, S. Aftab, U. Waheed, and S. S. Muhammad, “Agile
software development models TDD, FDD, DSDM, and Crystal
methods: A survey,” International journal of multidisciplinary sciences
and engineering, vol. 8, no. 2, pp. 1–10, 2017.

[79] A. Firdaus, I. Ghani, and S. R. Jeong, “Secure feature driven
development (sfdd) model for secure software development,”
Procedia-Social and Behavioral Sciences, vol. 129, pp. 546–553, 2014.

[80] C. Budoya, M. Kissaka, and J. Mtebe, “Instructional design en-
abled agile method using addie model and feature driven devel-
opment method,” International Journal of Education and Development
using ICT, vol. 15, no. 1, 2019.

[81] C. Larman, Scaling lean & agile development: thinking and organiza-
tional tools for large-scale Scrum. Pearson Education India, 2008.

[82] K. Czarnecki and U. W. Eisenecker, Generative Programming: Meth-
ods, Tools, and Applications. Boston, MA: Addison-Wesley, 2000.

[83] T. Berger, D. Nair, R. Rublack, J. M. Atlee, K. Czarnecki, and A. Wą-
sowski, “Three cases of feature-based variability modeling in
industry,” in Model-Driven Engineering Languages and Systems: 17th
International Conference, MODELS 2014, Valencia, Spain, September
28–October 3, 2014. Proceedings 17. Springer, 2014, pp. 302–319.

[84] L. Passos, M. Novakovic, Y. Xiong, T. Berger, K. Czarnecki, and
A. Wasowski, “A study of non-boolean constraints in a variability
model of an embedded operating system,” in Third Workshop on
Feature-Oriented Software Development (FOSD), 2011.

[85] H. Eichelberger and K. Schmid, “Mapping the design-space of
textual variability modeling languages: a refined analysis,” Inter-
national Journal on Software Tools for Technology Transfer, vol. 17, pp.
559–584, 2015.

[86] P. Juodisius, A. Sarkar, R. R. Mukkamala, M. Antkiewicz, K. Czar-
necki, and A. Wąsowski, “Clafer: Lightweight modeling of struc-
ture, behaviour, and variability,” vol. 3, no. 1, p. 2.

[87] J. Martinson, H. Jansson, M. Mukelabai, T. Berger, A. Bergel, and
T. Ho-Quang, “Hans: Ide-based editing support for embedded
feature annotations,” in Proceedings of the 25th ACM International
Systems and Software Product Line Conference-Volume B, 2021, pp.
28–31.

[88] A. Hevner and S. Chatterjee, Design Science Research in Information
Systems. Springer US, 2010.

[89] I. d. C. Machado, A. R. Santos, Y. a. C. Cavalcanti, E. G. Trzan,
M. M. a. de Souza, and E. S. de Almeida, “Low-level variability
support for web-based software product lines,” in VaMoS, 2014.

[90] T. Berger, R.-H. Pfeiffer, R. Tartler, S. Dienst, K. Czarnecki, A. Wą-
sowski, and S. She, “Variability mechanisms in software ecosys-
tems,” Information and Software Technology, vol. 56, no. 11, pp. 1520–
1535, 2014.

[91] L. Passos, J. Guo, L. Teixeira, K. Czarnecki, A. Wąsowski, and
P. Borba, “Coevolution of variability models and related artifacts:
a case study from the linux kernel,” in SPLC, 2013.

[92] A. R. Santos, I. do Carmo Machado, and E. S. de Almeida, “Riple-
hc: Javascript systems meets spl composition,” in Proceedings of the
20th International Systems and Software Product Line Conference, ser.
SPLC, 2016.

[93] C. Seidl, F. Heidenreich, and U. Aßmann, “Co-evolution of models
and feature mapping in software product lines,” in Proceedings
of the 16th International Software Product Line Conference-Volume 1,
2012, pp. 76–85.

[94] K. Feichtinger, D. Hinterreiter, L. Linsbauer, H. Prähofer, and
P. Grünbacher, “Supporting feature model evolution by suggesting
constraints from code-level dependency analyses,” in Proceedings
of the 18th ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences, 2019, pp. 129–142.

[95] D. E. Khelladi, B. Combemale, M. Acher, and O. Barais, “On the
power of abstraction: a model-driven co-evolution approach of
software code,” in Proceedings of the ACM/IEEE 42nd International
conference on software engineering: new ideas and emerging results,
2020, pp. 85–88.

Johan Martinson is a software engineer at a lo-
gistics company in Sweden. He is also a doctoral
student in software engineering at Ruhr Univer-
sity Bochum. In 2019, he received his bachelors
in computer engineering and in 2022 his masters
in software engineering at Chalmers University
of Technology. His research focuses on automat-
ing the complex process of featurization in soft-
ware systems using large language models to
introduce and manage variability, making code
adaptable to diverse user requirements. In his

previous studies he researched and developed projects in tool support
for feature traceability in source code, which was published as tool
papers in SPLC’24 and SPLC’21.

Wardah Mahmood is a doctoral student at
Chalmers | University of Gothenburg, Sweden.
Her research interests are software product-line
engineering, model-based engineering, formal
methods, and empirical software engineering.
She received her Master’s degree from Fast
National University of Computer and Emerging
Sciences, Pakistan in 2016.

Jude Gyimah is a junior doctoral student in soft-
ware engineering at Ruhr University Bochum.
He received his bachelors in information tech-
nology at the Ghana Technology University Col-
lege (2016) and his masters in software engi-
neering and management at the University of
Gothenburg (2021). In his previous studies he
worked on software systems and tools for soft-
ware engineering automation. He currently ap-
plies feature-oriented software development on
projects relating to Domain specific languages,

Configurable Systems Engineering and Adaptive Systems Design, in the
context of service robots, autonomous systems and system softwares.

Thorsten Berger is a Professor in Computer
Science at Ruhr University Bochum in Germany.
After receiving the PhD degree from the Univer-
sity of Leipzig in Germany in 2013, he was a
Postdoctoral Fellow at the University of Waterloo
in Canada and the IT University of Copenhagen
in Denmark, and then an Associate Professor
jointly at Chalmers University of Technology and
the University of Gothenburg in Sweden. He
received competitive grants from the Swedish
Research Council, the Wallenberg Autonomous

Systems Program, Vinnova Sweden (EU ITEA), and the European
Union. He is a fellow of the Wallenberg Academy—one of the highest
recognitions for researchers in Sweden. He received two best-paper
and two most-influential-paper awards. His service was recognized with
distinguished reviewer awards at the tier-one conferences ASE 2018
and ICSE 2020, and at SPLC 2022. His research focuses on software
product line engineering, AI engineering, model-driven engineering, and
software security. He is co-author of the textbook on Domain-Specific
Languages: Effective Modeling, Automation, and Reuse.

	Introduction
	Background and Related Work
	Variant-Rich Systems and Platforms
	Features and Feature Models
	Feature Modeling Principles

	Methodology
	Data Sources
	Process Design
	Industrial Case Study
	Process Refinement
	Expert Assessments
	Research Expert Assessment
	Industrial Expert Assessment

	Open-Source Case Study

	FM-PRO Overview
	Pre-Modeling
	Design of FM-PRO
	Industrial Case Study
	Results
	Own Reflections
	Process Refinement

	Expert Evaluation
	Research Expert Results
	Industrial Expert Results
	Process Refinement

	Open-Source Case Study

	Domain Analysis and Scoping
	Design of FM-PRO
	Industrial Case Study
	Results
	Own Reflections
	Process Refinement

	Expert Evaluation
	Research Expert Results
	Industrial Expert Results
	Process Refinement

	Open-Source Case Study

	Modeling
	Design of FM-PRO
	Industrial Case Study
	Process Refinement

	Expert Evaluation
	Research Expert Results
	Industrial Expert Results
	Process Refinement

	Open-Source Case Study

	Maintenance and Evolution
	Design of FM-PRO
	Industrial Case Study
	Expert Evaluation
	Research Expert Results
	Industrial Expert Results

	Process Refinement

	Discussion and Future Work
	Evolution and Maintenance
	Process Integration
	Effort Estimation and Cost/Benefit Assessment
	Tools

	Threats to Validity
	Conclusion
	References
	Biographies
	Johan Martinson
	Wardah Mahmood
	Jude Gyimah
	Thorsten Berger

