ISSELAB TECHNICAL REPORT

FM-PRO Feature Modeling Process,
Technical Documentation

Thorsten Berger, Wardah Mahmood,
Johan Martinson and Jude Gyimah

Version 2, November 2024

RUHR
UNIVERSITAT
BOCHUM

Intelligent Software Systems Engineering (ISSE) Lab
Chair of Software Engineering
Ruhr University of Bochum, 44801, Bochum, Germany

se.rub.de | isselab.org

Thorsten Berger, Wardah Mahmood, Johan Martinson, Jude Gyimah

FM-PRO Feature-Modeling Process, Technical Documentation

Overview and Legend

In the following, we assume that product-line scoping has already been conducted (or is underway),
as it is not a part of the feature-modeling process. Additionally, we assume that the reader is familiar
with feature modeling, including syntax and semantics of feature models, as well as its usages. The
appendix at the end briefly illustrates those and refers to the relevant literature for further details.

Adopting Product Lines or Highly Configurable Systems. Product lines platforms or highly config-
urable systems can be adopted in different scenarios [12, 6]. Since they significantly influence the
creation of feature models, we briefly discuss them.

s When building a product line platform from scratch (pro-active adoption), you predominantly
create the feature model in a top-down fashion. You analyze the domain and model it in a
reasonable scope. For instance, you model the features that you think you can develop and sell to
customers. In other words, you start by creating the top-level features and then refine them.

s When building a product line platform from one existing product (re-active adoption) or from
multiple existing products (extractive adoption) you predominantly build the feature model in
a bottom-up fashion. You analyze the existing product(s), specifically their codebase, their
documentation, and other relevant artifacts (e.g., models or configuration options), and start by
creating leaf features, which are then generalized and abstracted.

However, while we say “predominantly” top-down or bottom-up, in all three adoption scenarios
one does both. Notably, besides explicitly recording features, their relationships, and their constraints,
feature models are more than just descriptive assets (see uses in Fig.3). They serve to provide an
overview understanding of the system and prescribe the valid configurations for derivation in product
lines.

Process Phases. In our process, we classify the different activities into four phases: Pre-Modeling,
Domain Analysis and Scoping, Modeling, and Maintenance and Evolution. Figure 1 depicts these
phases, together with typical iterations among the last three phases.

Pre-Modeling

l

Domain Analysis & Scoping < ~| Modeling

!)

Maintenance and Evolution

Figure 1: The four main phases of the feature-modeling process

Process Legend. Table 1 shows a legend for the symbols we use to describe our process.

P: Pre-Modeling Activities

Before you start the actual modeling, you plan the feature modeling and train the relevant stakeholders.
The result is a clarification of the stakeholders involved and their roles, a description of the model
purpose, and a change and expectation management plan. We recommend defining the model
purpose and providing training in iteration, which allows the purpose to be clarified and refined.

Thorsten Berger, Wardah Mahmood, Johan Martinson, Jude Gyimah

Table 1: Process legend

symbol description

Decision affecting the following activities

2 Activity
(%) Optional activity
Lo Composite activity

(Qﬁ) Optional composite activity
Sub-Activity of a composite activity

£+ P1: Identify stakeholders. This activity requires you to identify the key stakeholders that

will participate in the feature modeling process. It is a mandatory activity.

Description: You need to identify the relevant stakeholders, who can have diverse roles in the

organization. We distinguish between four kinds, which are not necessarily disjoint:

m (i) experts are those who will provide input about features and their constraints, as domain- or
implementation-oriented experts;

m (ii) modelers are those who will perform the modeling;

w (iii) method experts are those who are knowledgeable in variant management and can be consulted
in case of doubts (explained below); and

n (iv) model users are those who will use and benefit from the feature model.

The ezperts (i) should have sufficient knowledge about the domain or about the implementation.
While the former understand what features need to be developed for economic benefit, the latter
know the technical details about the software in depth (e.g., developers). Depending on the purpose
of the feature model, one can have one representative of each kind, multiple representatives of either
kind, or one who has knowledge of both. In our experience, we even observed companies where the
developers traditionally had very good insights into the business and sales aspects, especially when
there used to be a close relationship due to frequent meetings. In many cases, however, developers
have never learned to think in terms of the domain or business, and require training and a pilot
project to obtain such a perspective.

Modelers (ii) are often system or software architects, project managers, or requirements engineers,
since they usually build abstract system models. The number of stakeholders performing the
modeling in an organization should be low, ideally as low as a single person.

Method experts (iii) are often developers who have technical knowledge of the variants, who
can answer questions related to commonality and variability of the variants. Specifically, while the
modelers are more familiar with the tooling and notation, method experts are more familiar with
the functionality of the system, and more importantly, the implemented features. They become
relevant when determining if a certain functionality qualifies as a feature, and if so, where should it
be placed in the feature model.

Finally, it is important to decide who are the model users (iii). If they are end-users or even
customers, then the feature model needs to be intuitive and easily understandable.
Outcomes: You should have a list of all participants taking part in the feature modeling creation
process.

A core question is whether the feature modeling is initiated from inside or outside the organization.
If the modeler (i.e., the stakeholder or group leading the modeling) is external to the organization,
we recommend conducting the introductory meeting explained shortly below. This develops mutual
trust between the stakeholders and helps understanding the organization’s structure, the software
product(s), and the potential stakeholders.

Another core question is whether the potential participants are aware of the benefits of feature
models and whether they are motivated to construct one. If the stakeholders are mainly developers,
who often are not used to think in terms of features, they are probably less aware of the benefits, such

Thorsten Berger, Wardah Mahmood, Johan Martinson, Jude Gyimah

as automated product derivation and faster product delivery. Then, we recommend the following
introductory meeting before commencing the modeling.

(Q’) P2: Conduct an introductory meeting. In this activity, an introductory meeting is
conducted to ensure that all participants are on the same page regarding the intent behind the
initiative of feature model construction as well as its potential benefits. It is an optional activity.
Roles: The experts and modelers should participate in this activity. Method experts and model
users can also participate in this activity optionally.

Description: You focus on motivating the stakeholders based on the feature model benefits, which
can involve demonstrating product derivation by configuration in an existing product line. It is
important to lay a solid foundation here, since it creates the momentum for the later phases. You
can emphasize incremental benefits for incremental investment [16, 17], since the more features that
are modeled, the more developers can benefit from the it (e.g., easier code maintenance, automated
product derivation). Lastly, you can also use this meeting to appoint an authority figure—an internal
or external representative for the organization who might or might not participate in the modeling.
It is important that the authority figure is trusted and followed by the stakeholders, to effectively
direct them to manage the time and resources for effectively performing the feature-modeling process.
An example of an authority figure could be a business champion; an individual or group from the
product management team that ensures that the practices in the company are well-aligned with the
established business goals.

Outcomes: The participants should be informed on the rationale behind feature model creation
and its resulting benefits. You should have an appointed authority figure that will motivate and
enables the feature modeling process.

£+ P3: Define model purpose. Here, all the various purposes the model could serve are
elaborated on. This is a mandatory activity.

Roles: The experts and modelers should participate in this activity. It is recommended that the
model users also participate in this activity in order to obtain a better understanding of the possible
ways the feature model can be used.

Description: You clarify what to use the model for. Some examples are shown in Fig.3. This
activity is important to focus the modeling on the relevant features and modeling concepts (e.g.,
constraints), and avoid wasting time on irrelevant ones. Note that when the feature model should
serve both management & design and development & QA purposes, there is often a tension between
designing the model more towards capturing domain- and business-oriented features or towards
implementation-oriented features. In other words, the feature model is often seen as a pivotal model
artifact, used as a communication platform to support business goals, while at the same time it
should be able to derive individual products from the platform in an automated process supported
by a configurator tool.

Outcomes: The participants should be informed of the different purposes the feature model could
serve.

A core question to decide when to train stakeholders is whether they possess product-line
education. If they are already knowledgeable on the relevant concepts (e.g., features, feature models,
constraints) and their potential benefits, then the following activity can be kept at the same position
and used to re-iterate through the concepts briefly. Otherwise, it should be done earlier in the
process, specifically before defining model purpose, and used to reconcile the education level.

QE P4: Provide training. Next, the participants are trained on the required tools, notation, and
the relevant concepts of software product-line engineering. A pilot project is also employed to make
the participants accustomed to the process using a system of smaller scale. This is a mandatory,
composite activity.

Roles: All roles should participate in the training activity.

Description: Training includes becoming familiar with the feature-modeling notation and the tool
used, as well as with the Modeling phases and principles, called P4.1: Tool and Notation

Thorsten Berger, Wardah Mahmood, Johan Martinson, Jude Gyimah

Training. Share an agenda of the training beforehand to facilitate a structured meeting. Next,
training also involves familiarization with product line engineering (e.g., platform architectures,
software configuration, and product derivation) in a sub-activity we call #* P4.2: Product-Line
Education. Additionally, to support learning the feature-modeling notation and its semantics, relate
to known concepts. For developers, for instance, feature types and their graphical representation can
be related to classes or data types. In practice, the training is often done together with the vendor
of a feature-modeling tool.

We recommend involving a %+ P4.3: Pilot Project of around three days. This should be done
with a small (sub-)system of the company that exists in multiple variants, which have sufficient
commonality and do not come with strict deadlines regarding the release to production. This allows
very fast feedback loops and facilitates training. If your organization does not have an existing
system and rather wants to adopt a product-line or highly configurable system from scratch, then
you can refer to existing data sets of clone&own-based systems [13, 24, 14].

The pilot should comprise all the activities of the feature-Modeling phases below. We recommend
creating a platform with around 10-20 variation points that represent the differences in the individual
variants. So, identify the differences in the implementations, abstract them into features, and model
them in a feature model.

As a guided exercise, a benefit of a pilot is to “walk” those having technical knowledge up to
the domain. Those stakeholders usually understand the differences in detail, that is, in terms of
implementation concepts. When asked about the details, they usually provide those implementation-
level details. The idea is to ask them various times why the differences exists, leading to increasingly
domain-oriented explanations, until the difference can be described by the presence or absence of a
specific feature. The pilot project will also give experience in product derivation

The pilot also helps to connect the business and development worlds. Connecting features to
assets and business aspects is important, since doing that later is difficult. This will also improve
acceptance of the feature model, since product derivation before was usually a manual and error-prone
activity, requiring copying and pasting software assets and packaging them properly. Selecting a
reasonably small sub-system for the pilot can substantially improve the training and acceptance.
Outcomes: Participants have acquired the required training for the tools and notations, as well as
the relevant concepts in software product-line engineering. They should also be familiar with the
flow between the phases and activities of the process.

£+ P5: Create change and expectation management. The next activity involves creating a
communication plan that is clear and well-understood. This is a mandatory activity.

Roles: The experts, modelers, and method experts should participate in this activity.
Description: Defining and executing a communication plan is crucial. It should explain the
benefits, especially the reuse potential and the respective business-related benefits, such as shorter
time to market. We recommend describing the benefits tailored to the different stakeholders. The
communication plan should also explain the necessary changes in overall processes and organizational
structures, as well as in the architecture of the platform and the individual products. Explaining the
notion of feature, and why needed, is also important.

Outcomes: You should have a communication plan entailing the potential benefits of feature
models tailored to different stakeholders. It should also entail the required changes in the process,
organization, and architecture.

£+ P6: Establish a forum and a workshop format. In this activity, a workshop format is
adopted for executing the activities of the Pre-Modeling phase and validating the feature model
towards the end of the process execution. This is a mandatory activity.

Roles: All roles should participate in this activity.

Description: It is advisable to establish a forum with regular meetings to execute the Pre-Modeling
activities and discuss maintenance and evolution. Since many Pre-Modeling activities focus on shared
goals (e.g., define model purpose, identify stakeholders, unify domain terminology, it is important
that the stakeholders share a consensus on important decisions. Additionally, since a feature model
is brittle, one or a few stakeholders in the organization should maintain and evolve it in a workshop

Thorsten Berger, Wardah Mahmood, Johan Martinson, Jude Gyimah

setting. Lastly, when modeling, the workshop format helps validate the feature model (cf. page
4), as well as to evolve and maintain it. It is also advisable to define an approval process for new
features, ideally as part of the workshop.

Outcomes: You should have a workshop for executing the Pre-Modeling phase and validating the
feature model at the end.

(O) P7: Define decomposition criteria. Here, you define a criteria that helps modelers decide
how to decompose features in the model. It is an optional activity.

Roles: The experts, modelers, and method experts should participate in this activity.
Description: Defining a decomposition criteria will help modelers create the feature hierarchy when
modeling the features (cf activity Define Coarse Feature Hierarchy). Notably, the meaning of the
hierarchy edges in a model is not well defined. Modelers are relatively free to stick with Part-Of
or Is-A relationships between features and model the hierarchy freely to be as intuitive as possible,
or to conceive and document domain-specific decomposition criteria for the model. These could
reflect existing hierarchies (e.g., of physical parts of the product) in the organization or even parts
of the architecture decomposition, or other hierarchies that your stakeholders are familiar with in
customer-facing catalogs.

Outcomes: You should have a well-defined decomposition criteria for decomposing features into
sub-features.

(Q‘) P8: Unify domain terminology. Finally, the domain terminology is unified to prevent
ambiguities in the process execution. This is an optional activity.

Roles: All roles should participate in this activity (in a workshop format).

Description: This optional activity can be necessary when the domain terminology is too diverse
and ambiguous in the organization. The risk is that different perceptions of domain concepts might
cause confusion and lengthy discussions. We suggest a dictionary with descriptive terms for feature
names. If several feature models will be created, you could also define a hierarchical naming schema.
Outcomes: You should have a catalog of unified terminology that can be referred to at any point
in the process.

A final and important question is whether the process is applicable for the specific use case. This
is a complex decision which needs to be taken by all stakeholders involved.

D: Domain Analysis and Scoping Activities

After the Pre-Modeling, there are two main phases carried out iteratively: Domain Analysis and
Scoping, and Modeling. In the first one, described in this subsection, information about features
and their relationships relevant to the subsequent Modeling phase is extracted. Iterating between
both phases allows you to gradually increase your modeling expertise, as well as to safely and
incrementally evolve the feature model. The idea is that you start with an initial domain analysis
and scoping, to gather and document information that is sufficient to proceed with the modeling
activities. Then you iterate—increasingly more closely—where you obtain features and immediately
model them. You iterate until all the identified features have been modeled. Usually, you even
develop the system in parallel. Once you have an initial software system controlled by the feature
model, this will also help with the iteration.

£ D1: Identify features. This activity initiates the Domain Analysis and Scoping phase. In
this activity, you identify the features to be modeled, and model them, either right-away or until
you have a sizable number of features that can be modeled. This is a mandatory, composite activity.
Roles: The experts, modelers, and method experts should participate in this activity.

Description: Before modeling features we need to identify them. We distinguish between the
bottom-up and the top-down strategy as explained above. Recall that the former you mainly apply
for the extractive and the re-active adoption of product lines, so when you already have a system
or a set of cloned system variants. In practice, you apply both the bottom-up and the top-down

Thorsten Berger, Wardah Mahmood, Johan Martinson, Jude Gyimah

strategies, but put more emphasis on either one based on the adoption strategy. When identifying
features, you should look for units that represent a distinct, well-understood, and graspable aspect
of the software system [4]. Considering the flexible nature of features, modelers can define the
granularity of the features as they see fit. We intentionally leave it open so the modelers can decide
on a granularity based on factors such as defined model purpose and size of the codebase.

When identifying features, first focus on those that distinguish variants. You should also prefer

features of type Boolean for easy comprehension of the resulting model. The following two main
identification strategies exist:

D1.1: Bottom-up feature identification In this sub-activity, features are extracted from

one or multiple systems using different sources. This activity is mandatory in situations where
there is any software system in place.
Description: For re-active product-line adoption, if you have one existing system, you start by
considering the existing and demanded configuration options, which give you a list of features to
start with. Then, you can analyze the user interface to gain an overview understanding of the
variant as well as interact with the system to identify the functionality meaningful to end-users. At
this stage, you can already identify if a feature is mandatory or optional depending on its relevance
for different stakeholders. You should look for domain-oriented features (i.e., what functionality is
provided) instead of solution-oriented features (i.e., how is the functionality implemented) at this
stage. Next, you look into the codebase to identify functionality corresponding to the identified
features. It is likely that you find distinct features from the codebase that were not apparent
from the user interface analysis (i.e., solution-oriented features). You can also consider other
sources to identify features and their dependencies, including commit messages, pull requests, user
stories, and product documentation. For identifying feature groups (i.e., OR, AND, and XOR),
you can look into the conditional rendering at the code level. Once all the features are modeled,
you can consult the product documentation (e.g., product wiki or requirements specification) to
standardize the terminology of the identified features if needed.

For extractive adoption (when you have existing system variants often arising from clone&own),
you perform pairwise diffing. You can use a standard diffing tool or one that targets merging (e.g.,
Meld!), which is more extensive. You observe the differences, then try to understand why these
differences are there in order to identify features. A typical technique is to ask those with detailed
variant implementation knowledge various times why the difference exists. This leads to increasingly
domain-oriented explanations, until the difference can be described by the presence or absence
of a specific feature. In other words, you lift the implementation-level differences to the domain.
You can refine the domain-oriented features later by following the same procedure as prescribed
in reactive adoption, that is, by looking into the codebase of the different variants, and consulting
other sources such as commit messages, pull requests, user stories, and product documentation.

D1.2: Top-down feature identification Here, you extract features by interviewing experts
of different kinds. This activity is mandatory if there is no software system in place.
Description: This sub-activity is usually the responsibility of dedicated domain analysis [11]
and product-line-scoping methods [22, 9, 10]. Product-line-scoping methods, such as PuL.SE-Eco
[2], systematically select and prioritize the features that an organization wants to realize. These
should bring an economic benefit for the organization and be in line with its business strategy
(e.g., considering vision, strategy, finance, and commercial aspects). To find suitable feature
abstractions, you can look at the capabilities the feature should provide. Capabilities are high-level
abstractions over features that represent the functionality the feature will provide. Use a one-to-one
interview format to elicit features from experts, which not only bypasses group meeting setup and
coordination challenges, but also incorporates varying perspectives. Instead of starting from scratch
and evolving the feature model incrementally after each interview, we suggest creating independent
feature models, one per expert, and merging them. This eliminates the effect of different experts’
perspectives on each other and allows diverse inputs. You should keep the number of consulted
experts low in order to scale the interviews and prevent the challenges when merging multiple feature

1h‘ctps ://meldmerge.org

Thorsten Berger, Wardah Mahmood, Johan Martinson, Jude Gyimah

models. Alternatively. you can conduct interviews by grouping the same types of experts into

one interview (e.g., one interview with developers and another with product managers). This will

help eliminate conflicting viewpoints and lead to a lower number of feature models to be merged.
Outcomes: At the end of feature identification, you should have a tentative list of features as well
as the relationships between features. You should also have the information about which features
are mandatory and which are optional. After identification, the feature needs to be approved in
some way by your organization. This approval process can be part of the established forum and
workshop format (cf. page 4). Once approved, you can add it to the feature model (see activity
Add Features below). It should also be documented.

The next question is whether you need to identify and model cross-tree constraints between
features. Many constraints will already be reflected in the feature hierarchy and in feature groups, or
as mandatory features. In any case, these constraints need to reflect the semantics of how you can
combine features via the assets they map to. For instance, when you combine features into an OR
group, but the system does not build or crashes when you select more than one of these features,
then an XOR group would properly constrain the features. Beyond these constraints, which are
easily visible in a feature model, you need to decide whether you need to model cross-tree constraints,
which are often more intricate and challenge comprehension of the feature model.

Two principles help deciding. If the model is configured by experts in the organization, you can
chose to avoid modeling those constraints. Since it is very expensive to accurately model them, and
since the experts will likely know all the constraints, it usually will not pay off to model them. First,
you often need a consultant to help the customer to decide which features are needed, so you can often
save the effort of modeling constraints. Another strategy seen in practice is to maintain sets of tested
configurations, which are evolved and maintained together with the model. Still, modeling constraints
significantly enhances the value of the feature model, as it enables automated product derivation.
Additionally, experts might eventually leave the company, in which case, the constraints that were not
recorded might never be recovered. We therefore suggest companies to consider the trade-offs we dis-
cuss above while making the decision of whether they should identify and model the constraint or not.

Alternatively, if the main users of the feature model are end-users, then you should model the
cross-tree constraints.?

(Q) D2: Identify constraints. In this activity, you identify the constraints between the features

identified in the previous activity. This is an optional activity.

Roles: The experts, modelers, and method experts should participate in this activity. Marketing

experts can also optionally participate in this activity.

Description: All systems composed of parts have constraints over those parts, arising from domain,

marketing, or technical restrictions. Since we abstract the selection of those parts to the selection of

features (i.e., we mapped the parts to features), we lift those constraints over parts to constraints
over features, which is not always trivial.

s Code constraints: Empirical studies show that in systems software, up to half of the constraints
in a feature model can be found in the codebase and extracted using various program analysis
techniques [20, 21]. Since such analysis techniques are difficult to set up and use, the developers
should rather inform the modelers about such constraints or declare them directly in the model.
We distinguish between two major kinds of sources: the so-called feature effect and the prevention
of build- or runtime errors. The former refers to the effect of enabling a feature in the feature
model on the resulting variants. The latter are errors that can occur early when the system fails
to preprocess, parse, compile, run, type-check, or link.

s Domain constraints: Such constraints arise from domain knowledge and are usually not con-
tained in the codebase. Examples are dependencies among hardware devices, which are instead
contained in documentation or in the experience and knowledge of domain experts or developers.

2This can easily be seen in the Linux kernel [23] and many other systems software projects [7]. The complexity of
these models and the sheer number of their configurations demand that all constraints are modeled.

Thorsten Berger, Wardah Mahmood, Johan Martinson, Jude Gyimah

To some extent, these constraints can be found through testing the different combinations of
hardware and then adding them. However, mostly they need to be provided by the domain experts.
s Other constraints: Further sources are marketing experts, who might want to limit feature
combinations for business reasons, or to simplify feature selection for the customer. Constraints can
also be used to partially configure a feature model, which is called staged configuration [8]. Finally,
some feature-modeling tools allow specification of soft constraints, such as “recommends” [5].
From these sources of constraints, observe that, while code constraints are reflected in the
codebase and could in principle be recovered, the other sources illustrate that feature models contain
unique knowledge. Finally, when identifying constraints, it is normal that initially you are not aware
of all the dependencies. In fact, it is often difficult to see them early on.? Finally, after identifying
the constraints, document them in the model, ideally together with their rationales.
Outcomes: You should have a set of feature constraints along with the rationale behind each
constraint at the end of this activity.

M: Modeling Activities

In the Modeling phase, the goal is to obtain a feature model based on the documented information
about features and relationships in the previous phase (Domain Analysis and Scoping Activities).
Another aim is to validate that the modeled features and their constraints are correct and lead to
valid configurations.

A first question is whether you want to physically separate the partitions of the envisioned model
into different feature-model files or not. If so, perform the following two activities, otherwise continue
with Define Coarse Feature Hierarchy below. Still, even if you do not want to decompose and rather
want to create one model, it can be beneficial to temporarily decompose into models representing
different stakeholder-related features, to model them in isolation and later integrate them.

(03) M1: Model modularization. In this activity, it is expected that created feature models
are decomposed into smaller, easier-to-manage models. It’s worth noting this is an optional activity.
Roles: The method experts and modelers should participate in this activity.

Description: Decomposing a feature model into smaller ones has pros and cons. It facilitates dis-
tributed, independent model evolution and maintenance, eases version management, and discourages
(or limits) constraints across the models. However, it also raises consistency issues. In contrast, not
decomposing avoids the overhead of maintaining multiple model files and their inclusion in a central
one, but large models quickly become unmanageable.

Whether you should decompose depends on multiple factors. First, it requires finding an easy
decomposition of the feature-model hierarchy into coherent sub-trees. For instance, a sub-tree could
contain features that are more implementation-oriented, and another one those representing user-
visible characteristics. Other factors are the estimated software size and number of features.* The
hierarchy of feature models sets up the first framework for the platform—it is an initial structure that
helps with the modeling. This hierarchy can be distributed along the codebase (i.e., as in the Linux
kernel) or organized in a dedicated folder structure. Model modularization has two sub-activities:

" M1.1:Define structure of model files. To decompose, you define a hierarchy of feature
models, beginning with a root model. This model’s top-level features then become root features in
the decomposed model files. You carry out this sub-activity at the beginning.

n M1.2Maintain consistency between model files. To maintain consistency, you find
features that participate in dependencies across the models, and then move them into a separate
“interface” feature model. This practice isolates the inter-model dependencies and eases their

3This can also be seen in the Linux kernel [15]. There, when developers add new features, it is sometimes observable
that they fix the dependencies in several subsequent commits.

4From our experience, large models with several hundreds of features are all modularized into multiple files (e.g., the
Linux Kernel [23]). All commercial models we have seen with several hundred features were all split into multiple ones.

Thorsten Berger, Wardah Mahmood, Johan Martinson, Jude Gyimah

maintenance. You carry out this sub-activity during the actual modeling once you feel that the
cross-model dependencies are getting out of hand.
Outcomes: You should have a hierarchy of feature models with a root feature model, and the
cross-model dependencies in a separate feature model.

£+ M2:Define coarse feature hierarchy. Here, an initial, high-level hierarchy of features is
created. This is a mandatory activity.

Roles: Modelers should conduct this activity. If required, they can ask for clarifications from the
experts and method experts.

Description: You start by creating an initial, coarse hierarchy of features. If you created multiple
feature models, select the one whose features you think are most well-understood.

Start by defining feature groups, where you model features that belong to a horizontal domain
or have a close relationship. Think how to navigate those groups and existing features in a better
way. You maximize cohesion and minimize coupling with feature groups. Specifically, feature groups
should represent related functionalities—these are within a group, while there is low coupling to
other groups (so, no cross-tree constraints). In contrast, you use abstract or mandatory features for
structuring the overall model.

Another strategy is to organize features into sub-trees that logically partition the domain.
Thereby, you try to reduce the need for cross-tree constraints across those partitions (sub-trees), but
rather keep constraints within them. In other words, you try to increase cohesion and reduce coupling.

When forming the hierarchy, it is useful to recall that the top-level features are more abstract and
business-oriented, so that they can be communicated to customers. Intermediate features represent
functional aspects. Towards the leaves, the features are more technical—often, you create a domain-
and business-oriented feature and then, when actually implementing it, need to add more specific
and perhaps technical sub-features. You try to avoid having many intermediate features, which are
usually vague and difficult to understand for your stakeholders. After defining a coarse hierarchy, it
will be iteratively refined in the next activity (Add Features).

Outcomes: You should have a coarse hierarchy of domain-oriented features that are grouped in a
way to maximize cohesion and minimize coupling in terms of cross-model constraints.

£+ M3: Add features. Here, the feature model obtained as a result of the previous activity is
refined and extended. This is a mandatory activity.

Roles: Modelers should conduct this activity. If required, they can ask for clarifications from the
experts and method experts.

Description: While identifying features, you extend and refine your model. The new features will
either already exist in the model, or you need to add them at relevant places in the model.

Since you always want to limit the number of features, you should first look for features that
are similar and ask yourself whether an existing feature can be adjusted. You also do that because
there is always the cost of a new feature to consider, and you want to avoid a growing pool of
features. When placing the feature in the hierarchy, its location should “feel right” to the involved
stakeholders, and as such, a discussion among them might be necessary.

Finally, define the relevant meta-data (e.g., feature title and short description); especially define
default feature values, which substantially eases creating a feature-model configuration (making
deriving a product a reconfiguration problem). Alternatively, you can define default configurations of
the feature model once a sizable number of features have been modeled. However, since configuration
is typically reconfiguration [7] (where an initial configuration is created based on default feature
values with the the help of a non-trivial algorithm and then modified to reach a desired configuration),
defining default feature values is likely more beneficial. Further meta-data that might be relevant in
your organization could be the rationale why the feature was added, the feature owner (if this role
exists) or party responsible for the feature, or so-called visibility conditions [7].

Outcomes: You should have a refined feature model with no duplicate features modeling the same
functionality. Their meta-data should be documented.

Thorsten Berger, Wardah Mahmood, Johan Martinson, Jude Gyimah

(Q) M4: Model constraints. In this activity, if you decided to identify and model constraints
(recall the question and discussion on Page 7), then, conduct this optional activity.

Roles: Modelers should conduct this activity. If required, they can ask for clarifications from the
experts and method experts.

Description: Declaring dependencies between features might require regrouping of features, remov-
ing the dependency, or extracting the dependencies into an interface feature model. So, you should
always evaluate whether you really need to define those dependencies.

You should avoid complex constraints, which typically come in the form of Boolean expressions.
Such constraints challenge model comprehension, maintenance, and evolution. You first try to
model constraints using the feature hierarchy and other graphical elements from feature models
(e.g., mandatory features or feature groups). In fact, an indicator of a good feature hierarchy is a
low ratio of cross-tree constraints. If you still cannot restrict the remaining cross-tree constraints
to simple binary dependencies (e.g., required or excludes), you can also put some constraints into
the presence conditions of the variation points in your codebase, which keeps the model clean at
the cost of a slightly more complex mapping between features and software assets. You can already
see if the constraints work properly by experimenting with product derivation (cf activity Perform
Product Derivation) as a quick feedback loop.

The source of the constraint (cf. activity Identify Constraints) gives you an indication on how
to model it. Interestingly, constraints arising from the source we called feature effect are mostly
reflected in the feature hierarchy. This makes a lot of sense when you remember that a feature
always implies its parent in a feature model, enforcing that the sub-feature has an effect. Constraints
preventing build and runtime errors are rather seen in cross-tree constraints or feature groups.
Outcomes: You should have a set of constraints that are ideally minimal and simplistic.

£+ M5: Merging multiple feature models. Here, you merge the multiple feature models created
through multiple interviews as well as different strategies for feature identification (cf. activity
Identify Features). This is a mandatory activity.

Roles: Modelers should conduct this activity. If required, they can ask for clarifications from the
experts and method experts.

Description: As mentioned above (page 5), conducting one-to-one interviews leads to multiple
feature models. If that is the case, you need to merge the feature models. The following conflicts can
occur. Conflicts regarding terminology can be resolved using the product documentation (cf. activity
Unify Domain Terminology). For conflicts in feature relationships and constraints, you prioritize
the stakeholders who will likely use the feature model. Thus, in a top-down modeling scenario, the
onus to select the best model candidates to be merged from the set of valid feature models available,
lies on the stakeholders identified in activity P1. Whereas in a bottom-up modeling scenario, valid
model selections are delegated specifically to the developers. In the event of any contention relating
to the validity of models produced thereafter, the final selection authority lies in the hands of the
feature modeling domain expert in charge of the process. Especially when merging models from the
top-down and bottom-up analyses, there are likely features in the latter that refine features from the
former. Of course, it is natural to defer some decisions until the validation activity (page 11) and
factor in experts’ opinions. We recommend conducting the merging iteratively and tracking it with
a version-control system (page 12).

Outcomes: You should have a consolidated feature model that merges feature models resulting
from different sources.

(Q) M6: Define views. Here, views are defined over the feature model for different purposes,
such as partial configurations. This is an optional activity.

Roles: Experts and modelers should participate in this activity. It is recommended that model
users also participate in this activity to define views that would benefit them.

Description: In addition to model modularization, some feature-modeling tools allow creating
views, e.g., through filters or partial configurations, sometimes also called profiles. Views represent
a subset of the feature model, and employed to facilitate the configuration of systems modeled
in large feature models. For multiple feature models (e.g., created as a result of decomposition),

10

Thorsten Berger, Wardah Mahmood, Johan Martinson, Jude Gyimah

you can create multiple views and combine the partial configurations from each one to get a full
configuration.

Outcomes: You should have a definition of views representing a smaller subset of the features in
the feature model.

Q'g MT7: Validation. Next, the feature model created is validated by the modellers in different
ways. This is a mandatory, composite activity.

Roles: All roles should participate in this activity.

Description: After the modeling activities, it is time to check that the modeling was correct in
the eyes of the stakeholders. After changes during evolution and maintenance, you should use the
following ways of validation, especially the last one, regression testing.

" MT7.1: Stakeholder Reviewing. In the workshop format established during the planning
phase, various stakeholders should be invited to validate the model. We advise that different
domain experts participate, given their individual area of expertise. They can validate that the
right features and constraints were identified and modeled correctly, and they can advise on feature
names and whether the hierarchy is intuitive. It is also beneficial when experts who did not
participate in the modeling take part—among others, to comment on the intuitiveness of the model.

n (Q) MT7.2: Perform Product Derivations. When one of the model purposes is to support
product derivation, you should let the relevant stakeholders perform it for some variants. This
can be done in the workshop format established. Obviously, the experience will be different than
before, which was mostly manual. So, the stakeholders will select features in a certain order, and
by doing so, they will be able to tell the modeler whether it feels right and whether it will be
effective. As for which variants to derive, you should do that for existing ones, but also derive at
least one that never existed before, reinforcing the benefit of a platform with automated product
derivation through configuration.

" MT7.3:Regression Testing. When iteratively creating the model, as well as maintaining and
evolving it, you can easily break existing configurations. Many of the established feature-modeling
tools provide some automated analysis that tells whether a change to the model has an effect on
existing configurations. These analyses are confined to the feature model, but it is often desired to
analyze the effect on the actual variants [19]. This requires creating regression tests using typical
testing methods (e.g., unit tests). These should be given different configurations, ensuring the
coverage of feature configurations that cover variants that are in use, ideally on the customer side.
Knowing those requires either tracking such configurations or obtaining expert knowledge from the
developers implementing the software. For instance, a developer usually knows from experience
which features might interact and should be tested for certain modules.

Outcomes: You should have validated the constructed feature model and identified potential

problems in the intuitiveness and correctness (with respect to configurability). You can solve the

problems right-away or later in the Maintenance and Evolution phase (explained below).

ME: Maintenance and Evolution Activities

To evolve the model, you still apply the activities from the previous two phases (Domain Analysis
and Scoping, and Modeling Activities). Especially the established workshop and forum come in
handy here. Still, while many stakeholders are involved, one or only a few of them should ultimately
control the model and make changes. Feature models are brittle assets and need to be evolved with
care, to avoid inconsistencies that would have an impact on many different variants. In this light, it
is also important to regularly perform the validation activities (cf. page 11). The following activities
additionally support evolving the model, as well as maintaining it. Notably, since maintenance
and evolution are both long-term and continuous activities, we do not specify any fixed outcomes
here. Additionally, all three activities presented below can be performed by any role. The latter two
activities do not follow an order and can be performed in any order. Lastly, all three sub-activities
in this phase are mandatory.

11

Thorsten Berger, Wardah Mahmood, Johan Martinson, Jude Gyimah

£+ ME1: Model version control. Tracking the evolution of the feature model is core. You
should version the feature model in its entirety. While keeping an overview with a more fine-grained
way of versioning is already difficult, the main reason is that individual features are not units of
deployment or packaging, but whole system variants are. As such, it is more relevant to go back to
such whole snapshots instead of individual feature versions.

£+ ME2: Remove features. Performing this activity is necessary from time to time, but surpris-
ingly difficult. Many companies therefore avoid removing features. However, for long-living platforms,
removal is necessary to reduce the maintenance overhead and system complexity. Feature removal
should be discussed in the established workshop or forum format. Once decided, a strategy is to remove
the feature step-wise. If supported by the modeling tool, the feature is first flagged as deprecated and
its default value changed to false. The next step is to make the feature a dead feature via constraints,
so that it cannot be selected anymore. The final step is to remove the feature from model and software.

£ MES3: Optimizations. Of course, over time, the constraints become more intricate, and
the hierarchy might not be as intuitive as necessary. So, an important activity is to optimize the
hierarchy and the constraints. However, without proper tool support for refactoring, it is relatively
easy to invalidate existing variants, which should be avoided. Performing the validation activities is
crucial (page 11).

Appendix

We briefly illustrate a feature model in Fig. 2 and the different usages of feature models in Fig. 3.
For details, we refer to the respective literature [11, 1, 18, 25].

legend
‘ Misc. Filesystems Support ZLIB — ZLIB Inflate
[] reawre - esy IFFS2 — CRC A MTD
0 < Debug Level < 2
E optional O
featlic ‘ Journalling Flash File System ‘
m mandatory
feature
N
exclusive ‘ Debug Level: Int . Compress Data |
choice (XOR)
inclusive ‘ Support ZLIB ‘ ‘ Default Compression ’
choice (OR)
O
a—>bA cross-tree ‘ None ’ ‘ Priority ’ | Size |
c=d constraints

Figure 2: Feature model example

#° Tool Suggestions. Overall, we believe that textual modeling languages are the most essential
tool that stakeholders would need to apply FM-PRO effectively. Textual modeling languages offer
several advantages for feature modeling, particularly in industrial settings. They are easier to edit
and manage, especially when integrated with version-control systems [3]. Clafer> and UVLS are two
notable languages, both supporting basic and advanced feature modeling concepts. UVL, being more
recent, has better tool support, while Clafer’s concise syntax is easier to adopt in industry. Clafer
also has an IDE plugin for creating and maintaining feature models and traceability links, though
it currently lacks constraint support [17]. Our experience shows that UVL’s more complex syntax
can be harder to understand for developers. Therefore, we suggest to use Clafer when applying
FM-PRO, however UVL is also a suitable option.

5https ://www.clafer.org/
6h‘ctps ://universal-variability-language.github.io/

12

Thorsten Berger, Wardah Mahmood, Johan Martinson, Jude Gyimah

domain product line scoping design-space

modeling & management exploration

5

=
£5 £
L n
VA4 60
53
©
=

configuration validation

& verification

coordination & build
/\\

i 2

Figure 3: Range of feature-model usages

development
& QA

In addition to this, we recommend the following tools, which can be used in support of clafer
at each phase of our feature modeling process. For the premodeling phase, Confluence’ can be
used to collaboratively create and organise knowledge-based ideas on projects. Next, on the domain
analysis and scoping side of things, Miro®; which can also be used collaboratively to perform visually
intuitive mind-mapping activities may suffice. In addition to this, FeatureIDE?; an extensible
framework for feature-oriented software development, can provide modeling support for features,
their relationships and constraints. Finally, for the maintenance and evolution phase of FM-PRO,
git provides worthwhile support for model versioning, refactoring and general change management.

References

[1] Sven Apel, Don Batory, Christian Késtner, and Gunter Saake. 2013. Feature-Oriented Software Product Lines.

[2] Joachim Bayer, Oliver Flege, Peter Knauber, Roland Laqua, Dirk Muthig, Klaus Schmid, Tanya Widen, and
Jean-Marc DeBaud. 1999. PuLSE: A methodology to develop software product lines. In Proceedings of the 1999
Symposium on Software Reusability.

[3] Maurice H ter Beek, Klaus Schmid, and Holger Eichelberger. 2019. Textual variability modeling languages:
an overview and considerations. In Proceedings of the 23rd International Systems and Software Product Line
Conference-Volume B. 151-157.

[4] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Griinbacher, Adeline Silva, Martin Becker, Marsha Chechik,
and Krzysztof Czarnecki. 2015. What is a feature? a qualitative study of features in industrial software product
lines. In Proceedings of the 19th international conference on software product line. 16—25.

[5] Thorsten Berger, Divya Nair, Ralf Rublack, Joanne M Atlee, Krzysztof Czarnecki, and Andrzej Wasowski. 2014.
Three cases of feature-based variability modeling in industry. In Model-Driven Engineering Languages and Systems:
17th International Conference, MODELS 2014, Valencia, Spain, September 28—October 3, 201/. Proceedings 17.
Springer, 302-319.

[6] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M Atlee, Martin Becker, Krzysztof Czarnecki, and Andrzej
Wasowski. 2013. A survey of variability modeling in industrial practice. In Proceedings of the 7th International
Workshop on Variability Modelling of Software-intensive Systems. 1-8.

[7] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof Czarnecki. [n.d.]. A study of
variability models and languages in the systems software domain. 39, 12 ([n.d.]), 1611-1640.

[8] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. [n.d.]. Staged configuration through specialization
and multilevel configuration of feature models. 10, 2 ([n.d.]), 143-169.

[9] Isabel John and Michael Eisenbarth. 2009. A decade of scoping: A survey. In Proceedings of the 13th International
Software Product Line Conference. 31-40.

[10] Isabel John, Jens Knodel, Theresa Lehner, and Dirk Muthig. 2006. A practical guide to product line scoping. In
10th International Software Product Line Conference (SPLC’06). IEEE, 3-12.

[11] Kyo Kang, Sholom Cohen, James Hess, William Nowak, and Spencer Peterson. 1990. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report. Software Engineering Institute, Carnegie Mellon University.

[12] Charles Krueger. 2002. Variation Management for Software Production Lines. In Proceedings of the Second
International Conference on Software Product Lines (SPLC 2).

[13] Jacob Krueger and Thorsten Berger. 2020. Activities and Costs of Re-Engineering Cloned Variants Into an

7https ://www.atlassian.com/software/confluence
8https ://miro.com/
9https ://featureide.github.io/

13

(14]

(15]

[16]

(17]

(18]

[19]

[20]

21]

Thorsten Berger, Wardah Mahmood, Johan Martinson, Jude Gyimah

Integrated Platform. In 1jth International Working Conference on Variability Modelling of Software-Intensive
Systems (VaMoS).

Elias Kuiter, Jacob Kriiger, Sebastian Krieter, Thomas Leich, and Gunter Saake. 2018. Getting rid of clone-and-
own: Moving to a software product line for temperature monitoring. In SPLC.

Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej Wasowski. [n.d.]. Evolution of the
Linux Kernel Variability Model. In SPLC (2010) (Lecture Notes in Computer Science, Vol. 6287), Jan Bosch and
Jaejoon Lee (Eds.). Springer, 136-150.

Wardah Mahmood, Daniel Strueber, Thorsten Berger, Ralf Laemmel, and Mukelabai Mukelabai. 2021. Seamless
variability management with the virtual platform. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, 1658-1670.

Johan Martinson, Herman Jansson, Mukelabai Mukelabai, Thorsten Berger, Alexandre Bergel, and Truong
Ho-Quang. 2021. Hans: Ide-based editing support for embedded feature annotations. In Proceedings of the 25th
ACM International Systems and Software Product Line Conference-Volume B. 28-31.

Jens Meinicke, Thomas Thiim, Reimar Schroter, Fabian Benduhn, Thomas Leich, and Gunter Saake. [n.d.].
Mastering Software Variability with FeatureIDE. Springer.

Mukelabai Mukelabai, Damir Nesic, Salome Maro, Thorsten Berger, and Jan-Philipp Steghéfer. 2018. Tackling
Combinatorial Explosion: A Study of Industrial Needs and Practices for Analyzing Highly Configurable Systems.
In 88rd IEEE/ACM International Conference on Automated Software Engineering (ASE).

Sarah Nadi, Thorsten Berger, Christian Késtner, and Krzysztof Czarnecki. 2014. Mining configuration constraints:
Static analyses and empirical results. In Proceedings of the 36th international conference on software engineering.
140-151.

Sarah Nadi, Thorsten Berger, Christian Kéastner, and Krzysztof Czarnecki. 2015. Where do configuration constraints
stem from? an extraction approach and an empirical study. IEEE Transactions on Software Engineering 41, 8
(2015), 820-841.

Klaus Schmid. 2000. Scoping software product lines. In Software Product Lines. Springer, 513-532.

Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and Krzysztof Czarnecki. 2010. The Variability
Model of The Linux Kernel. VaMoS 10, 10 (2010), 45-51.

Daniel Strueber, Mukelabai Mukelabai, Jacob Krueger, Stefan Fischer, Lukas Linsbauer, Jabier Martinez, and
Thorsten Berger. 2019. Facing the Truth: Benchmarking the Techniques for the Evolution of Variant-Rich Systems.
In 23rd International Systems and Software Product Line Conference (SPLC).

Andrzej Wasowski and Thorsten Berger. 2023. Domain-specific Languages: Effective Modeling, Automation, and
Reuse. Springer.

14

