
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

A Demo of ConfigFix: Semantic Abstraction of Kconfig,
SAT-based Configuration, and DIMACS Export

Jude Gyimah
Ruhr-University Bochum

Germany, Bochum

Jan Sollmann
Ruhr-University Bochum

Germany, Bochum

Ole Schuerks
Ruhr-University Bochum

Germany, Bochum

Patrick Franz
University of Gothenburg
Sweden, Gothenburg

Thorsten Berger
Ruhr-University Bochum and

Chalmers | University of Gothenburg
Germany, Bochum

Abstract

The Linux kernel and its huge configuration space (>15,000 features)
has been a frequent study object. While the research community
has developed intelligent software configuration tools, often moti-
vated by the Linux kernel and its configuration language Kconfig,
the kernel’s own configurator xconfig lacks behind. Configuration
conflicts need to be resolved manually, which often causes substan-
tial overhead. Unfortunately, Kconfig is a complex and intricate
language, and while transformations into propositional logic ex-
ist, they typically have shortcomings and are difficult to integrate
into xconfig. We contribute research results back to the Linux com-
munity and present a demo of ConfigFix. It is a plain-C-based
extension of xconfig, providing the currently most accurate abstrac-
tion of the Kconfig semantics into propositional logic. It provides
configuration conflict resolution. Integrated into the xconfig UI, it
offers configuration fixes to users trying to enable or disable kernel
features restricted by dependencies. In addition, researchers benefit
from the DIMACS export. Our demo presents the main capabilities
of xconfig as well as its evaluation showing the accuracy of it.

Keywords

configuration, Linux Kernel, configuration conflicts, SAT solving
ACM Reference Format:

Jude Gyimah, Jan Sollmann, Ole Schuerks, Patrick Franz, and Thorsten
Berger. 2024. A Demo of ConfigFix: Semantic Abstraction of Kconfig, SAT-
based Configuration, and DIMACS Export. In Proceedings of 19th Interna-
tional Working Conference on Variability Modelling of Software-Intensive
Systems (VaMoS’25). ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 Introduction

The Linux kernel’s applicability inmany different computing environ-
ments—ranging from small Android devices to large scale super-
computer clusters—has contributed to making it one of the world’s

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
VaMoS’25, 4-6 February 2025, Rennes, France
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

largest software development projects [8]. Designed as a highly
configurable system [50] it boasts 28 million lines of code [26] and
over 15,000 configuration options (a.k.a. features [5, 7, 40]). To this
end, it has a configurable build system [6], preprocessor-based vari-
ation points [7], a model of its features (Kconfig model) and con-
straints [7, 34], and an interactive configurator tool (xconfig) [50].

A plethora of academic studies and techniques on the kernel’s
variability and its configuration space exist, ranging from variabil-
ity anomaly detection [2, 31, 35, 52], techniques to identify, extract,
and analyze configuration constraints [29, 34, 49, 50, 55], as well
as automated support for reviewing and testing patches [27, 28].
In addition to that, many studies have also been conducted on the
kernel’s evolution [4, 19, 41, 43] and maintenance [1, 18, 20, 56], an-
alyzing its feature model [7, 47], the modeling language (Kconfig),
the evolution of the model [29], the co-evolution and consistency
of its variation points [22, 36, 37, 41, 42, 54], and the representa-
tion of feature constraints in its codebase [34]. Many of the results
have inspired software configurator tools [13, 15]. Various other
tools [51, 58] and techniques [32, 33, 44], including the synthesis of
feature models from code or feature constraints [23, 30, 48], have
also drawn inspiration from the Linux kernel and its configurator,
by borrowing from or directly extending its capabilities.

The kernel’s main configurator xconfig, however, lacks behind
the state of the art. Kernel users have faced challenges when man-
ually creating their desired configurations, given the kernel’s vast
configuration space and intricate feature constraints. Furthermore,
there is limited support for choice propagation and a lack of intel-
ligent configurator support for resolving configuration conflicts.
These challenges are common, because enabling a feature often re-
quires transitively changing many others. Consequently, achieving
a desired configuration can in turn be laborious and error-prone.
A survey [17] revealed that kernel users commonly struggle with
conflict resolution, with 20 % of the respondents needing at least “a
few dozen minutes” to do so. Despite this, insofar as we know, no
configuration technique stemming from academia, has been specif-
ically developed for the Linux kernel such that it can be officially
integrated into the Linux kernel mainline.

In 2015, with the Kconfig-sat initiative [24] kernel developers
recognized the need for such a solution. They got in touch with
researchers working on kernel configuration studies, to integrate
such techniques back into the kernel configurator. Indeed, imple-
menting a sound translation of the kernel’s variability model to
propositional logic, given the expressiveness and intricate nature of

1

https://orcid.org/0009-0003-5564-9253
https://orcid.org/0009-0007-3973-4641
https://orcid.org/
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

VaMoS’25, 4-6 February 2025, Rennes, France Jude Gyimah, Jan Sollmann, Ole Schuerks, Patrick Franz, and Thorsten Berger

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Kconfig model

Semantic Abstractor

CNF Translator

X && Y || Z

Propositional formula

X || Y

!X || Z

…

CNF formula

current

config

.config

CONFIG_X = y

CONFIG_Y = n

Config goal

CNF Translator

X

!Y

…

CNF formula

soft constraints hard constraints

Λ

🛠 picosat

CONFIG_Z = y

CONFIG_W = y

CONFIG_X = y

CONFIG_Y = n

set of fixes

CONFIG_X = y

CONFIG_Y = n

set of fixes

(same as config goal)

satisfiable

unsatisfiable

RangeFix

ConfigFix cfoutconfig

p cnf 9348..

c 32131

-32131 -5181

CNF to

DIMACS

results.csv

Verify fixes

Random

configuration

cftestconfig

cftestgenconfig

Test random

conflict

Random

conflicts

Fig. 1: ConfigFix components

the Kconfig language semantics (explained shortly), has long been
an open problem in the community. Multiple translation attempts
have been proposed to remedy this [10, 21, 46, 53], but none of them
have been without limitations [9].

We present a demo of ConfigFix [11, 12], which offers intelli-
gent configuration support integrated into the Linux kernel config-
urator xconfig. It is completely implemented in C, extends xconfig’ss
graphical user interface, and comes with a testing framework. Since
researchers can draw value from the DIMACS export, we also dis-
cuss the Kconfig’s semantics and the implementation details of our
semantic abstraction. In contrast to our previous work [11], this pa-
per is a demo, showcasing enhancements in the user interface, test
infrastructure, and code quality, and it presents the DIMACS export.
The current version also integrates feedback from the kernel com-
munity. Our efforts have led to a stable version of ConfigFix and its
test infrastructure [12], that is currently in the process of being inte-
grated in the kernel’s source tree (patches submitted and discussed).

2 ConfigFix Design

Figure 1 shows the main components of ConfigFix: translation
of the Kconfig model into a propositional formula, translation into
conjunctive normal form (CNF), conflict resolution algorithm, test
infrastructure, and DIMACS export. When invoked, ConfigFix
takes the current configuration and the user’s configuration goal
as input. It then creates a single formula that is a conjunction of all
constraints and then queries the SAT solver for satisfiability. In case
of a configuration conflict (i.e., the user’s goal is not applicable), it
triggers our C-based, RangeFix-inspired implementation (discussed
shortly) to calculate fixes [11, 59].

Linux Kernel Configuration. The kernel has three different con-
figurators: make xconfig, make menuconfig, and make config. The
xconfig provides a graphical user interface, while the others are tai-
lored towards shell users. Via them correct configurations of kernel
features (which come with many different characteristics defined
in the Kconfig model) that adhere to constraints (e.g., types and
dependencies) can be created and modified. The underlying DSL [3]
Kconfig provides feature-modeling concepts [7, 47]. It declares fea-
tures (called symbols there) of different types (i.e., bool, tristate,
string, hex, and int) [45, 46]. Tristate features are often used to con-
trol the binding modes of features via three states: y (yes, compile
feature into kernel), n (no, do not compile feature), or m (compile
feature as loadable kernel module), where constraint semantics fol-
low Kleene’s rules for three-state logic [25]. A persistent challenge
has been obtaining a sound logical representation (mainly due to its
complexity) of the main semantics of Kconfig, as a prerequisite to
develop analysis and configuration techniques [11]. After we were
the first to formalize its semantics [45, 46] (reverse-engineered from
xconfig’s behavior), many others followed up [9, 24, 38, 45, 61] with
their own translations. These works demonstrated that the seman-
tics of Kconfig can indeed be abstracted into propositional logic, to
be used by SAT solvers.
Translation. Given Kconfig’s expressiveness beyond propositional
logic, an abstraction is required. Specifically, ConfigFix translates
each feature (called symbol in Kconfig) into a set of variables that
represent the possibility of the feature assuming a specific value. For
example, a Boolean feature will be translated to a single variable A
which is either true or false. Other features may only assume the val-
ues “yes,” “module,” or “no.” For such a feature A, the variables A and
𝐴𝑀 would be created, where A is true if and only if A is “yes.” and
𝐴𝑀 is true if and only if A is “module.” In case of an integer feature𝐴,
with default value of 5 and a constraint 2 ≤ A ≤ 8, it would be trans-
lated into six variables in the propositional formula: A=0, A=1, A=2,
A=5, A=8 and A=n. A=0, A=1 and A=n are created for every feature
by default with A=n handling the case that A is hidden and has no
value. A=2, A=5 and A=8 are “known values,” which could be values
that are either default for the feature or part of a range constraint.
The propositional formula is then constructed based on these vari-
ables. It is noteworthy that this aspect of the ConfigFix translation
implementation is the most complicated, given that it is mainly tris-
tate and the sheer scale of everything (features, values, types and
especially the CNF conversion), was challenging. The formula is
subsequently translated into CNF using Tseitin transformation [57].
Fix Generation. The ConfigFix UI is responsible for receiving
configuration conflicts specified as the user-defined configuration
goal that is not applicable in the current configurator, and then
displaying calculated fixes. The constraint translation component
of ConfigFix first translates the constraints in the loaded Kconfig
model into a CNF formula. To calculate and generate fixes from
conflicts, a suitable conflict-resolution is required. Various conflict-
resolution algorithms exist [16], but manywere not applicable to the
scope of ConfigFix. They either produce just a single fix, suggest a
long list of fixes or only offer limited support for non-Boolean con-
straints [39]. However, our conflict-resolution algorithm of choice,
a rangefix-inspired conflict resolver, produces fixes that offer a
range of values for features, supports non-Boolean features and

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

A Demo of ConfigFix: Semantic Abstraction of Kconfig, SAT-based Configuration, and DIMACS Export VaMoS’25, 4-6 February 2025, Rennes, France

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

constraints, adheres to correctness, contains a maximum range in
the event of overlapping ranges and requires minimal feature set
changes [11]. In our implementation, it takes a CNF model where
features are represented by variables and generates minimal sets
of features (refered to as diagnoses) that must be changed. Next,
it calculates new values for each variable in a diagnosis. All un-
changed variables are then replaced by their current values and
any violated constraints are minimized via heuristic rules defined
and split into minimal clauses to generate the fixes. In summary,
with those RangeFix capabilities, when there are infinitely many
possible solutions available, the user is only presented with the
minimal set of these [60].

3 ConfigFix Demo

We now demonstrate ConfigFix’s conflict resolution workflows
and DIMACS export functionality. We show the xconfig UI, the
specification of the configuration goal (the assignment of values
for a set of features to be configured), the calculation of adequate
fixes, and their application.
Workflows. Figure 2 presents the complete workflow of Con-
figFix. 1 Upon launch, Xconfig provides a view that presents a
dependency-based hierarchy of nested menus containing features
and allows feature value changes when the requirements for the
target values are met. The Kconfig language allows specifying con-
ditions for when a feature should be visible in the view. To change
the values of features, even when they are invisible, the option
“Show Prompt Options” can be used. Then all features that can be
visible with the default visibility option under any configuration
are always visible. Users can add any tristate feature to the set of
features that should be changed by selecting it in this view and
clicking the “Add symbol” button (as shown in 2). Conflicts with
numeric values and string values are not supported by ConfigFix.
The set of features that need be changed is also called a conflict.
The features that are currently added to the conflict are displayed
in the menu on the bottom left. The desired value of a feature in the
conflict can be set by selecting it in the menu on the bottom left and
using one of the buttons “Y”, “M”, or “N” to set it to “Yes”, “Module”,
or “No,” respectively. Alternatively, users can cycle through the
three values by clicking on the corresponding cell in the column
“Wanted Value.” The difference between “Yes” and “Module” is that
with the former, a feature will be statically linked into the kernel,
whereas with the latter it will be built as a dynamically loadable
kernel module. If a feature cannot be built as a kernel module,
the button “M” is grayed out. A feature (symbol) can be removed
from the conflict by selecting it in the menu on the bottom left and
clicking the button “Remove Symbol.”

Once the desired feature values have been set, fixes can be calcu-
lated by clicking “Calculate Fixes.” The fixes are then displayed in
the table on the bottom right (as shown in 3). Users can switch
between different fixes with a dropdown menu. The fixes associate
each feature in the conflict with a new value, and ideally, there
is an order of the changes the fix presents in which they can be
applied such that after applying all changes, the desired changes
would have been achieved. The changes can be made manually, or
by clicking on “Apply Selected Solution”, the values can be applied

automatically, in which case the user is informed via a dialog when
the fix has been applied successfully 4 . ConfigFix supports the

1

2

3

4

Identify features of interest & specify desired value

Calculate fixes

Apply fixes & select desired feature

Fig. 2: User workflow using ConfigFix inside xconfig

user in applying the changes manually by coloring the names of
the features in the table showing the fixes based on when the value
can and needs to be set manually. A feature is red if its value can
be set to the value provided by the fix and that value differs in the

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

VaMoS’25, 4-6 February 2025, Rennes, France Jude Gyimah, Jan Sollmann, Ole Schuerks, Patrick Franz, and Thorsten Berger

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

current configuration (as shown in 3). It is green if its value in
the current configuration already matches with the value the fix
proposes (as shown in 4). It is gray if the fix’s value differs from
the configuration’s value for the feature, but further dependencies
need to be fulfilled in order to set the feature to the value of the fix.
Figure 2 shows the sequence of the workflow described from the
identification of features of interest to be configured, right down to
the application of calculated fixes.
DIMACS Export. ConfigFix allows Kconfig model exports in DI-
MACS notation, using “make cfoutconfig.” The DIMACS output
file offers users the Kconfig model in CNF form (see Listing 1).
This export feature is included to support further research on the
kernel’s feature model and variability mechanisms. For instance,
such DIMACS exports could be potentially useful in logical infer-
ence scenarios where system based conclusions can be drawn from
known configuration constraints, using algorithms that verify the
satisfiability (SAT) of the underlying propositional logic statements.

Listing 1: DIMACS export snippet for UAPI_HEADER_TEST

p cn f 934872 2764895
c 32131 UAPI_HEADER_TEST
−32131 −51181 0

4 Test Infrastructure

We evaluated ConfigFix based on the number of conflicts it re-
solves and the quality of fixes. We created a test infrastructure that
generates random configuration samples, introduces conflicts, exe-
cutes ConfigFix, and then validates the fixes. This implementation
extends the qconf.cc configurator and is invoked by the command
“make cftestconfig”. The cftestconfig module is split into two sub-
modules, the first is ConflictFrameworkSetup responsible for initial-
izing system parameters and the other (ConflictFramework), which
handles the generation of configurations and conflicts.

Cftestconfig can be used to generate configurations and conflicts
in three different modes. mode=“single” gives the user the option
to generate several conflicts from an existing configuration. When
these conflicts are resolved, the data is saved in a results file. In
this mode, “make cftestgenconfig” can be called as many times as
required. mode=“multi” provides the option to generate multiple
random configurations while simultaneously generating for every
configuration, a random set of conflicts for a given architecture. The
conflicts are solved and the data is subsequently saved in the results
file. In its order of execution, “make randconfig” is called first, fol-
lowed by “make cftestgenconfig”.mode=“multi_arch” gives users
the option to generatemultiple random configurations and then gen-
erate for each, a random set of conflicts for multiple architectures.

Specifically, the test infrastructure works as follows. First, it
samples the configuration space. Samples should provide enough
coverage of the features contained therein [14]. This requires all
important variation points (such as hardware architecture) in the
configuration space to be considered [14]. Our test infrastructure
uses randconfig (an existing tool in the build system) to generate
random configurations. Second, it introduces conflicts. For each of
the generated configurations, it generates random conflicts contain-
ing a specific number of changes requested (i.e., the conflict size,
which is configurable).

Table 1: Evaluation results

metric value

number of sampled configurations 271
conflict sizes 1–10

total generated conflicts for evaluation 1,3502 (100.0 %)
conflicts with >= 1 fix produced by ConfigFix 1,150 (85.2 %)
number of resolved conflicts 1,150 (85.2 %)

total number of fixes produced by ConfigFix 2,645 (100.0 %)
fixes that resolve the conflict 2,643 (99.9 %)

fully applicable and resolves conflict 1,116 (42.2 %)
not fully applicable, but resolves conflict 1,527 (57.7 %)
does not resolve conflict 2 (0.1 %)

1 One for each architecture and probability.
2 For each configuration sample, five conflicts of each size.
We then generate a base configuration using randconfig with

a probability of 100% of an option being set with all conflicts cho-
sen as subsets of the base configuration. Third, it executes the fix
generation for each conflict. The generated configuration sample
and conflict become inputs to the test algorithm, which will either
produce a single or several configuration fixes, or provide feedback
that the conflict cannot be resolved. Fourth, it validates the fixes. A
fix may include some additional features subject to change, in order
to set them to their new, desired state. Such features typically bear
configuration conflict properties, which may be too hard to recon-
figure manually. As such, for every fix returned by the algorithm,
it is applied to the sample configuration and verified to ensure that
user needs are satisfied, the configuration after the fix application
is valid, as well as no unnecessary changes have been made to the
product configuration.

All generated configurations, conflicts and fixes are stored in a
directory supplied by the user. Conflicts are generated by repeatedly
choosing a random boolean or tristate option with a prompt that
has at least one value to which it cannot resolve due to unmet
dependencies. The conflict then requires this option to be set to
one of its blocked values (chosen at random).

For the actual evaluation, we generated configurations (i.e., in the
multi_arch mode) for three different architectures (x86_64, arm64,
and openrisc), and for nine different probabilities for a feature to
be selected, ranging from 10% to 90%. In total, the infrastructure
evaluated 27 different configurations. We set it to generate con-
flict sizes of 1–10 features. Table 1 shows the results. It generated
1350 conflicts. For each of the 27 configurations, and each of the
10 conflict sizes, 5 conflicts were generated. ConfigFix success-
fully resolved 1,150 conflicts (85.2%) and produced 2,645 fixes in
total. Almost all fixes (99.9%) resolved the conflicts, with only 2
fixes (0.1%) failing to do so. Of the fixes, 1,116 (42.2%) were fully
applicable and resolved the conflict, while 1,527 (57.7%) resolved the
conflict despite not being fully applicable. The evaluation details
are provided in the ConfigFix repository [12].

Note, a fix could still not resolve a conflict since our abstraction
compresses the higher level Kconfig model into a propositional
formula, which may not be able to capture all the constraints of the
original model. Thus a fix can be fully inapplicable but still resolve
the conflict, since the fix may change the value of a variable that
is not directly involved in the conflict, but is a dependency of a
variable that is involved in the conflict.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

A Demo of ConfigFix: Semantic Abstraction of Kconfig, SAT-based Configuration, and DIMACS Export VaMoS’25, 4-6 February 2025, Rennes, France

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

5 Conclusion

We presented a demo of ConfigFix. It helps to configure the Linux
kernel by offering automated conflict resolution support. While de-
tails are in our preceding conference paper [11], we focus on demon-
strating the capabilities, as well as showing improvements since
then.We hope the C-based integration developed by discussionwith
Linux developers contributes research results back to the Linux ker-
nel community, supporting users to configure their desired kernel.

References

[1] Iago Abal, Claus Brabrand, and Andrzej Wasowski. 2014. 42 Variability Bugs in
the Linux Kernel: A Qualitative Analysis. In ASE.

[2] Mathieu Acher, Hugo Martin, Juliana Alves Pereira, Arnaud
Blouin, Djamel Eddine Khelladi, and Jean-Marc Jézéquel. 2019.
Learning From Thousands of Build Failures of Linux Kernel Configurations.
Technical Report. Inria ; IRISA. https://inria.hal.science/hal-02147012

[3] Wąsowski Andrzej and Berger Thorsten. 2023. Domain-Specific Languages:
Effective Modeling, Automation, and Reuse. Springer International Publishing.

[4] Giuliano Antoniol, Umberto Villano, Ettore Merlo, and Massimiliano Di Penta.
2002. Analyzing cloning evolution in the linux kernel. Information and Software
Technology 44, 13 (2002), 755–765.

[5] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Adeline Silva,
Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. 2015. What is a
Feature? A Qualitative Study of Features in Industrial Software Product Lines.
In International Software Product Line Conference (SPLC). 16–25.

[6] Thorsten Berger, Steven She, Rafael Lotufo, Krzysztof Czarnecki, and Andrzej
Wasowski. 2010. Feature-to-Code Mapping in Two Large Product Lines. In SPLC.

[7] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof
Czarnecki. 2013. A Study of Variability Models and Languages in the Systems
Software Domain. IEEE Trans. Softw. Eng. 39, 12 (Dec. 2013), 1611–1640.

[8] Swapnil Bhartiya. 2016. Linux is the largest software development project on
the planet: Greg Kroah-Hartman. urlhttps://www.cio.com/article/3069529/linux-
is-the-largest-software-development-project-on-the-planet-greg-kroah-
hartman.html. Accessed: 2020-01-06.

[9] Sascha El-Sharkawy, Adam Krafczyk, and Klaus Schmid. 2015. Analysing the
Kconfig semantics and its analysis tools. In GPCE.

[10] David Fernandez-Amoros, Ruben Heradio, Christoph Mayr-Dorn, and Alexander
Egyed. 2019. A Kconfig Translation to Logic with One-Way Validation System.
In SPLC.

[11] Patrick Franz, Thorsten Berger, Ibrahim Fayaz, Sarah Nadi, and Evgeny Groshev.
2021. ConfigFix: Interactive Configuration Conflict Resolution for the Linux
Kernel. In IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP).

[12] Patrick Franz, Ibrahim Fayaz, Thorsten Berger, Sarah Nadi, Evgeny Groshev,
Lukas Günther, Dorina Sfirnaciuc, Jude Gyimah, Jan Sollman, and Ole Schürks.
2020. ConfigFix. https://bitbucket.org/easelab/configfix.

[13] José A Galindo, David Benavides, Pablo Trinidad, Antonio-Manuel Gutiérrez-
Fernández, and Antonio Ruiz-Cortés. 2019. Automated analysis of feature models:
Quo vadis? Computing 101 (2019), 387–433.

[14] Evgeny Groshev. 2020. A testing technique for conflict-resolution facilities-
in software configurators. Master’s thesis. University Of Gothenburg and
Chalmers University Of Technology.

[15] Arnaud Hubaux, Dietmar Jannach, Conrad Drescher, Leonardo Murta, Tomi
Männistö, Krzysztof Czarnecki, Patrick Heymans, Tien Nguyen, and Markus
Zanker. 2012. Unifying software and product configuration: a research roadmap.
In CONFWS.

[16] A. Hubaux, D. Jannach, C. Drescher, L. Murta, T. Männistö, K. Czarnecki, P.
Heymans, T. Nguyen, and M. Zanker. 2012. Unifying Software and Product
Configuration: A Research Roadmap. In ConfWS.

[17] Arnaud Hubaux, Yingfei Xiong, and Krzysztof Czarnecki. 2012. A User Survey
of Configuration Challenges in Linux and eCos. In VaMoS.

[18] Ayelet Israeli and Dror G Feitelson. 2009. Characterizing software maintenance
categories using the Linux kernel. Technical Report 2009–10. School of Com-
puter Science and Engineering, The Hebrew University of Jerusalem.

[19] Ayelet Israeli and Dror G Feitelson. 2010. The Linux kernel as a case study in
software evolution. Journal of Systems and Software 83, 3 (2010), 485–501.

[20] Yujuan Jiang, Bram Adams, and Daniel M German. 2013. Will my patch make
it? and how fast? case study on the linux kernel. In MSR.

[21] Christian Kästner. 2014. KConfig Reader. https://github.com/ckaestne/
kconfigreader.

[22] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus
Ostermann, and Thorsten Berger. 2011. Variability-Aware Parsing in the Presence
of Lexical Macros and Conditional Compilation. In OOPSLA.

[23] Christian Kastner, Thomas Thum, Gunter Saake, Janet Feigenspan, Thomas Leich,
Fabian Wielgorz, and Sven Apel. 2009. FeatureIDE: A tool framework for feature-
oriented software development. In 2009 IEEE 31st International Conference on
Software Engineering. 611–614. https://doi.org/10.1109/ICSE.2009.5070568

[24] Kernelnewbies. 2017. Linux kconfig SAT integration. https://kernelnewbies.org/
KernelProjects/kconfig-sat. Accessed: 2019-12-05.

[25] S. C. Kleene. 1938. On notation for ordinal numbers. Journal of Symbolic Logic
3, 4 (1938), 150–155. https://doi.org/10.2307/2267778

[26] Michael Larabel. 2020. The Linux Kernel Enters 2020 At 27.8 Million Lines In Git
But With Less Developers For 2019. https://www.phoronix.com/news/Linux-
Git-Stats-EOY2019. Accessed: 2020-01-06.

[27] Julia Lawall and Gilles Muller. 2017. JMake: Dependable Compilation for
Kernel Janitors. In 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). 357–366. https://doi.org/10.1109/
DSN.2017.62

[28] Julia Lawall and Gilles Muller. 2018. Coccinelle: 10 Years of Automated Evolution
in the Linux Kernel. In 2018 USENIX Annual Technical Conference (USENIX
ATC 18). https://www.usenix.org/conference/atc18/presentation/lawall

[29] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej
Wasowski. 2010. Evolution of the Linux Kernel VariabilityModel. In International
Conference on Software Product Lines (SPLC). 136–150.

[30] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Le-
ich, and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE.
Springer.

[31] Jean Melo, Elvis Flesborg, Claus Brabrand, and Andrzej Wąsowski. 2016. A
quantitative analysis of variability warnings in linux. In Proceedings of the 10th
InternationalWorkshop onVariabilityModelling of Software-Intensive Systems.
3–8.

[32] Johann Mortara and Philippe Collet. 2021. Capturing the diversity of analyses
on the Linux kernel variability. In Proceedings of the 25th ACM International
Systems and Software Product Line Conference - Volume A (Leicester, United
Kingdom) (SPLC ’21). Association for Computing Machinery, New York, NY,
USA, 160–171. https://doi.org/10.1145/3461001.3471151

[33] Daniel-Jesus Munoz, Jeho Oh, Mónica Pinto, Lidia Fuentes, and Don Batory. 2019.
Uniform random sampling product configurations of feature models that have
numerical features. In SPLC.

[34] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki. 2015.
Where do Configuration Constraints Stem From? An Extraction Approach and
an Empirical Study. IEEE Trans. Softw. Eng. 41, 8 (2015), 820–841.

[35] Sarah Nadi, Christian Dietrich, Reinhard Tartler, Richard C. Holt, and Daniel
Lohmann. 2013. Linux variability anomalies: What causes them and how do
they get fixed?. In MSR.

[36] Sarah Nadi and Richard C. Holt. 2011. Make it or break it: Mining anomalies
from Linux Kbuild. In WCRE. 315–324.

[37] Sarah Nadi and Richard C. Holt. 2012. Mining Kbuild to detect variability
anomalies in Linux. In CSMR.

[38] Vegard Nossum. 2019. satconfig. https://github.com/vegard/linux-2.6/tree/v4.7+
kconfig-sat. Accessed: 2019-12-05.

[39] Leonardo Passos, Marko Novakovic, Yingfei Xiong, Thorsten Berger, Krzysztof
Czarnecki, and Andrzej Wąsowski. 2011. A Study of Non-Boolean Constraints
in a Variability Model of an Embedded Operating System. In Feature-Oriented
Software Development (FOSD).

[40] Leonardo Passos, Jesús Padilla, Thorsten Berger, Sven Apel, Krzysztof Czarnecki,
and Marco Tulio Valente. 2015. Feature Scattering in the Large: A Longitudinal
Study of Linux Kernel Device Drivers. In International Conference onModularity
(MODULARITY).

[41] Leonardo Passos, Rodrigo Queiroz, Mukelabai Mukelabai, Thorsten Berger, Sven
Apel, Krzysztof Czarnecki, and Jesus Padilla. 2021. A Study of Feature Scattering
in the Linux Kernel. IEEE Trans. Softw. Eng. 47 (2021), 146–164. Issue 1.

[42] Leonardo Passos, Leopoldo Teixeira, Nicolas Dintzner, Sven Apel, Andrzej Wa-
sowski, Krzysztof Czarnecki, Paulo Borba, and Jianmei Guo. 2016. Coevolution
of Variability Models and Related Software Artifacts. Empirical Softw. Engg. 21,
4 (Aug. 2016), 1744–1793.

[43] Tu Qiang and Godfrey Michael W. 2000. Evolution in open source software: A
case study. In ICSM.

[44] Muhammad Ejaz Sandhu. 2021. Comparison of Fault Simulation Over Custom
Kernel Module Using Various Techniques. Lahore Garrison University Research
Journal of Computer Science and Information Technology 5, 3 (2021), 73–83.
https://doi.org/10.54692/lgurjcsit.2021.0503220

[45] Steven She. 2013. LVAT. https://github.com/shshe/linux-variability-analysis-
tools.

[46] Steven She and Thorsten Berger. 2010. Formal Semantics of the Kconfig Language.
Technical Note. https://arxiv.org/abs/2209.04916.

[47] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and Krzysztof
Czarnecki. 2010. The Variability Model of the Linux Kernel. In Fourth
InternationalWorkshop on VariabilityModelling of Software-intensive Systems
(VAMOS 2010).

[48] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and Krzysztof
Czarnecki. 2011. Reverse Engineering Feature Models. In ICSE.5

https://inria.hal.science/hal-02147012
https://bitbucket.org/easelab/configfix
https://github.com/ckaestne/kconfigreader
https://github.com/ckaestne/kconfigreader
https://doi.org/10.1109/ICSE.2009.5070568
https://kernelnewbies.org/KernelProjects/kconfig-sat
https://kernelnewbies.org/KernelProjects/kconfig-sat
https://doi.org/10.2307/2267778
https://www.phoronix.com/news/Linux-Git-Stats-EOY2019
https://www.phoronix.com/news/Linux-Git-Stats-EOY2019
https://doi.org/10.1109/DSN.2017.62
https://doi.org/10.1109/DSN.2017.62
https://www.usenix.org/conference/atc18/presentation/lawall
https://doi.org/10.1145/3461001.3471151
https://github.com/vegard/linux-2.6/tree/v4.7+kconfig-sat
https://github.com/vegard/linux-2.6/tree/v4.7+kconfig-sat
https://doi.org/10.54692/lgurjcsit.2021.0503220
https://github.com/shshe/linux-variability-analysis-tools
https://github.com/shshe/linux-variability-analysis-tools
https://arxiv.org/abs/2209.04916

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

VaMoS’25, 4-6 February 2025, Rennes, France Jude Gyimah, Jan Sollmann, Ole Schuerks, Patrick Franz, and Thorsten Berger

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

[49] Julio Sincero, Horst Schirmeier, Wolfgang Schröder-Preikschat, and Olaf
Spinczyk. 2007. Is The Linux Kernel a Software Product Line?. In SPLC-OSSPL.

[50] Julio Sincero and Wolfgang Schröder-Preikschat. 2008. The Linux Kernel Con-
figurator as a Feature Modeling Tool. In ASPL.

[51] Eduard Staniloiu, Razvan Nitu, Cristian Becerescu, and Razvan Rughinis. 2021.
Automatic Integration of D Code With the Linux Kernel. In 2021 20th RoEduNet
Conference: Networking in Education and Research (RoEduNet). 1–6. https:
//doi.org/10.1109/RoEduNet54112.2021.9638307

[52] Stefan Strueder, Mukelabai Mukelabai, Daniel Strueber, and Thorsten Berger.
2020. Feature-Oriented Defect Prediction. In 24th ACM International Systems
and Software Product Line Conference (SPLC).

[53] Reinhard Tartler, Christian Dietrich, Julio Sincero,Wolfgang Schröder-Preikschat,
and Daniel Lohmann. 2014. Static Analysis of Variability in System Software:
The 90,000 #ifdefs Issue. In USENIX ATC.

[54] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schröder-
Preikschat. 2011. Feature Consistency in Compile-Time-Configurable System
Software: Facing the Linux 10,000 Feature Problem. In EuroSys.

[55] Reinhard Tartler, Julio Sincero, Wolfgang Schröder-Preikschat, and Daniel
Lohmann. 2009. Dead or Alive: Finding Zombie Features in the Linux Kernel. In

FOSD.
[56] Y. Tian, J. Lawall, and D. Lo. 2012. Identifying Linux bug fixing patches. In ICSE.
[57] G. S. Tseitin. 1983. On the Complexity of Derivation in Propositional Calculus.

Springer Berlin Heidelberg, Berlin, Heidelberg, 466–483. https://doi.org/10.1007/
978-3-642-81955-1_28

[58] Ying-Jie Wang, Liang-Ze Yin, and Wei Dong. 2021. AMCheX: Accurate Analysis
of Missing-Check Bugs for Linux Kernel. Journal of Computer Science and
Technology 36, 6 (Dec. 2021), 1325–1341.

[59] Yingfei Xiong, Arnaud Hubaux, Steven She, and Krzysztof Czarnecki. 2012. Gen-
erating range fixes for software configuration. In 34th International Conference
on Software Engineering (ICSE).

[60] Y. Xiong, H. Zhang, A. Hubaux, S. She, J. Wang, and K. Czarnecki. 2015. Range
Fixes: Interactive Error Resolution for Software Configuration. IEEE Trans. Softw.
Eng. 41, 6 (June 2015), 603–619.

[61] Christoph Zengler and Wolfgang Küchlin. 2010. Encoding the Linux ker-
nel configuration in propositional logic. In Proceedings of the 19th European
Conference on Artificial Intelligence (ECAI 2010) Workshop on Configuration.

6

https://doi.org/10.1109/RoEduNet54112.2021.9638307
https://doi.org/10.1109/RoEduNet54112.2021.9638307
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28

	Abstract
	1 Introduction
	2 ConfigFix Design
	3 ConfigFix Demo
	4 Test Infrastructure
	5 Conclusion
	References

