
HAnS: Feature Visualisation

Mariana Hohashvili

Bachelor’s Thesis – May 7, 2024
Chair of Software Engineering

1st Supervisor: Prof. Dr. Thorsten Berger
2nd Supervisor: Kevin Hermann, M.Sc.

Contents

Acronyms 1

1 Introduction 3

2 Background 5
2.1 Feature . 5
2.2 Feature Metrics and Visualization . 5
2.3 HAnS and HAnS-Viz . 6
2.4 Related Work . 8

3 Methodology 11
3.1 Development . 11
3.2 Experiment . 12

3.2.1 Objectives and Usability Metrics 12
3.2.2 Setup . 13
3.2.3 Tasks . 13
3.2.4 Questions . 14

4 Implementation 15
4.1 HAnS . 15

4.1.1 Metrics . 16
4.1.2 Further Functionalities . 16

4.2 HAnS-Viz . 18

5 Results 21
5.1 Experiment . 21
5.2 Evaluating research questions . 28

5.2.1 RQ1: Leveraging Tree View Visualization 28

vi Contents

5.2.2 RQ2: Usability of Extended HAnS-Viz 29

6 Discussion 31

7 Conclusion 33

List of Figures 36

Bibliography 37

A Questionnaire 39

Acronyms

FAXE Feature Annotation eXtraction Engine

HAnS Helping Annotate Software

JCEF Java Chromium Embedded Framework

LPQ Least-Partially-Qualified name

PSI Program Structure Interface

SUS System Usability Scale

1 Introduction

A feature is a distinct and well-understood aspect or functionality of a software system,
which plays a fundamental role in specifying the system’s capabilities, behavior, or
data [1].

Developers often need to locate features in the code when evolving or maintaining the
software. Locating features ranks among the most common tasks for developers. The
essential process of feature location in software engineering is hindered by insufficient
documentation, leading to a rapid decay of knowledge after development. This results
in developers spending considerable time searching for feature locations. Existing auto-
mated techniques for retroactive recovery are often inaccurate and require significant
effort, with identified locations being coarse-grained [2]. To address these challenges,
embedded feature annotations serve as a vital solution, allowing developers to docu-
ment feature locations directly within the codebase [3].

As the number of features and annotations increases, developers must quickly grasp
specific feature realizations. Feature visualizations play a vital role by offering devel-
opers a clear overview of features and their locations. These visualizations enhance
the understanding of fundamental feature characteristics, improving developer com-
prehension and productivity [2].

HAnS, or Helping Annotate Software, is an IntelliJ IDE plugin designed to streamline
the recording and utilization of embedded feature annotations during software devel-
opment. It addresses challenges related to locating features within code by allowing
developers to map features to folders, files, code fragments, or lines. The plugin offers
functionalities such as code completion, syntax highlighting, and a graphical Feature
Model View window for easy browsing of features. HAnS supports refactoring anno-
tations, making it easier for developers to manage and update feature information.
This tool aims to enhance the efficiency and accuracy of feature location activities in
software development [4].

The HAnS-Viz plugin, an extension of HAnS, was developed to provide various visual-
izations of the HAnS feature model and other metrics. It offers diverse visualizations,

4 1 Introduction

including a tree view and treemap view of the feature model, as well as scattering
and tangling views, among others [5].

The objective of this thesis is to augment HAnS-Viz by integrating functional-
ities for adding, editing, and removing features and annotations directly within
the tree view, a crucial enhancement that would greatly elevate the tool’s usabil-
ity.

Additionally, another task involves integrating additional metrics into HAnS to provide
deeper insights into the organization and complexity of annotated features within the
project structure.

To tackle this challenge, two research questions were defined to serve as the foundation
for this work.

RQ1 How can the tree view visualization be leveraged within the HAnS-Viz plu-
gin to offer users an intuitive method for modifying the feature model and feature
annotations?

This question entails identifying the core methods necessary for effectively modifying
the feature model and associated annotations. Following this identification process,
the next step involves integrating these essential actions into the HAnS plugin, thereby
enhancing its functionality. The focus then transitions to the HAnS-Viz plugin, which
involves developing user-friendly visualizations within the tree view interface to
facilitate the execution of these actions.

RQ2 How usable is the extended version of HAnS-Viz?

Following the development phase, a usability study is planned to measure the effec-
tiveness of the extended version of the plugin. Participants will perform various tasks
during controlled experiments, providing feedback on usability. The aim is to assess
crucial usability metrics, such as learnability, efficiency, error rate and recovery, and
satisfaction. Addressing this question is vital to guide targeted enhancements that
align with user needs and expectations, benefiting both current and future contributors
to the plugin.

The thesis begins with an exploration of background concepts, starting with the
definition of a feature, followed by an overview of feature metrics and visualizations,
and then proceeds to an examination of the HAnS and HAnS-Viz plugins. The
methodology employed in the study is detailed in the "Methodology" chapter, covering
aspects of development, experimental objectives, survey setup, tasks, and questions.
Subsequently, the "Implementation" chapter delves into the implementation of the
extended HAnS and HAnS-Viz plugins, outlining metrics, additional functionalities,
and advancements. The "Results" chapter presents the results of the experiment,
including the evaluation of two research questions concerning tree view visualization
and the usability of the extended HAnS-Viz plugin. Subsequently, the "Discussion"
chapter engages in a discussion of findings, while the "Conclusion" chapter summarizes
key insights and implications of the thesis.

2 Background

2.1 Feature

Features in software development encompass distinct pieces of functionality or behavior
that fulfill specific requirements or user needs within a software system. They serve
as identifiable components that provide value, ranging from simple functionalities to
complex capabilities, aiming to deliver specific benefits or solve particular problems
[6, 7, 8].

Feature traceability is crucial for establishing and maintaining transparent connections
between features and assets throughout the development process. Through embedded
feature annotations developers can locate features within project assets, including
folders, files, and code. This traceability not only enhances development practices and
decision-making but also optimizes resource allocation [3].

All features within the project are stored in the feature model, which comprises a hierar-
chical representation of feature names and their relationships in textual format [9]. Fea-
ture annotations, or feature mappings, are subsequently established to connect project
artifacts to specific features within the feature model.

2.2 Feature Metrics and Visualization

PSI

The Program Structure Interface (PSI) is a fundamental component of IntelliJ IDEA.
PSI forms the foundation of IntelliJ’s abilities in code analysis and manipulation.
It works by parsing the source code and representing it in a structured tree format,
which consists of PSI elements (PsiElement). These elements include classes (PsiFile),
methods (PsiMethod), comments (PsiComment), and custom language injections. This
structured representation enables features like syntax highlighting, code completion,
and error checking. Additionally, PSI enables dynamic code manipulation, facilitating

6 2 Background

functions like code generation and refactoring. Overall, PSI plays an important
role in enhancing developers’ productivity by enabling efficient code navigation and
manipulation within IntelliJ IDEA [10]. HAnS leverages PSI comments and custom
language injections to establish feature mappings, encompassing folder, file, and code
representations [11].

FAXE

FAXE is a lightweight Java library intended for the automated extraction and pro-
cessing of embedded annotations from software assets based on a specific syntax.
These annotations, specified within the code, help in proactively recording feature
locations within the assets, aiding in tasks like feature traceability, visualization, and
maintenance. FAXE’s functionality includes extracting annotations recursively from
sub-assets, handling syntax checks for consistency, calculating feature metrics, and
facilitating feature-based partial commits, allowing developers to organize commits
based on features. It offers integration options with IDEs and provides a command-line
interface for interaction, making it versatile for various development environments
and workflows [12]. The feature metrics and their calculation in my thesis work were
inspired by FAXE’s approach to extracting and processing embedded annotations in
software assets.

The feature metrics integrated into HAnS include the calculation of nesting depths,
which determine the maximum, minimum, and average levels of annotation nesting
directly related to a feature, indicating how deep features are nested within each
other or within files and folders inside the project structure. Additionally, the metrics
involved counting the total number of different features within specific project elements,
such as files or folders, and the total number of file annotations directly referencing
each feature.

The feature metrics integrated into HAnS aimed to provide valuable insights into
the organization and complexity of annotated features within the project structure.
Nesting depths highlight potential hierarchical relationships and structural depen-
dencies in the codebase. Furthermore, the total number of different features and file
annotations helps in understanding the overall scope and distribution of features
across project elements, aiding in better management and navigation within the
feature model.

2.3 HAnS and HAnS-Viz

HAnS

HAnS is an IntelliJ IDE plugin designed to help developers record and manage
feature locations within a codebase. It aims to streamline tasks such as mapping
features to code, browsing features hierarchically, refactoring annotations, and reducing
annotation mistakes through code completion and syntax highlighting, ultimately

2.3 HAnS and HAnS-Viz 7

enhancing the efficiency and effectiveness of feature management during software
development [4]. To use HAnS effectively, developers start by creating a text file
named ".feature-model" in the project’s root folder, where they list all the features
relevant to their project. This serves as a central repository for feature information.
Then, developers can map these features to various assets such as folders, files, code
fragments, or individual lines of code using specific text files named ".feature-to-folder"
or ".feature-to-file" (see Fig 2.1). For instance, to map a folder to features, they add
the feature names in the ".feature-to-folder" file within that folder. Similarly, to map
files to features, they use the ".feature-to-file" file, listing the file names on the top
line and their corresponding features on the bottom line.

Figure 2.1: Syntax of folder and file annotations [11]

Additionally, developers can use annotations such as "&begin[...]" and "&end[...]" or
"&line[...]" within Java comments to map features to code fragments or individual
lines (see Fig. 2.2).

Figure 2.2: Syntax of code annotations [11]

HAnS provides menus within IntelliJ IDEA to facilitate the creation and editing of
these mappings, making the process more intuitive and efficient [11].

HAnS-Viz

HAnS-Viz is a plugin connected to HAnS, providing diverse visualizations to rep-
resent annotated features hierarchically, including a tree view and a treemap view
of the feature model, as well as tangling and scattering visualization of features.
It offers a comprehensive perspective on the structure and relationships of fea-
tures, aiding in better understanding and analysis of complex software systems
[5].

8 2 Background

The Tree View (see Fig. 2.3), a fundamental component of HAnS-Viz, offers a hierarchi-
cal depiction of features within the feature model. This visualization assists in under-
standing feature relationships and their breakdown into sub-features. Each node in the
Tree View corresponds to a feature in the model. Users can expand or collapse nodes
to obtain a more comprehensive project overview [5].

Figure 2.3: Tree View in HAnS-Viz

2.4 Related Work

This section provides an overview of existing tools relevant to the thesis topic.
By introducing FeatureDashboard [13] and FeatureVista [14], it aims to place the
thesis within the broader landscape of feature extraction and visualization tools.
These tools contribute to the field of visualizations in feature-oriented develop-
ment, providing insights into approaches used by other researchers and practition-
ers.

FeatureDashboard

FeatureDashboard [13] is an open-source tool that assists developers in extract-
ing and visualizing features and their locations within software systems. It sup-
ports the use of embedded annotations added by developers during development
to track feature locations. The tool provides various views, including the Feature
Dashboard view, which displays the hierarchy of features and their locations (see Fig.
2.4).

2.4 Related Work 9

Figure 2.4: Feature Dashboard view [13]

It also offers the Feature-to-File and Feature-to-Folder views (see Fig. 2.5), illustrating
the relations between features and files or folders through graphs, with green nodes
representing features, blue nodes representing files or folders and edges indicating
feature mappings within the project.

Figure 2.5: Feature-to-File and Feature-to-Folder views [13]

Another noteworthy visualization within the FeatureDashboard tool is the Common
Features view, presenting a table that visualizes features shared across different
projects or variants (see Fig. 2.6). Green cells indicate that a feature is contained in
a project.

10 2 Background

Figure 2.6: Common Features view [13]

FeatureDashboard aims to encourage continuous documentation of features early in
development to facilitate understanding of the system and mitigate extensive feature
location efforts [13].

FeatureVista

FeatureVista is an advanced software visualization tool designed for users to com-
prehensively visualize and analyze the features of a software system. It offers an
array of visualization capabilities including feature model representations, class glyphs
(depicted as vertical gray bars with annotated feature boxes), interactive highlighting
for focusing on specific feature sets or source code units, dependency visualization,
context scoping, etc. Through these visualizations, FeatureVista empowers users to
explore the distribution of features within the system, distinguish their associations
with project assets, and seamlessly navigate through the codebase to gain insights
into its structure and functionality [14].

3 Methodology

This chapter outlines the methodology employed to address both research questions
RQ1 and RQ2.

3.1 Development

Addressing the first research question, "How can the tree view visualization be lever-
aged within the HAnS-Viz plugin to offer users an intuitive method for modifying the
feature model and feature annotations?" involved understanding the essential actions
needed for modifying the feature model and annotations.

Initially, the process entailed identifying common tasks users would undertake when
modifying the feature model. Some of these tasks were partially implemented in
HAnS as part of the Feature Model View, including adding a single feature, renaming
a feature, and deleting a feature. However, these implementations encountered several
issues.

Firstly, renaming and adding features in the feature model failed to update the
LPQs and feature annotations of other features with the same name, potentially
leading to clashes. An LPQ, or Least-Partially-Qualified name, is a string formed
by extending each feature with its ancestor within a feature model hierarchy to
ensure unique reference, with components separated by "::" for annotation clarity
[11].

Additionally, deleting a feature only removed the feature name from the feature model,
leaving all associated annotations in the code without any feature association, making
them inaccessible. Furthermore, the Feature Model View visualization is restricted, as
users can only perceive features located in the top layer of the feature model hierarchy.
This limitation hindered users’ ability to fully grasp the hierarchical structure of the
feature model.

12 3 Methodology

The decision was made to incorporate all fundamental actions for modifying the
feature model and feature annotations into the tree view of the HAnS-Viz plugin,
leveraging its hierarchical feature model representation.

Firstly, the functionalities of adding and renaming features were incorporated, along-
side modifications to ensure that features with the same name and their annotations
were appropriately updated.

Another common task of developers involves removing features. Two scenarios were
identified for deleting features. In the first scenario, the user intends to delete a
feature along with its annotations but wishes to retain the code inside those anno-
tations to remap it to a new feature. This scenario arises when the user desires to
update the feature structure while preserving the functionality implemented within
the code. Conversely, the second scenario involves the user wanting to delete a fea-
ture along with its annotations and the code contained within those annotations.
This action effectively removes the entire functionality associated with the feature,
which may be necessary in situations where the feature is no longer required in the
project.

Finally, the action of moving features was identified, which becomes necessary when
a user intends to restructure the hierarchy of the feature model, such as adding a new
common parent for two existing features.

3.2 Experiment

This section addresses RQ2 and outlines the experiment created to evaluate the
usability of HAnS-Viz. Different participants engaged in testing the plugin, and their
input was utilized to evaluate its usability.

3.2.1 Objectives and Usability Metrics

The objective of this experiment was to assess the usability of the extended HAnS-Viz
plugin. Usability served as the dependent variable, representing the effectiveness of the
tool in facilitating feature-oriented development processes. The independent variable
was the HAnS-Viz plugin itself.

In this experiment, various aspects of usability were assessed. Learnability was deter-
mined by evaluating how easy it was for users without prior knowledge of the plugin
to perform a task with the tool. Efficiency was measured by assessing how quickly
users could solve the tasks. Error Rate and Recovery focused on whether users could
recover from errors they made while using the tool. This was observed through error
counts in screen recordings. Furthermore, Satisfaction was evaluated based on the
subjective level of contentment with the plugin’s usability, determined using the SUS

3.2 Experiment 13

score. Lastly, Memorability, or users’ ability to recall interactions with the plugin over
time, was omitted as it exceeded the thesis scope.

3.2.2 Setup

Participants were briefed on the motivations behind the creation of HAnS and
HAnS-Viz, as well as the challenges associated with codebases lacking feature trac-
ing. They received an overview of features, feature tracing, and feature annotations.
Then, an introduction to the HAnS plugin was provided, covering its core func-
tionalities such as creating features, mapping them, and locating them within a
project.

Subsequently, an introduction to HAnS-Viz and its Tree View was given, along with
an explanation of the toolbar functionalities and how they operate. Users were then
provided with a link to the Google Forms document containing task explanations and
a questionnaire. They were also given access to the GitHub repository 1 for installing
both plugins, as well as the project called Snake 2, a Java-based small-scale game
that contains feature annotations. This project was utilized to carry out the tasks
and evaluate the functionalities of the plugin.

Additionally, users were requested to install and conduct a screen recording of their
task completion process. This measure was implemented to capture the time re-
quired to complete the tasks and to assess the number of errors as a usability
metric.

There were five tasks structured to encourage users to interact with the toolbar.
Following the exploration of each functionality, users were required to answer several
questions. Lastly, a SUS questionnaire was employed to evaluate the overall usability
of the plugin.

3.2.3 Tasks

All participants were given tasks to actively utilize the toolbar within the Tree View.
These tasks aimed to familiarize them with the functionalities, and implications of
each action within the toolbar. There were two types of tasks assigned to users during
the evaluation.

The first type involved simple observation tasks, where users were instructed to
perform actions such as adding a feature to the tree view, renaming a feature within
the tree view, or moving a feature in the tree view, and then observe the resulting
changes in the feature model.

1https://github.com/hohashvili/snake-game-experiment
2https://github.com/johmara/Snake

14 3 Methodology

The second type of task required users to navigate to a specific file, examine particular
feature annotations (and the corresponding code), perform a specified action (such as
deleting a feature along with its code or annotations), and then return to the file to
observe the changes in the code.

For tasks involving the "deleting feature with code" functionality, users were also
prompted to interact with a modal window and make modifications to the code within
it.

3.2.4 Questions

Following each section, users were prompted with several questions aimed at assessing
key usability metrics including learnability, efficiency, number of errors, and satisfaction.
Once all tasks were completed, a survey for the entire toolbar was conducted. The
questionnaire is included in the Appendix for reference.

SUS

The toolbar’s overall usability was assessed using the System Usability Scale (SUS),
a commonly employed tool for evaluating the usability of various interactive systems
including software and websites. The SUS comprises ten statements, each rated
on a five-point scale ranging from "Strongly Disagree" to "Strongly Agree". These
statements consist of five positive and five negative ones, arranged alternately [15].
They can then be used to form an overall rating.

4 Implementation

This chapter presents an overview of the implementation details for both the HAnS and
HAnS-Viz plugins. It emphasizes the significant improvements incorporated into these
plugins, such as the addition of supplementary metrics in HAnS to enhance project
structure comprehension. Additionally, it explores the integration of functionalities
allowing for the modification of the feature model and annotations within HAnS,
followed by their integration into the new toolbar in HAnS-Viz, aimed at enhancing user
interaction. The chapter also discusses the methodologies employed in implementing
various features and functionalities, offering insights into the technical aspects of
plugin development.

4.1 HAnS

In the present version of HAnS, certain metrics essential for comprehending the
structure and complexity of the codebase and its features remain uncomputed. These
metrics include the maximum, minimum, and average nesting depths of features,
which delineate the hierarchical organization of features within the project structure.
Specifically, the depth of a feature is determined by factors such as its position within
the project’s directory hierarchy—each folder and file incrementally increases this
depth by one. Additionally, the presence of code annotations further contributes to
the depth, with each annotation augmenting it by 1.

HAnS also lacks some further metrics that could provide a deeper understanding
and analysis of the codebase’s organization and relationships between features and
files. For instance, it does not compute the number of features directly referenced in
annotations within a folder or any of its subfolders. Additionally, it does not calculate
the number of annotated files (or the number of mappings between features and
files).

16 4 Implementation

4.1.1 Metrics

To compute the mentioned metrics, the FullFeatureTree class was developed, which
serves as a representation of the project in a tree structure. In this structure, each
node corresponds to either a file or a folder within the project, with leaves representing
code annotations within the parent file node. Every node maintains a list of features
mapped to it. During the construction of the tree, the project’s folder structure is
recursively traversed, and information such as depths and lists of mapped features
are added to each node.

To access feature LPQs within folder or file annotations, the PsiRecursiveElement-
WalkingVisitor provided by the IntelliJ PSI package was utilized. This visitor pattern
facilitates traversing the PSI tree and extracting relevant information. Additionally,
to access feature LPQs within code annotations, the Custom Language Injection
manager (InjectedLanguageManager) was employed. This manager allows for handling
custom language injections, enabling the retrieval of LPQs from code annotations,
which are not represented as PsiElements, but as custom language injections within
the code.

To compute the metric "number of annotated files", another recursive traversal of the
existing feature tree is performed. During this traversal, nodes of type "FILE" that
have at least one mapped feature associated with them are counted. Similarly, for
the metric "number of features", each node is traversed and the number of features
stored in the list associated with that node is counted.

4.1.2 Further Functionalities

In order to enhance the HAnS-Viz plugin with additional capabilities for modifying
the feature model and feature annotations, the corresponding methods within the
HAnS plugin have been implemented. This involved extending the utility class for the
.feature-model file (FeatureModelPsiImplUtil) as well as the utility class for accessing
feature references (FeatureReferenceUtil).

Adding and renaming features

When adding or renaming features, the PSI structure of the feature model file
undergoes alterations. Upon addition, a new PSI element is inserted into the tree.
In the case of renaming, the PSI element with the old name is substituted with the
updated one, and all associated annotations are accordingly updated to reflect the
new feature name. In both cases, if the feature name of the new element matches
any of the children of the parent feature, the operation will be cancelled to prevent
conflicts.

Subsequently, a reference search is conducted to identify any potential clashes between
the newly added feature name and all the existing ones. If such clashes occur, the

4.1 HAnS 17

annotations of the conflicting features are updated to align with their new, unique
LPQ.

Moving features

Likewise, when moving features, the PSI element of the feature to be moved along with
all its children are extracted from the feature model and inserted at the new parent
location. The parent feature must not contain any direct children with the same feature
name as the feature being moved to avoid conflicts.

Deleting features with annotations

Deleting a feature and all of its annotations entails several steps. Initially, a reference
search is conducted to locate and store all the file, folder, and code annotations
associated with the target feature and its children. Subsequently, these PSI elements
and language injections are removed from the project. Following this, the feature and
its children are removed from the feature model. Finally, another reference search is
performed to identify features with the same name as any of the removed features. If
such features are found, their annotations are updated to match a new, unique LPQ,
typically a shorter one.

Deleting features with code

When deleting features with code, two different execution paths emerge. The first
scenario occurs when no tangled features are associated with the target feature or
any of its children. In this case, the process mirrors that of deleting features with
annotations. Feature and file mappings are deleted, along with in-file annotations
containing code enclosed within the &begin and &end markers, or on the same line
as the &line marker. Subsequently, the .feature-model file is updated, along with any
remaining features sharing the same name.

In the second scenario, intertwinements with other features are present. For instance,
FeatureA may have a code annotation in File1.java, while FeatureB may have a file
mapping with File1.java. As a result, FeatureA and FeatureB become tangled. Due to
this entanglement, deleting any of the annotations becomes problematic, as it would
disrupt the logical feature mapping structure. To address this issue, a modal window
was developed to display two tangled features and illustrate their relationship to each
other (see Fig. 4.1).

18 4 Implementation

Figure 4.1: Example of the modal window for deleting tangled features with code

When a user attempts to delete a feature with associated code, this modal window
appears, providing the user with the opportunity to untangle the features. For instance,
the user can achieve this by deleting specific annotations or by rearranging them.
This interactive approach allows users to manage feature dependencies effectively and
maintain the integrity of the feature mapping structure. Once the user has finished
untangling the features, they can click the OK button. This action triggers the
process of searching for tangled features and their respective locations once again. If
no tangled features are found, the feature and its children are deleted, following the
same process as in the first scenario.

4.2 HAnS-Viz

Following the extension of HAnS, HAnS-Viz underwent modifications to incorporate
a new toolbar featuring all the associated actions (refer to Fig 4.2). This toolbar is
accessible directly from the tree view.

4.2 HAnS-Viz 19

Figure 4.2: HAnS-Viz Toolbar

Since HAnS-Viz was developed utilizing the JCEF browser, all elements within the
window, including the toolbar, were implemented using HTML for structure, CSS
for styling, and JavaScript for interaction with the controller and task processing [5].
To execute a specific action, the user selects it from the toolbar and then clicks on
the corresponding feature. Subsequently, the user will be prompted with either an
input field or a confirmation pop-up window, depending on the action selected (see
Fig. 4.3).

Figure 4.3: Examples of popups

After the user interacts with the interface, a request containing the specified action
and data is sent to the back-end. This request is then executed by HAnS to perform
the desired operation, utilizing the methods described in Section 4.1.2. Subsequently,
the updated data is retrieved from the controller and the tree view is refreshed to
display the latest version.

5 Results

In this chapter, I will first address RQ2, focusing on analyzing the usability of individual
actions within the toolbar and the overall usability of the plugin. Additionally, I will
present subjective feedback gathered from the participants. Lastly, I will evaluate
research questions RQ1 and RQ2 as a whole.

5.1 Experiment

The participants in the experiment constituted a diverse group of 10 individuals,
with more than two-thirds (70%) being either PhD students or PhD holders. The
remainder was divided between Bachelor’s and Master’s students, all specializing in
computer science (see Fig. 5.1).

Figure 5.1: Educational levels among participants

Regarding software development experience level, half of the participants had less
than one year of experience, while the other half was split between those with 1-2

22 5 Results

years and 3-5 years, with one participant having over 5 years of experience (see Fig.
5.2).

Figure 5.2: Software development experience among participants

Notably, over half of the participants had previously used the HAnS plugin (70%),
which is likely attributable to the university environment in which the survey was
conducted.

During the experiment, participants were assigned tasks that involved trying out each
action in the toolbar and subsequently providing feedback on the usability of each
action, as well as the overall usability of the plugin.

Following the completion of the tasks, participants were asked to respond to statements
from the questionnaire, with their responses ranging from 1 to 5, corresponding to
Strongly Disagree (1), Disagree (2), Neither Agree nor Disagree (3), Agree (4), and
Strongly Agree (5). In the figures presented below, the Y-axis illustrates the number of
participants who responded accordingly, while the X-axis indicates the corresponding
statements from the questionnaire.

Additionally, participants were requested to record their task completions and upload
the recordings to the questionnaire. This facilitated the evaluation of completion
time and the identification of any mistakes or unwanted behaviors during the task
execution.

Adding a feature

The evaluation results regarding the addition of features revealed promising insights.
A significant majority (80%) of participants strongly agreed that adding a feature
was easy, reflecting a high level of user-friendliness. One participant commented,
". . . adding took around 1 minute without any problems coming up. . . it was easy to do

5.1 Experiment 23

and understand. . . ". This feedback highlights the simplicity of the feature addition
process as perceived by the participants.

Similarly, an equal proportion found the tasks easy to solve quickly, suggesting
efficient usability (80%). However, regarding error recovery, responses varied: 20%
strongly agreed, 40% agreed, and 30% neither agreed nor disagreed, indicating room for
improvement in error management. Nonetheless, a substantial portion of participants
(80%) agreed that adding a feature was satisfying, underscoring a positive overall
experience with the feature addition process (see Fig. 5.3).

Figure 5.3: Evaluation results for adding a feature

Renaming a feature

The evaluation results for renaming features exhibited consistent trends. Most partic-
ipants (80%) strongly agreed that renaming a feature was straightforward, indicating
a high level of ease in the process. Furthermore, an overwhelming majority (90%)
found the tasks quick to solve. 80% of the participants found error resolution to
be easy. This was likely due to the fact that either they made minimal errors or
they could rectify mistakes simply by repeating the renaming operation. Also, a
significant portion of participants (90%) agreed that renaming a feature was satisfy-
ing, highlighting a positive overall sentiment towards the renaming process (see Fig.
5.4).

Figure 5.4: Evaluation results for renaming a feature

24 5 Results

Moving a feature

When it came to moving a feature, 80% of participants found it easy, while 90% were
able to complete the task quickly. However, only 60% reported being able to recover
from their mistakes. Nonetheless, a significant majority (90%) still found the process
satisfying. One participant did not find the process satisfying nor could recover from
errors. This may be attributed to the fact, that they lack prior experience with HAnS
and HAnS-Viz, leading to difficulty in quickly grasping the concept of feature model
hierarchy (see Fig. 5.5).

Figure 5.5: Evaluation results for moving a feature

Deleting a feature with annotations

In the case of deleting a feature with annotations, 90% of participants found it easy,
and all were able to solve the tasks quickly. Additionally, 90% reported finding the
overall experience satisfying. One participant mentioned, "...deleting with annotations
was the easiest task so far...", which underscores the smoothness and efficiency
of the deletion process with annotations. However, only 40% could recover from
errors quickly. This limitation is likely attributed to the absence of an undo feature,
making it challenging to rectify accidental deletions. If the user mistakenly deletes
the wrong feature, there is essentially no recourse available for recovery (see Fig.
5.6).

Figure 5.6: Evaluation results for deleting a feature with annotations

5.1 Experiment 25

Deleting a feature with code

In the case of deleting a feature with code, 100% of participants found it easy to
accomplish, while 70% reported finding it satisfying. However, only 60% were able to
solve the task quickly, likely due to the additional steps required, such as investigating
the modal window and performing extra actions, such as deleting several lines of code.
Furthermore, only 40% could recover from errors, likely for similar reasons as with
deleting features with annotations, namely the absence of an undo functionality (see
Fig. 5.7).

Figure 5.7: Evaluation results for deleting a feature with code

Evaluation of User Interaction and Feedback

Upon reviewing the screen recordings, the number of errors made by users and any
undesirable user behaviors were assessed.

Three participants encountered confusion with the modal window during the deletion
process involving code. They’ve attempted to click the OK button multiple times
and were puzzled when the same window reappeared. Additionally, one participant
misunderstood the task outlined in the questionnaire, specifically regarding the
deletion of two lines with code annotations. Instead of utilizing the modal window,
they attempted to delete code directly from the file. Moreover, one participant
provided feedback expressing difficulty in resolving tangling conflicts, stating, "...
without the help of the questionnaire I think, I wouldn’t be able to solve the tangling
conflict ... I had some problems understanding the message within the dialog without
the questionnaire."

26 5 Results

Figure 5.8: Total number of mistakes made for each task

The majority of errors (see Fig. 5.8) occurred during the process of moving a feature.
Two participants encountered confusion with collapsed features and struggled to
locate the required feature by solely relying on the tree view. Additionally, another
issue arose when the same users attempted to utilize the search functionality, which
failed to display features that were collapsed in the tree view. As a result, participants
skipped the task altogether.

Another common issue observed among users is the lack of highlighting when clicking
on features, leading to confusion about whether the click was registered. This lack of
visual feedback can make it unclear whether the desired feature has been selected.
One user provided feedback, stating: "...it took me some time to see that I already
selected the node I wanted to move, so I clicked again on it because I thought it wasn’t
selected."

Furthermore, there were two mistakes observed when adding a feature. This could be
attributed to the fact that it was the first task in the survey, and users may not have
been fully acquainted with the toolbar at that point.

Additionally, I’ve noticed some conflicts arising from double-clicking a feature, which
triggers the scattering information, and single-clicking a feature to select it for per-
forming certain action from the toolbar.

5.1 Experiment 27

Lastly, one participant suggested that the current process of opening the toolbar and
selecting the feature each time to modify the tree view is verbose. They proposed
that there should potentially be a way to perform an action directly from the node
itself.

Completion time

On average, it took 12 minutes and 52 seconds to complete a survey. Users who
had prior experience with HAnS and HAnS-Viz demonstrated faster completion
times.

Figure 5.9: Task completion time

SUS Score Evaluation

The SUS score is derived from the SUS questionnaire designed by Brooke [16]. As
depicted in Figure 5.10, individual participants’ SUS scores range from 47.5 to
97.5, with most falling within the range of 82.5 to 97.5. The average SUS score is
83.25.

Figure 5.10: SUS scores

28 5 Results

Figure 5.11: Grade rankings [15] of SUS Scores

In Figure 5.11, the grade rankings provided by Bangor, Kortum, and Miller [15]
are presented to facilitate SUS score interpretation. The SUS score falls between
good and excellent, akin to a grade of B in school ratings, strongly indicating good
usability.

5.2 Evaluating research questions

In this section, I will evaluate the research questions posed in the thesis. These
investigate the effectiveness and usability of the extended functionalities within the
HAnS and HAnS-Viz plugins. Specifically, the investigation centers on leveraging
tree view visualization within HAnS-Viz to enhance user interaction and intuitively
modify feature model and annotations. Through evaluations and assessments, I
can explore the findings and insights derived from addressing these research ques-
tions.

5.2.1 RQ1: Leveraging Tree View Visualization

How can the tree view visualization be leveraged within the HAnS-Viz plugin to
offer users an intuitive method for modifying the feature model and feature annota-
tions?

Based on the implementations presented in Sections 4.1.2 and 4.2, I can now ad-
dress research question 1. By augmenting the HAnS plugin with five additional
functionalities—namely, adding, renaming, moving features, and deleting features
with annotations or code — I facilitated the modification of the feature model and
annotations. These enhancements were subsequently integrated into the HAnS-Viz
plugin as part of the new toolbar within the tree view visualization, with the goal of
offering users a user-friendly and intuitive method for modifying the feature hierarchy
and corresponding feature mappings.

5.2 Evaluating research questions 29

5.2.2 RQ2: Usability of Extended HAnS-Viz

How usable is the extended version of HAnS-Viz?

The extended version of HAnS-Viz exhibited promising usability, as indicated by the
evaluation results outlined in Section 5.1. Participants, a diverse group of computer
science students and researchers, found the toolbar actions intuitive and user-friendly.
Based on the survey results, they demonstrated high learnability and efficiency in using
the plugin, with tasks completed quickly and mostly error-free. While satisfaction
levels were generally positive, challenges in error recovery, particularly during more
complex tasks, suggest areas for improvement to enhance overall user experience.
Across various actions, the evaluation yielded positive feedback, and participants
generally reported satisfaction with the overall experience. Additionally, the SUS
score of 83.25 further supports the favorable usability of the extended HAnS-Viz
plugin.

6 Discussion

This chapter discusses the findings from the experiment, which shed light on the
usability of the plugin and highlight areas for potential improvement based on feedback
and observations.

The experiment involved the evaluation of 10 participants, all of whom were affiliated
with the university and had backgrounds in computer science. While the feedback
provided valuable insights, it’s important to note that the participants were exclusively
from the faculty of computer science and had professional experience in software
development. This limitation restricts the diversity of perspectives, as insights from
individuals outside the software development realm or those not directly involved in
coding were not captured. Nonetheless, how the tool is being utilized by developers,
the target group of the experiment, could be assessed.

Furthermore, the sample size of 10 participants is relatively small, which may impact
the generalizability of the findings. Despite these limitations, the feedback obtained
from the experiment serves as a valuable starting point for future iterations and
enhancements to the plugin’s usability.

Several users encountered difficulties in locating and manipulating collapsed features
within the tree view. A potential solution to this issue could involve modifying
the search functionality to automatically expand searched features, enhancing user
accessibility and navigation.

Confusion arose among users when interacting with the modal window during the
"deleting feature with code" action. To address this, implementing an informative
tooltip within the modal window could provide users with explanations of its functions
and displayed content, aiding in clarity and comprehension.

The presence of keyword event listeners led to potential clashes due to multiple types
of clicking events associated with each node in the tree view. To mitigate this, restruc-
turing the mappings between keywords and actions could prevent conflicts, ensuring
smoother user interactions and reducing confusion.

32 6 Discussion

Participants also suggested enhancing usability by adding a tooltip with multi-
ple options for each node in the tree view. This improvement would offer users
quick access to various actions, streamlining workflow and enhancing overall effi-
ciency.

Despite the identified challenges, users generally found the extended version of HAnS-
Viz to be usable, as indicated by the SUS evaluation score (see Fig. 5.10). However, to
further validate and improve its usability, conducting a second experiment with HAnS-
Viz, incorporating the suggested improvements to the toolbar, would offer greater in-
sights into the plugin’s effectiveness and user satisfaction.

Expanding the participant pool to include a more diverse range of individuals, be-
yond those solely affiliated with computer science, would also be beneficial. This
broader participant pool would provide a more comprehensive understanding of user
needs and preferences, enhancing the reliability and applicability of the experiment’s
findings.

7 Conclusion

Feature manipulation, including adding, renaming, and removing features, is a critical
aspect of software development that influences the functionality, design, and main-
tainability of a software product. Each manipulation pattern incurs costs, including
annotation recording and editing, as well as potential impacts on the software’s
architecture and user experience. These manipulations also offer opportunities for
enhancing the software’s functionality, improving its design, and reducing complexity.
Therefore, successful feature manipulation necessitates a thoughtful evaluation of the
associated advantages and disadvantages to ensure the software product’s successful
evolution [3].

Although HAnS and HAnS-Viz already provide developers with tools for managing and
modifying software features and annotations, my goal was to enhance the usability and
effectiveness of these plugins by broadening the range of actions available to users and
conducting an experiment to evaluate user experience.

Through the addition of functionalities such as adding, renaming, moving, and deleting
features within the plugin’s toolbar, along with improvements to the tree view
visualization, significant strides were made toward providing developers with smooth
experience in managing feature annotations.

The experiment evaluating the extended HAnS-Viz provided valuable insights. Partic-
ipants found the plugin user-friendly and efficient. While the results were promising,
users highlighted several challenges, particularly with error recovery and modal win-
dow interactions. They also suggested improvements, including enhancing the search
functionality and providing informative tooltips.

Overall, HAnS-Viz shows promise for feature-oriented development, with room for
refinement based on user feedback. Expanding the user pool and conducting follow-up
experiments would further enrich the understanding of its usability and effectiveness
across different development contexts.

34 7 Conclusion

In conclusion, this work aimed to make contributions to feature visualization and
management tools, with the ultimate goal of enhancing productivity and efficiency in
software development workflows.

List of Figures

2.1 Syntax of folder and file annotations [11] 7
2.2 Syntax of code annotations [11] . 7
2.3 Tree View in HAnS-Viz . 8
2.4 Feature Dashboard view [13] . 9
2.5 Feature-to-File and Feature-to-Folder views [13] 9
2.6 Common Features view [13] . 10

4.1 Example of the modal window for deleting tangled features with code 18
4.2 HAnS-Viz Toolbar . 19
4.3 Examples of popups . 19

5.1 Educational levels among participants 21
5.2 Software development experience among participants 22
5.3 Evaluation results for adding a feature 23
5.4 Evaluation results for renaming a feature 23
5.5 Evaluation results for moving a feature 24
5.6 Evaluation results for deleting a feature with annotations 24
5.7 Evaluation results for deleting a feature with code 25
5.8 Total number of mistakes made for each task 26
5.9 Task completion time . 27
5.10 SUS scores . 27
5.11 Grade rankings [15] of SUS Scores 28

A.1 Questionnaire: Introduction . 40

36 List of Figures

A.2 Questionnaire: Installation instructions 41
A.3 Questionnaire: Adding a feature . 42
A.4 Questionnaire: Renaming a feature 43
A.5 Questionnaire: Moving a feature . 44
A.6 Questionnaire: Deleting a feature with annotations 45
A.7 Questionnaire: Deleting a feature with code 46
A.8 Questionnaire: SUS evaluation . 47

Bibliography

[1] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Adeline Silva,
Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. What is a feature?
pages 16–25, 07 2015.

[2] Julia Rubin and Marsha Chechik. A survey of feature location techniques. In
Domain Engineering, Product Lines, Languages, and Conceptual Models, 2013.

[3] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. Main-
taining feature traceability with embedded annotations. In Proceedings of the
19th International Conference on Software Product Line, SPLC ’15, page 61–70,
New York, NY, USA, 2015. Association for Computing Machinery.

[4] Johan Martinson, Herman Jansson, Mukelabai Mukelabai, Thorsten Berger,
Alexandre Bergel, and Truong Ho-Quang. HAnS: IDE-based editing support for
embedded feature annotations. In Proceedings of the 25th ACM International
Systems and Software Product Line Conference - Volume B, SPLC ’21, pages
28–31, New York, NY, USA, 2021. Association for Computing Machinery.

[5] David Stechow and Philipp Kusmierz. HAnS: Feature Visualization. Bachelor’s
thesis, Ruhr-Universität Bochum, 2024.

[6] Sven Apel and Christian Kästner. An Overview of Feature-Oriented Software
Development. Journal of Object Technology (JOT), 8:49–84, 07 2009.

[7] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Adeline Silva,
Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. What is a feature? a
qualitative study of features in industrial software product lines. In Proceedings
of the 19th International Conference on Software Product Line, SPLC ’15, page
16–25, New York, NY, USA, 2015. Association for Computing Machinery.

[8] Jacob Krüger, Thorsten Berger, and Thomas Leich. Features and How to Find
Them: A Survey on Manual Feature Location, pages 153–172. 01 2019.

[9] Tobias Schwarz. Design and assessment of an engine for embedded feature
annotations. Master’s thesis, University of Gothenburg, 2021.

38 Bibliography

[10] JetBrains. Program structure interface (PSI): IntelliJ Platform Plugin SDK,
2022. Accessed: 01/05/2024.

[11] Johan Martinson and Herman Jansson. HAnS: IDE-based editing support for
embedded feature annotations. Master’s thesis, Gothenburg, Sweden, 2021.

[12] Tobias Schwarz, Wardah Mahmood, and Thorsten Berger. A Common Notation
and Tool Support for Embedded Feature Annotations. pages 5–8, 10 2020.

[13] Sina Entekhabi, Anton Solback, Jan-Philipp Steghöfer, and Thorsten Berger.
Visualization of Feature Locations with the Tool FeatureDashboard. pages 1–4,
09 2019.

[14] Alexandre Bergel, Razan Ghzouli, Thorsten Berger, and Michel Chaudron. Fea-
tureVista: interactive feature visualization. pages 196–201, 09 2021.

[15] Aaron Bangor, Philip Kortum, and James Miller. Determining what individ-
ual SUS scores mean: adding an adjective rating scale. J. Usability Studies,
4(3):114–123, may 2009.

[16] John Brooke. SUS – a quick and dirty usability scale, pages 189–194. 01 1996.

40 A Questionnaire

A Questionnaire

Figure A.1: Questionnaire: Introduction

41

Figure A.2: Questionnaire: Installation instructions

42 A Questionnaire

Figure A.3: Questionnaire: Adding a feature

43

Figure A.4: Questionnaire: Renaming a feature

44 A Questionnaire

Figure A.5: Questionnaire: Moving a feature

45

Figure A.6: Questionnaire: Deleting a feature with annotations

46 A Questionnaire

Figure A.7: Questionnaire: Deleting a feature with code

47

Figure A.8: Questionnaire: SUS evaluation

	Acronyms
	Introduction
	Background
	Feature
	Feature Metrics and Visualization
	HAnS and HAnS-Viz
	Related Work

	Methodology
	Development
	Experiment
	Objectives and Usability Metrics
	Setup
	Tasks
	Questions

	Implementation
	HAnS
	Metrics
	Further Functionalities

	HAnS-Viz

	Results
	Experiment
	Evaluating research questions
	RQ1: Leveraging Tree View Visualization
	RQ2: Usability of Extended HAnS-Viz

	Discussion
	Conclusion
	List of Figures
	Bibliography
	Questionnaire

