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Abstract

The Linux kernel and its huge configuration space (>15,000 features)
has been a frequent study object. While the research community
has developed intelligent software configuration tools, often moti-
vated by the Linux kernel and its configuration language Kconfig,
the kernel’s own configurator xconfig lacks behind. Configuration
conflicts need to be resolved manually, which often causes substan-
tial overhead. Unfortunately, Kconfig is a complex and intricate
language, and while transformations into propositional logic ex-
ist, they typically have shortcomings and are difficult to integrate
into xconfig. We contribute research results back to the Linux com-
munity and present a demo of ConfigFix. It is a plain-C-based
extension of xconfig, providing the currently most accurate abstrac-
tion of the Kconfig semantics into propositional logic. It provides
configuration conflict resolution. Integrated into the xconfig UI, it
offers configuration fixes to users trying to enable or disable kernel
features restricted by dependencies. In addition, researchers benefit
from the DIMACS export. Our demo presents the main capabilities
of xconfig as well as its evaluation showing the accuracy of it.
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1 Introduction

The Linux kernel’s applicability inmany different computing environ-
ments—ranging from small Android devices to large scale super-
computer clusters—has contributed to making it one of the world’s
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largest software development projects [8]. Designed as a highly
configurable system [50] it boasts 28 million lines of code [26] and
over 15,000 configuration options (a.k.a. features [5, 7, 40]). To this
end, it has a configurable build system [6], preprocessor-based vari-
ation points [7], a model of its features (Kconfig model) and con-
straints [7, 34], and an interactive configurator tool (xconfig) [50].

A plethora of academic studies and techniques on the kernel’s
variability and its configuration space exist, ranging from variabil-
ity anomaly detection [2, 31, 35, 52], techniques to identify, extract,
and analyze configuration constraints [29, 34, 49, 50, 55], as well
as automated support for reviewing and testing patches [27, 28].
In addition to that, many studies have also been conducted on the
kernel’s evolution [4, 19, 41, 43] and maintenance [1, 18, 20, 56], an-
alyzing its feature model [7, 47], the modeling language (Kconfig),
the evolution of the model [29], the co-evolution and consistency
of its variation points [22, 36, 37, 41, 42, 54], and the representa-
tion of feature constraints in its codebase [34]. Many of the results
have inspired software configurator tools [13, 15]. Various other
tools [51, 58] and techniques [32, 33, 44], including the synthesis of
feature models from code or feature constraints [23, 30, 48], have
also drawn inspiration from the Linux kernel and its configurator,
by borrowing from or directly extending its capabilities.

The kernel’s main configurator xconfig, however, lacks behind
the state of the art. Kernel users have faced challenges when man-
ually creating their desired configurations, given the kernel’s vast
configuration space and intricate feature constraints. Furthermore,
there is limited support for choice propagation and a lack of intel-
ligent configurator support for resolving configuration conflicts.
These challenges are common, because enabling a feature often re-
quires transitively changing many others. Consequently, achieving
a desired configuration can in turn be laborious and error-prone.
A survey [17] revealed that kernel users commonly struggle with
conflict resolution, with 20 % of the respondents needing at least “a
few dozen minutes” to do so. Despite this, insofar as we know, no
configuration technique stemming from academia, has been specif-
ically developed for the Linux kernel such that it can be officially
integrated into the Linux kernel mainline.

In 2015, with the Kconfig-sat initiative [24] kernel developers
recognized the need for such a solution. They got in touch with
researchers working on kernel configuration studies, to integrate
such techniques back into the kernel configurator. Indeed, imple-
menting a sound translation of the kernel’s variability model to
propositional logic, given the expressiveness and intricate nature of
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Fig. 1: ConfigFix components

the Kconfig language semantics (explained shortly), has long been
an open problem in the community. Multiple translation attempts
have been proposed to remedy this [10, 21, 46, 53], but none of them
have been without limitations [9].

We present a demo of ConfigFix [11, 12], which offers intelli-
gent configuration support integrated into the Linux kernel config-
urator xconfig. It is completely implemented in C, extends xconfig’ss
graphical user interface, and comes with a testing framework. Since
researchers can draw value from the DIMACS export, we also dis-
cuss the Kconfig’s semantics and the implementation details of our
semantic abstraction. In contrast to our previous work [11], this pa-
per is a demo, showcasing enhancements in the user interface, test
infrastructure, and code quality, and it presents the DIMACS export.
The current version also integrates feedback from the kernel com-
munity. Our efforts have led to a stable version of ConfigFix and its
test infrastructure [12], that is currently in the process of being inte-
grated in the kernel’s source tree (patches submitted and discussed).

2 ConfigFix Design

Figure 1 shows the main components of ConfigFix: translation
of the Kconfig model into a propositional formula, translation into
conjunctive normal form (CNF), conflict resolution algorithm, test
infrastructure, and DIMACS export. When invoked, ConfigFix
takes the current configuration and the user’s configuration goal
as input. It then creates a single formula that is a conjunction of all
constraints and then queries the SAT solver for satisfiability. In case
of a configuration conflict (i.e., the user’s goal is not applicable), it
triggers our C-based, RangeFix-inspired implementation (discussed
shortly) to calculate fixes [11, 59].

Linux Kernel Configuration. The kernel has three different con-
figurators: make xconfig, make menuconfig, and make config. The
xconfig provides a graphical user interface, while the others are tai-
lored towards shell users. Via them correct configurations of kernel
features (which come with many different characteristics defined
in the Kconfig model) that adhere to constraints (e.g., types and
dependencies) can be created and modified. The underlying DSL [3]
Kconfig provides feature-modeling concepts [7, 47]. It declares fea-
tures (called symbols there) of different types (i.e., bool, tristate,
string, hex, and int) [45, 46]. Tristate features are often used to con-
trol the binding modes of features via three states: y (yes, compile
feature into kernel), n (no, do not compile feature), or m (compile
feature as loadable kernel module), where constraint semantics fol-
low Kleene’s rules for three-state logic [25]. A persistent challenge
has been obtaining a sound logical representation (mainly due to its
complexity) of the main semantics of Kconfig, as a prerequisite to
develop analysis and configuration techniques [11]. After we were
the first to formalize its semantics [45, 46] (reverse-engineered from
xconfig’s behavior), many others followed up [9, 24, 38, 45, 61] with
their own translations. These works demonstrated that the seman-
tics of Kconfig can indeed be abstracted into propositional logic, to
be used by SAT solvers.
Translation. Given Kconfig’s expressiveness beyond propositional
logic, an abstraction is required. Specifically, ConfigFix translates
each feature (called symbol in Kconfig) into a set of variables that
represent the possibility of the feature assuming a specific value. For
example, a Boolean feature will be translated to a single variable A
which is either true or false. Other features may only assume the val-
ues “yes,” “module,” or “no.” For such a feature A, the variables A and
𝐴𝑀 would be created, where A is true if and only if A is “yes.” and
𝐴𝑀 is true if and only if A is “module.” In case of an integer feature𝐴,
with default value of 5 and a constraint 2 ≤ A ≤ 8, it would be trans-
lated into six variables in the propositional formula: A=0, A=1, A=2,
A=5, A=8 and A=n. A=0, A=1 and A=n are created for every feature
by default with A=n handling the case that A is hidden and has no
value. A=2, A=5 and A=8 are “known values,” which could be values
that are either default for the feature or part of a range constraint.
The propositional formula is then constructed based on these vari-
ables. It is noteworthy that this aspect of the ConfigFix translation
implementation is the most complicated, given that it is mainly tris-
tate and the sheer scale of everything (features, values, types and
especially the CNF conversion), was challenging. The formula is
subsequently translated into CNF using Tseitin transformation [57].
Fix Generation. The ConfigFix UI is responsible for receiving
configuration conflicts specified as the user-defined configuration
goal that is not applicable in the current configurator, and then
displaying calculated fixes. The constraint translation component
of ConfigFix first translates the constraints in the loaded Kconfig
model into a CNF formula. To calculate and generate fixes from
conflicts, a suitable conflict-resolution is required. Various conflict-
resolution algorithms exist [16], but manywere not applicable to the
scope of ConfigFix. They either produce just a single fix, suggest a
long list of fixes or only offer limited support for non-Boolean con-
straints [39]. However, our conflict-resolution algorithm of choice,
a rangefix-inspired conflict resolver, produces fixes that offer a
range of values for features, supports non-Boolean features and
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constraints, adheres to correctness, contains a maximum range in
the event of overlapping ranges and requires minimal feature set
changes [11]. In our implementation, it takes a CNF model where
features are represented by variables and generates minimal sets
of features (refered to as diagnoses) that must be changed. Next,
it calculates new values for each variable in a diagnosis. All un-
changed variables are then replaced by their current values and
any violated constraints are minimized via heuristic rules defined
and split into minimal clauses to generate the fixes. In summary,
with those RangeFix capabilities, when there are infinitely many
possible solutions available, the user is only presented with the
minimal set of these [60].

3 ConfigFix Demo

We now demonstrate ConfigFix’s conflict resolution workflows
and DIMACS export functionality. We show the xconfig UI, the
specification of the configuration goal (the assignment of values
for a set of features to be configured), the calculation of adequate
fixes, and their application.
Workflows. Figure 2 presents the complete workflow of Con-
figFix. 1 Upon launch, Xconfig provides a view that presents a
dependency-based hierarchy of nested menus containing features
and allows feature value changes when the requirements for the
target values are met. The Kconfig language allows specifying con-
ditions for when a feature should be visible in the view. To change
the values of features, even when they are invisible, the option
“Show Prompt Options” can be used. Then all features that can be
visible with the default visibility option under any configuration
are always visible. Users can add any tristate feature to the set of
features that should be changed by selecting it in this view and
clicking the “Add symbol” button (as shown in 2 ). Conflicts with
numeric values and string values are not supported by ConfigFix.
The set of features that need be changed is also called a conflict.
The features that are currently added to the conflict are displayed
in the menu on the bottom left. The desired value of a feature in the
conflict can be set by selecting it in the menu on the bottom left and
using one of the buttons “Y”, “M”, or “N” to set it to “Yes”, “Module”,
or “No,” respectively. Alternatively, users can cycle through the
three values by clicking on the corresponding cell in the column
“Wanted Value.” The difference between “Yes” and “Module” is that
with the former, a feature will be statically linked into the kernel,
whereas with the latter it will be built as a dynamically loadable
kernel module. If a feature cannot be built as a kernel module,
the button “M” is grayed out. A feature (symbol) can be removed
from the conflict by selecting it in the menu on the bottom left and
clicking the button “Remove Symbol.”

Once the desired feature values have been set, fixes can be calcu-
lated by clicking “Calculate Fixes.” The fixes are then displayed in
the table on the bottom right (as shown in 3 ). Users can switch
between different fixes with a dropdown menu. The fixes associate
each feature in the conflict with a new value, and ideally, there
is an order of the changes the fix presents in which they can be
applied such that after applying all changes, the desired changes
would have been achieved. The changes can be made manually, or
by clicking on “Apply Selected Solution”, the values can be applied

automatically, in which case the user is informed via a dialog when
the fix has been applied successfully 4 . ConfigFix supports the

1

2

3

4

Identify features of interest & specify desired value

Calculate fixes

Apply fixes & select desired feature

Fig. 2: User workflow using ConfigFix inside xconfig

user in applying the changes manually by coloring the names of
the features in the table showing the fixes based on when the value
can and needs to be set manually. A feature is red if its value can
be set to the value provided by the fix and that value differs in the

3
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current configuration (as shown in 3 ). It is green if its value in
the current configuration already matches with the value the fix
proposes (as shown in 4 ). It is gray if the fix’s value differs from
the configuration’s value for the feature, but further dependencies
need to be fulfilled in order to set the feature to the value of the fix.
Figure 2 shows the sequence of the workflow described from the
identification of features of interest to be configured, right down to
the application of calculated fixes.
DIMACS Export. ConfigFix allows Kconfig model exports in DI-
MACS notation, using “make cfoutconfig.” The DIMACS output
file offers users the Kconfig model in CNF form (see Listing 1).
This export feature is included to support further research on the
kernel’s feature model and variability mechanisms. For instance,
such DIMACS exports could be potentially useful in logical infer-
ence scenarios where system based conclusions can be drawn from
known configuration constraints, using algorithms that verify the
satisfiability (SAT) of the underlying propositional logic statements.

Listing 1: DIMACS export snippet for UAPI_HEADER_TEST

p cn f 934872 2764895
c 32131 UAPI_HEADER_TEST
−32131 −51181 0

4 Test Infrastructure

We evaluated ConfigFix based on the number of conflicts it re-
solves and the quality of fixes. We created a test infrastructure that
generates random configuration samples, introduces conflicts, exe-
cutes ConfigFix, and then validates the fixes. This implementation
extends the qconf.cc configurator and is invoked by the command
“make cftestconfig”. The cftestconfig module is split into two sub-
modules, the first is ConflictFrameworkSetup responsible for initial-
izing system parameters and the other (ConflictFramework), which
handles the generation of configurations and conflicts.

Cftestconfig can be used to generate configurations and conflicts
in three different modes. mode=“single” gives the user the option
to generate several conflicts from an existing configuration. When
these conflicts are resolved, the data is saved in a results file. In
this mode, “make cftestgenconfig” can be called as many times as
required. mode=“multi” provides the option to generate multiple
random configurations while simultaneously generating for every
configuration, a random set of conflicts for a given architecture. The
conflicts are solved and the data is subsequently saved in the results
file. In its order of execution, “make randconfig” is called first, fol-
lowed by “make cftestgenconfig”.mode=“multi_arch” gives users
the option to generatemultiple random configurations and then gen-
erate for each, a random set of conflicts for multiple architectures.

Specifically, the test infrastructure works as follows. First, it
samples the configuration space. Samples should provide enough
coverage of the features contained therein [14]. This requires all
important variation points (such as hardware architecture) in the
configuration space to be considered [14]. Our test infrastructure
uses randconfig (an existing tool in the build system) to generate
random configurations. Second, it introduces conflicts. For each of
the generated configurations, it generates random conflicts contain-
ing a specific number of changes requested (i.e., the conflict size,
which is configurable).

Table 1: Evaluation results

metric value

number of sampled configurations 271
conflict sizes 1–10

total generated conflicts for evaluation 1,3502 (100.0 %)
conflicts with >= 1 fix produced by ConfigFix 1,150 (85.2 %)
number of resolved conflicts 1,150 (85.2 %)

total number of fixes produced by ConfigFix 2,645 (100.0 %)
fixes that resolve the conflict 2,643 (99.9 %)

fully applicable and resolves conflict 1,116 (42.2 %)
not fully applicable, but resolves conflict 1,527 (57.7 %)
does not resolve conflict 2 (0.1 %)

1 One for each architecture and probability.
2 For each configuration sample, five conflicts of each size.
We then generate a base configuration using randconfig with

a probability of 100% of an option being set with all conflicts cho-
sen as subsets of the base configuration. Third, it executes the fix
generation for each conflict. The generated configuration sample
and conflict become inputs to the test algorithm, which will either
produce a single or several configuration fixes, or provide feedback
that the conflict cannot be resolved. Fourth, it validates the fixes. A
fix may include some additional features subject to change, in order
to set them to their new, desired state. Such features typically bear
configuration conflict properties, which may be too hard to recon-
figure manually. As such, for every fix returned by the algorithm,
it is applied to the sample configuration and verified to ensure that
user needs are satisfied, the configuration after the fix application
is valid, as well as no unnecessary changes have been made to the
product configuration.

All generated configurations, conflicts and fixes are stored in a
directory supplied by the user. Conflicts are generated by repeatedly
choosing a random boolean or tristate option with a prompt that
has at least one value to which it cannot resolve due to unmet
dependencies. The conflict then requires this option to be set to
one of its blocked values (chosen at random).

For the actual evaluation, we generated configurations (i.e., in the
multi_arch mode) for three different architectures (x86_64, arm64,
and openrisc), and for nine different probabilities for a feature to
be selected, ranging from 10% to 90%. In total, the infrastructure
evaluated 27 different configurations. We set it to generate con-
flict sizes of 1–10 features. Table 1 shows the results. It generated
1350 conflicts. For each of the 27 configurations, and each of the
10 conflict sizes, 5 conflicts were generated. ConfigFix success-
fully resolved 1,150 conflicts (85.2%) and produced 2,645 fixes in
total. Almost all fixes (99.9%) resolved the conflicts, with only 2
fixes (0.1%) failing to do so. Of the fixes, 1,116 (42.2%) were fully
applicable and resolved the conflict, while 1,527 (57.7%) resolved the
conflict despite not being fully applicable. The evaluation details
are provided in the ConfigFix repository [12].

Note, a fix could still not resolve a conflict since our abstraction
compresses the higher level Kconfig model into a propositional
formula, which may not be able to capture all the constraints of the
original model. Thus a fix can be fully inapplicable but still resolve
the conflict, since the fix may change the value of a variable that
is not directly involved in the conflict, but is a dependency of a
variable that is involved in the conflict.

4
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5 Conclusion

We presented a demo of ConfigFix. It helps to configure the Linux
kernel by offering automated conflict resolution support. While de-
tails are in our preceding conference paper [11], we focus on demon-
strating the capabilities, as well as showing improvements since
then.We hope the C-based integration developed by discussionwith
Linux developers contributes research results back to the Linux ker-
nel community, supporting users to configure their desired kernel.
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