RUHR RUB ®-» | Faculty of
UNIVERSITAT RU 3 o« ® Computer
BOCHUM . @ o Science

Analysis and Evaluation of Experimentation
Management Tools applied to Multi-Model
Machine Learning in Autonomous Driving
Systems

Henriette Knopp

Schriftliche Priifungsarbeit fiir die Bachelor-Priifung des Studiengangs Angewandte
Informatik an der Ruhr-Universitat Bochum

Abgabedatum — 17. April 2023.
Software Engineering Faculty.

Erstpriifer: Prof. Dr. Thorsten Berger
Zweitpriifer: Dr. Sven Peldszus

Erklarung

Ich erklére, dass das Thema dieser Arbeit nicht identisch ist mit dem Thema einer
von mir bereits fiir eine andere Priifung eingereichten Arbeit.

Ich erklare weiterhin, dass ich die Arbeit nicht bereits an einer anderen Hochschule
zur Erlangung eines akademischen Grades eingereicht habe.

Ich versichere, dass ich die Arbeit selbsténdig verfasst und keine anderen als die an-
gegebenen Quellen benutzt habe. Die Stellen der Arbeit, die anderen Werken dem
Wortlaut oder dem Sinn nach entnommen sind, habe ich unter Angabe der Quellen
der Entlehnung kenntlich gemacht. Dies gilt sinngemaéls auch fiir gelieferte Zeich-
nungen, Skizzen, bildliche Darstellungen und dergleichen.

DaTuMm AUTOR

i

Contents

Erklarung

1 Introduction
1.1 Context e
1.2 Problem
1.3 Research Questions,
1.4 Approach

2 Background

2.1 Robotics Operating System (ROS2)
2.2 Machine Learning Models and Machine Learning Experiments . . .
2.2.1 Development Cycle of Machine Learning Models Systems . .
2.2.2 Multilayer Perceptron
2.2.3 Convolutional Neural Networks
2.2.4 Machine Learning Model Training
2.2.5 Overfitting and Underfitting
2.2.6 Hyperparameters
2.2.7 Machine Learning Model Evaluation
2.2.8 Machine Learning Experiments
2.3 Machine Learning (ML) Experimentation Management Tools
2.4 Multi Machine Learning Model Systems

2.4.1 Example for Multi Machine Learning Model Systems in Au-
tonomous Driving

3 Subject System — KoopaCar

3.1 Application of the KoopaCar
3.2 Hardware Architecture
3.3 Software Architecture L
3.3.1 Perception Module 0.

3.3.1.1 Yolov5 in the KoopaCar

3.3.1.2 LiDAR-CNN

3.3.1.3 Sensor Fusion

1l

Contents

3.4 Comparison to Autonomous Driving Systems (ADS) 31
3.4.1 Similaritieso 32
3.4.2 Differences 32
4 Machine Learning Experiments in Multi Machine Learning Model
Systems 34
4.1 Experiment Pattern 1 — Individual Model Training 35
4.2 Experiment Pattern 2 — Partial End Loss Training 36
4.3 Experiment Pattern 3 — Simultaneous End Loss Training 37
4.4 Experiment Pattern 4 — Alternating End Loss Training 39
4.5 ML experiments on the subject system 40
4.5.1 Building and Optimizing ML. Models using Individual Model
Training 41
4.5.1.1 Optimizing the LIDAR-CNN 41
4.5.1.2 Optimizing Yolovb on Custom Dataset 45
4.5.1.3 Result of Individual Model Training 47
4.5.2 Training the Complete Pipeline using Simultaneous End Loss
Training 47
5 Machine Learning Management Tools and Multi Machine Learning
Model Systems 51
5.1 Tool Selection o1
5.1.1 Sources and Search Query 52
5.1.2 Selection Criteria 52
5.1.2.1 Inclusion Criteria 53
5.1.2.2 Exclusion Criteria 53
51.3 Tools 54
5.2 Tool evaluation 55
53 MLFlow 56
5.3.1 Main Concepts of MLflow 56
5.3.2 Tracking in Single ML Model Experiments 58
5.3.3 MLflow Project for the KoopaCar 60
5.3.4 MLflow Ul for Comparing Runs and Plotting 61
5.3.5 Experiments with Multiple Machine Learning Models 63
6 Result and Conclusion 66
6.1 Conclusion 66
6.2 Results. 67
6.3 Outlook 68
List of Figures 70

v

Contents

List of Tables 76
Listings 77
Bibliography 78
A Appendix 82

Contents

Abstract

Autonomous Driving Systems (ADS) are usually complicated large scale systems
and contain several nontrivial interconnected ML models. They are part of the
bigger category of Multi Machine Learning Model Systems, which are software
systems that rely on more than one ML model. Because the systems share their
environment with humans, the application of ADS is very volatile. The problem is
that an environment under the influence of humans is not easy to predict. Result-
ing safety concerns are cause to fulfill certain standards and expectations toward
quality that also affect the development phase of the system [2, 1]. To fulfill all
the safety aspects, every part of the development process of ADS needs to be eval-
uated. While there is already research on the topic of testing ADS [3], we want to
take a closer look at experimentation management in ADS with multiple machine
learning models. We especially want to investigate whether current methods and
tools are feasible for such systems and discover if there is potential for future re-
search.

This thesis is an exploratory case study on a small scale subject system that was
previously developed as a prototype for a Formula Student race car, the KoopaCar.
In this thesis, we want to explore how experimentation management tools can
support the development of Multi Machine Learning Model Systems, with a fo-
cus on ADS. We want to especially discover how the requirements for experi-
mentation management can differ, and if the requirements of the management of
multiple machine learning models are supported by experimentation management
tools.

1 Introduction

1.1 Context

This thesis revolves around Multi Machine Learning Model Systems, which are
systems that are used to implement an intelligent or autonomous behavior. While
such systems are used in a variety of fields and domains, this thesis originates
in the domain of ADS. The expectations for those systems is that they rely on
multiple machine learning models. An example for such a system in the domain
of ADS is Apollo [4].

The other important part of this thesis are experimentation management tools.
Experimentation management tools are software applications that were developed
to help practitioners develop and optimize ML models. The problem is that to
develop an optimal model extensive experimentation is necessary which results in
equally extensive accumulations of data and results. To organize experiments and
compare ML experiments, experimentation management tools are used.

As subject system for the thesis, a prototype that was previously developed by
students during a university course will be used. This system is called KoopaCar.
It originates from the system that was developed as a prototype for the Formula
Student Germany [5], which is a design competition for students. The system
needs to be further developed to fulfill certain requirements. More details on this
follow later.

1.2 Problem

This thesis is motivated by previous research on ADS and ML management tools.
In [3], Peng et al. published a case study on Apollo, which focused on the usage of
ML models in the system. It is apparent that there are a lot of ML models used
in the system. While Peng et al. focused on typical software engineering practices
and especially testing, this thesis will evaluate ML experiments to optimize the ML
models. For a system to run without errors, it is crucial that the calculations in
the system run on accurate data. Since the data is processed using ML models, it

1 Introduction

is worth to take a look at how the process of achieving accurate predictions can be
improved. The problem is that there is little to no research into ML experiments
in ADS or in general Multi Machine Learning Model Systems. This thesis will
provide a first insight into the problem.

This thesis will then go on to evaluate how experimentation management tools
can be used to improve ML experiments in Multi Machine Learning Model Sys-
tems. This follows the work of Idowu et al. in [6] and [7]. Idowu et al. state that
the usage of asset and experimentation management tools helps to avoid prob-
lems commonly associated with the development of ML models from a software
engineering point of view [6]. This means that when taking a look at practices
associated with ML experiments, it is necessary to take a look at experimentation
management tools, since those tools are known to improve the development of ML
models.

1.3 Research Questions

The goal of this thesis is to evaluate and analyze experimentation management
tools in Multi Machine Learning Model Systems. The problems outlined in 1.2
indicate challenges that will be worked on in this thesis. First, it is necessary to
take a look at what ML experiments look like in Multi Machine Learning Model
Systems. Then, by implementing and running matching experiments, experimen-
tation management tools can be evaluated. This leads to the following research
questions:

RQ1: How do the ML experiments during the development of ADS and the man-
agement of such experiments and corresponding assets differ from the work-
flow related to other single MLL model development and maintenance that is
common in other fields?

RQ2: How can experimentation management tools improve the development of
intelligent systems that integrate several ML models?

RQ3: How can existing experimentation management tools be further developed
to better support the development of intelligent systems implementing inte-
grating multiple ML models?

1 Introduction

1.4 Approach

To answer the research questions, the following approach will be used. First, the
subject system, the KoopaCar, needs to be further developed to match the char-
acteristics of Multi Machine Learning Model Systems. To this end, we will first
take a look at the current state of the system before diving into, how the system
was further developed.

Following this, we will begin to take a look at ML experiments in Multi Machine
Learning Model Systems. Here, we will investigate different strategies that could
be used to optimize the ML models used in the KoopaCar. Those experiments
will then be run and evaluated. The quality and evaluation of the experiments
does not match actual ML experiments. Despite that, the experiments run over
the course of this thesis remain representative.

The experimentation management tool that will be evaluated is selected in a doc-
umented selection process. Experiences that were made while running the ML
experiments using the experimentation management tool will then be presented.
The code for the subject system can be found in [8]. The code for the simulation
used to run the subject system can be found in [9].

2 Background

2 Background

Before diving into beginning to answer the research questions regarding Multi
Machine Learning Model Systems, it is useful to take a look at the background
for this thesis. This chapter gives the necessary background on topics related
to the before mentioned research questions. At the core of the thesis are Multi
Machine Learning Model Systems. We will use ADS as a possible application of
such systems. ADS are very popular in recent years and rely heavily on ML and
Artifical Intelligence (Al) to achieve autonomous behavior. With that in mind,
this chapter will first introduce Robotics Operation System 2 (ROS 2), which
was used to develop the subject system. Later subsections contain introductions
to Multi Machine Learning Model Systems in general, ML experiments, and ML
experiment or management tools.

2.1 Robotics Operating System (ROS 2)

The following contains a short introduction to ROS 2 [10]. It is useful to under-
stand some key concept before diving into the subject system used in this thesis.
The following information is from the ROS 2 documentation in [11].

ROS 2 is a collection of software libraries that allow a more consistent develop-
ment of robotics system. Despite the name, ROS 2 is not actually an operating
system. Systems developed with ROS 2 have a certain architecture that revolves
around nodes and the data exchange between them. Nodes usually contain Python
or C++ code and are executed to perform tasks in the robotic systems. ROS 2
organizes nodes in packages that can be deployed.

The features topics, services, and actions all implement data exchange and commu-
nication between nodes. Topics implement a publisher-subscriber scheme, where
nodes can exchange data by either sending messages with information to a topic or
by listening to such a topic and reacting to any new messages. Any node can sub-
scribe to any topic and use the information contained in the messages. Services are
an alternative concept to the publisher-subscriber scheme that the subject system
for this thesis, the KoopaCar, uses. Similarly, services are used to exchange data,
but in contrast to the publisher-subscriber concept this exchange does not happen

2 Background

continuously, but only, when a client calls the service. Actions are a more complex
variation of services that are meant for long-running tasks like teleoperation of
robots. Lastly, parameters are used for node settings. Parameters can be defined
in the node and hold any datatype. Parameters can also be changed from outside
the node and thus used for settings. An application for parameters could be to
change the frequency in which a node executes a task.

2.2 Machine Learning Models and Machine Learning
Experiments

This sections will provide the basic background on ML models that are used within
the thesis. Since this thesis evaluates and analyzes ML management tools, it is
important to have a basic understanding of ML models and common practices.
First, the development cycle of ML models is introduced. Later, background on
ML model types, training, and evaluation is provided. The last section will then
present common practices used in ML experiments. The sections only gives a brief
overview of the most important concepts.

The information on Multilayer Perceptron (MLP), Convolutional Neural Network
(CNN), ML model training and hyperparameters in general is mainly from Good-
fellow et al. in [12].

2.2.1 Development Cycle of Machine Learning Models Systems

Before moving onto the details of ML models, this section summarizes the bigger
picture of ML mode development. The development cycle of ML experiments can
be seen in Figure 2.1. The development starts very similar to any software project.
In the first development phase, requirements are being documented and analyzed.
In the next development phase, a data set is being created. To this end, data is
being collected and cleaned, next features are being extracted. These steps are
repeated until the data set is sufficient. After all requirements are collected and
a sufficient dataset was built, the development of the actual ML model starts.
The first step in the next phase is to design a model. This means that depending
on the requirements, a matching model architecture is chosen and implemented.
Then, the model is trained on the data set. After the training is finished, the
model is being evaluated and then optimized. Optimization refers to tuning the
hyperparameters, which are essentially training parameters, retraining the model,
and comparing the results to find parameters that yield the best predictions on

2 Background

unknown data. The process of optimizing a model is what the term ML exper-
iments refers to. The details of how the training works, what hyperparameters
there are, and how a model is evaluated will be summarized in the following. As
a last step in a model’s lifecycle, the model is being deployed. Deployment means
that it is used in a software system. To this end, the model needs to be monitored

as long as it is in use.

Developing ML Model

DevOps Work

Requirements Analysis : Creating Dataset
V.

—

System Requirements Data Collection Model Design Model Deployment

Data Cleaning Model Training Monitoring
Model Evaluation

Model Optimization

Figure 2.1: A graphical overview over the lifecycle of a ML Model or ML Model
System. The figure is based on Figure 1 from [6]. The lifecycle is split
into four phases Requirements Analysis, Creating Dataset, Developing
ML Model, and DevOps Work. The big gray errors indicate the transi-
tions between the phases. Below the phases important work steps are
listed.

2.2.2 Multilayer Perceptron

The MLP is one of the basic types of ML models. There are different types of
ML models, which are used for different tasks. The MLP is used to perform a
classification task, meaning that it assigns labels to outputs. It is essentially a
mapping between the inputs = and the outputs y. [12]

A MLP takes a vector of data as input and outputs another vector as a result. The
sizes of both vectors are chosen when defining the models and can not be changed
later. The MLP consists of several perceptrons organized in layers. An example of
what a MLP can look like can be seen in Figure 2.2.

First, we will take a look at how perceptrons work. A single perceptron takes
an input x and runs it through an activation function ¢(x). The result is the
perceptrons output y. There are several activation functions, which are best suited
for different use-cases. Going into depth on this matter does not fit the scope

2 Background

]

Input Hidden Hidden Hidden Output
Layer Layer Layer Layer Layer

Figure 2.2: Example for a Multilayer Perceptron (MLP). The MLP has three hid-
den layers. It takes an input x of size n and outputs a vector y of size
m. The first layer is called input layer and the last output layer

Figure 2.3: The same multilayer perceptron as in Figure 2.2 with a single per-
ceptron highlighted in the second hidden layer. The figure shows the
input and output of the perceptron, together with the computations
that happen in between. Note that the biases are missing in this de-
scription.

and context of this thesis. Regardless, in the following there are some examples
for activation functions and a brief description. An overview of the activation
functions can be seen in Figure 2.4. The first activation function in the figure is
a simple linear function f(z) = z. The linear function can be used as activation
function, but is not the best choice in most cases. Next, there is the Sigmoid
function sigmoid(z) = — . The sigmoid function is an activation function that

1+exp

2 Background

is often used in the output layer. It is very simple, and has the property that it
normalizes the output. Another activation function that is often used in the output
layer is the Softmax function y; = e"‘e’% The Softmax function has the advantage
that it can be used to produce probabilities for a set of mutual exclusive classes.
Lastly, the Rectified Linear Unit (ReLU) generates a linear mapping for values
larger than 0, ReLU(z) = max(0, z). ReLU has risen in popularity in the last few

years since it makes the training converge faster. [12]

Linear Sigmaoid
10] 1.0

0.8 q
0.6 1
0.4 4
0.2 4
-1047 . ‘ . M EE : ‘ ‘ .
-10 -5 0 5 10 -10 -5 0 5 10
Recitfied Linear Unit (RelU) SoftMax

0.15

0.10

0.05

o N & o o
T S

T T T T T 0.001 T T T T T
10 -5 0 5 10 10 -5 0 5 10

Figure 2.4: Overview over a selection of activation functions. The figure shows the
plot for the linear, sigmoid, ReLU and Softmax activation functions.
The activation functions are all used in different use-cases. Activation

functions are used in MLPs, CNNs and other ML models.

The MLP consists of a set of perceptrons, which are interconnected. There is
usually an input layer, followed by a set of hidden layers and then an output layer.
For each layer in the MLP, each perceptron takes the input from every perceptron
in the previous layer. The input is weighted and summed up > w;z;. The weights
are updated when the model is trained to change the model’s behavior. The result
is then run through the activation function ¢ to generate the output y. This
process can be seen in Figure 2.3.

2.2.3 Convolutional Neural Networks

CNN another type of neural networks. A CNN usually consists of multiple con-
volutional layers. Figure 2.5 shows an example for what such an architecture can
look like. The name of the convolutional layers comes from the mathematical

2 Background

operation convolution, which they implement. CNNs are used to extract features
from images or sequences of data in vector form. [12]

Every convolutional layer receives an input of a predefined shape. It is possible
to use matrices or vectors. The input is then processed using a kernel, which is
essentially the heart of the convolutional layer. The kernel is smaller than the
input and is slid over it. The kernel is multiplied with the input for every position.
In doing so, not every element of the input has a direct influence on every element
in the output. This is called sparse connectivity. [12]

Pooling layers are used to decrease the size of the input data of a layer. By taking
averages or maxima from quadrants in the input matrix, the size of the input for
the next layer becomes smaller. [12] By reducing the size of the input data of a
layer, the calculations will be sped up, increasing the model’s efficiency. The pro-
cess is called down sampling [13|. Figure 2.6 visualizes how pooling layers work.
The example that is shown is a max pooling layer.

sVl 0
SHET | ALY
A
K |’,' i R A .J./
|] I
| KA TRl N
= LV -
) Vo) ;i
: SV

Figure 2.5: Example of a convolutional neural network. The blocks symbolize the
input. The red markings indicate how one element of the input affects
the elements of the output, this is what is known as sparse connectivity.

<< mar >

Figure 2.6: Example of a pooling layer. The example shows the application of max
pooling to a 4x4 matrix. In max pooling, the input is split into sections
and the maximum value from each section is selected. The other values
are discarded. The result is a 2x2 matrix.

10

2 Background

The internal parameters that are updated in training using optimization algorithms
are the kernels.

In some cases, a combination of CNNs and MLPs is used to make a predictions
based on image data. In this case, the CNN is used to extract information and
reduce the data complexity, while the MLP is used to classify the image based on
the extracted features.

2.2.4 Machine Learning Model Training

The previous sections gave some background on ML models and started to intro-
duce the term ML experiments. Section 2.2.1 stated that repeated training is part
of the development cycle for MLL models. In the following, we will take a look at
what is meant when talking about ML model training. The general concept should
be familiar, nevertheless it will be introduced again in the following to lay a basis
for the introduction of hyperparameters.

The goal is to optimize a model. Optimizing means that the prediction the model
produces are as close to the ground truth as possible. The ground truth refers to
the correct predictions and are only known for labeled data sets, i.e., the training
set. How close the prediction is to the ground truth is measured using a loss func-
tion. There are different loss functions for different types of ML models or models’
outputs. One very common loss function is the Mean Squared Error (MSE), which
is shown in Equation 2.1. N is the number of samples that are being computed, y;
is the true label for the i-th sample in the set, and y; the corresponding prediction.
The MSE is equivalent to the [, norm. It is easy to see that the loss calculated
with the MSE becomes 0 in the case that the prediction and the expected output
are the same. [12]

N
1 A2
MSE = N;(yi — ;) (2.1)
An alternative for MSE is Cross-Entropy, which can be seen in Equation 2.2. The
Cross-Entropy loss function uses the probabilities for the possible classes to calcu-
late the loss. n refers to the number of classes, y; the true probability of the i-th
class for a given sample, and y; the predicted probability.

CE=—> yilog(y) (2.2)
=0

In addition, training the model should also be efficient to reduce training times.
Efficiency in training refers to memory usage and run time. Training large net-
works can result in a long training times and high memory usage. Therefore, an

11

2 Background

efficient use of limited computational power is one crucial aspect in model training.

To get a better understanding of how a ML model is trained and optimized, it is
useful to think of the model as an approximation of a non-trivial function. The
ML model approximates the relation that exists between the data (input) and
desired prediction (output). The model is used as a general mapping that is fitted
to approximate this relationship during training. It extracts features and learns
which feature matches which possible prediction.

To find the model’s internal parameters that yield the best result, several training
iterations are run on a dataset. One such iteration is called epoch. In the first
epoch, the weights are initialized. Note that going into depth on weight initial-
ization exceeds the scope of this thesis. During training, every epoch consists of
the following steps. First, a data samples are passed through the network. This
is called forward pass or forward-propagation. Then, by comparing the result to
the ground truth, the loss is being calculated using a loss function. After every
sample was run through the network, the average loss is being calculated. Using
back-propagation, another algorithm such as stochastic gradient descent, and the
loss from before, the weights or other internal parameters of the network are then
being updated. This is called backward pass. This basic concept behind the train-
ing can be generalized for almost any type of model or model architecture. More
on back-propagation can be found in [12].

The learning progress can be influenced using different parameters. Some of those
parameters will be explained in the section 2.2.6. But before diving into the
hyperparameters in depth, the terms over and under fitting are introduced, because
they influence how hyperparameters are chosen.

2.2.5 Overfitting and Underfitting

Before introducing hyperparameters and discussing model evaluation, it is useful
to introduce the concepts of over and underfitting. Both occur, if parameters are
chosen in a way that lead the model to not fit the data at all or to fit the data too
good.

Under fitting means that a model was not trained good enough to yield good
predictions. This can be seen in a poor accuracy on the training set, as well as
previously unseen.

Overfitting is a more interesting concept. There is no easy explanation to why

12

2 Background

overfitting occurs. The basic explanation behind the term is that the model was
trained to fit the training data too good. But by doing so, it also learned features
that only occur in the training data. As a result, the accuracy on data that is not
included in the training set, and thus previously unseen, is very low.

Because of over and underfitting it is important to evaluate ML models and tune
hyperparameters accordingly. Which values for each hyperparameter yield the
best results is different for every model and for every data set. As a result, it is
necessary to experiment with possible parameters and compare the results from
the experiments to the performance on a validation set.

2.2.6 Hyperparameters

The parameters that influence the training are commonly called hyperparameters.
It is important to differentiate between hyperparameters and parameters in gen-
eral. Hyperparameters are parameters that can be influenced manually to change
the model’s behavior. Parameters on the other hand usually refer to internal model
parameters like weights. They define a ML model’s behavior and are updated dur-
ing training, but not influenced manually. In the following, some hyperparameters
that are used in ML experiments in this thesis are introduced. Table 2.7 gives an
overview over parameters that will be discussed in the following.

There are a lot of hyperparameters that can be used to influence a ML model.
Only a few of them are relevant in this thesis. The few that are used in experi-
ments in a later chapter will be explained in the following. More information on
all the hyperparameters can be found in [12].

The first hyperparameter is the training and validation split. It is a common prac-
tice to not use the whole data set for training [14]|. Instead, the set is split into
two parts. One, the larger, is used for training and the other for validation. By
using two sets and calculating the error for both sets, despite only using one for
training, it is possible to detect overfitting during training [14]. A good indicator
for overfitting is, when the loss on the validation set increases, while the loss on
the training set continuous to decrease. In addition to splitting the data set into
a training and validation set, the data set is also commonly shuffled. Since the
order and also the composure of the training and validation set has an influence
on the training results, randomizing the set in advance can be advisable.

The next hyperparameter in the table is the number of epochs. An epoch refers
to one step in the model training. In each step of the training, the complete data
set is passed through the network and the loss propagated back. The number

13

2 Background

Hyperparameters Effect on the models behaivour or training in general

number of hidden layers | It increases what the model is capable of learning
from the relation between data and expected outputs.
training validation split | It changes how much data is used for training and
validation. It can impact the ML model’s perfor-
mance such that fewer data for training means that
the model is not learning as good. Fewer data for
validation means that overfitting and underfitting are
not detected as reliable.

data shuffling Randomizes the order of the data samples used and
can change the entire set for training in the case the
set is shuffled before it is being split into training and
validation set

number of epochs It changes the length of training, too few epochs
cause underfitting and too many possibly overfitting.
batch size It changes the sizes of the mini-batches. Smaller

batch-sizes take up less memory, but result in more
variance in the training results.

learning rate Learning rate changes the size of an update steps.
Too small learning rates mean that training pro-
gresses slower, too high learning rates can result in
training to diverge.

convolution kernel size | Changes the number of learnable parameters in a
model. A wider kernel reduces the model’s capac-
ity, and a narrower reduces memory cost.

Table 2.7: List of Hyperparameters and the effect on the ML model’s behavior.
The table is based on Table 11.1 in [12|. For more information on the
different hyperparameters and their effect, read [12].

of epochs needs to be high enough to make progress in training and avoid under
fitting. If training would go on forever, at some point the loss and other metrics
converge or the model begins to overfit. Training should be stopped either if the
ML model is not learning anymore or before overfitting occurs. [12]

The last hyperparameter in the list is the batch-size. The term batch-size is re-
lated to training with mini-batches. Mini-batches means that for every training
epoch not the whole data set is used at once, but instead several iterations are run
with smaller subsets of the training set. These sub sets are called mini-batches and

14

2 Background

their size is regulated with the hyperparameter batch-size. Choosing a small batch
size as benefits for the memory usage during training, since less information needs
to accessible at once. It also makes it feasible to use large data sets in training
that would otherwise not fit in the computer’s memory. If the batch-size is chosen
too small, the learning becomes unstable. This means that the training diverges
from iteration to iteration. If the batch-size is chosen bigger, the training is more
stable in later epochs. The downside is that the training slows down and uses
more memory. [12]

In the next section, metrics are introduced that can be used to evaluate ML models
and their performance.

2.2.7 Machine Learning Model Evaluation

In the previous sections, ML model training was introduced together with several
hyperparameters. It was mentioned that the goal in designing a ML model and
in ML model experiments is to optimize a model. Section 2.2.4 and 2.2.6 stated
that hyperparameters can be manipulated to influence the trainings results. In
this section, we will now take a look at how a ML model can be evaluated. To
this end, we will introduce metrics that will be used in ML experiments in later
parts of the thesis. For every metric, the mathematic background and usage are
outlined. For example, it is explained which values or patterns indicate that the
model was over or underfitted.

The only metric that is used in this thesis is the loss. The loss contains the result
of the loss function that was used in training. During training, the loss is used to
update the weights. For every epoch, the loss is calculated by averaging the devi-
ation of the prediction from the ground truth for every data sample. The two loss
functions MSE and Cross-Entropy were explained in section 2.2.4. Minimizing the
loss means that the ML model makes fewer mistakes. The loss being high indicates
underfitting. If the loss deviates and does not converge towards 0, it might be an
indicator that the model is not learning how the data and the predictions are re-
lated. Overfitting can also be detected using the loss. To do so, both a training and
a validation set is necessary. In the case that the loss on the training set converges
towards 0 and the loss on the validation set diverges, the model is being over fitted.

Usually, the loss is not the only metric used to evaluate ML models. Other metrics
are used instead or in addition to the loss. Examples of other more complicated

15

2 Background

metrics are for example Precision and Recall or the F1 score. More information
on other metrics can be found in [12].

Since the goal of this thesis is to evaluate experimentation management tools and
practices for ML, experiments, only the loss function will be used to evaluate the
ML models.

2.2.8 Machine Learning Experiments

To proceed further, a general understanding of the key concepts behind ML ex-
periments that were already mentioned in the previous sections is required. In
addition, this section introduces how ML experiments are run and common prac-
tices.

First, the term ML experiment refers to the repeated training of MLL models with
different hyperparameters. The goal to tune the hyperparameters to optimize the
model’s performance. The ML model’s performance can be evaluated by looking
at metrics in section 2.2.7. Section 2.2.1 states that experimentation is part of the
ML model’s development cycle. Section 2.2.6 introduced different hyperparame-
ters and how they can affect the model’s performance.

The sections above focused on the background, concepts, and mathematics be-
hind ML experiments. This section will dive into practices and will focus on the
software side of ML experiments. First, we will take a look at how ML models
are implemented and later on how experiments are managed. This section focuses
only on management practices without ML management tools. ML management
tools will be introduced in section 2.3.

ML models are usually implemented using common ML learning frameworks, such
as PyTorch [15] or TensorFlow [16]. Most commonly, Python is used as a program-
ming language. The purpose of ML frameworks is to provide implementations of
functions that are often used in ML. For example, the frameworks provide imple-
mentation for common loss functions like MSE or Cross-Entropy. Keras [17] is a
high-level API that is amongst others implemented as API of TensorFlow, known
as TensorFlow Keras. It allows the user to build and train ML models without
having to go into depth on implementing the training algorithm.

In most cases, the frameworks used for implementing and training the ML model
provide objects that can be used to evaluate the chosen metrics. In the case of Ten-
sorFlow Keras, this function training is tensorflow.keras.fit(). The function
returns an object, called history that contains the metrics specified in the call
of tensorflow.keras.fit(). The training script is run like any Python script.
Common practice is to define parameters that are passed to the training function,

16

2 Background

when it is being called.

After every experiment run, the model is evaluated. To compare runs, practition-
ers often use spreadsheets, where the results for every run are entered manually.
The usage of spreadsheets is error-prone and time-consuming. Sometimes practi-
tioners visualize the data.

The code as well as data sets and trained models are versioned. To this end,
practitioners rely on Git. In the case of the datasets, Git is not always usable.
To achieve good training results, data sets with a sufficient amount of data are
necessary. Therefore, a lot of storage space is needed. Git can not always handle
the amount of data necessary to train a ML model. Depending on the size of the
module, practitioners encounter the same problem for versioning trained models.

The problems associated with ML experiments that were described before, un-
derline the necessity for ML management tools. With the background on ML
models and ML experiment that this section provided, the next section will take
a look at what ML management tools are and which features they can pro-
vide.

2.3 ML Experimentation Management Tools

The previous sections outlined, how ML experiments are run. It also highlighted
that there are a lot of different parameters that influence the experiments results,
which in turn result in a lot of experiments. All of these experiments need to be
evaluated and compared. It is essential that the runs are organized properly to
ensure that any run can be reproduced to verify the results.

Despite management tools being on the rise, some practitioners still organize and
compare ML model experiments manually. Management tools are designed for
common experiments, with one model being optimized. The goal of this thesis is
to evaluate how such tools can support the development of Multi Machine Learning
Model Systems. But first, it is important to have an understanding of ML man-
agement tools and the features they provide. Therefore, the following will give an
introduction to ML management tools, their different categories and features.
The three main categories for ML management tools are asset management, ex-
perimentation management, and model management and MLOps [18]. In the
following, there will be a short introduction for every category and a summary of
the features each tool is known for.

17

2 Background

The first category that was named are asset management tools. In [6] Idowu et
al. did a survey on assent management tools, which will serve as basis for this
introduction. Asset management tools are used to version and store any assets
that are related to a ML model system or an ML experiment. Asset management
is important at any point of the ML model’s lifecycle.

To understand what asset management tools do, it is essential to first understand
what the term asset refers to in the context of machine learning. Idowu et al.
divided assets into the subcategories resources, software, metadata, and execution
data. Resources refer to objects and information that is necessary for an ML ex-
periment. This includes for example the data set, but also the model itself and the
run environment. Software refers to source code or notebooks that were created by
practitioners and are related to the experiment. Next, the metadata is data that
exists around the ML experiment. Metadata could reference git commits, depen-
dencies, or information on the state of the ML model system. Lastly, execution
data is the term for any data that is created while the system or experiment is
being executed. These are for example logs or experiment results.

All the features of asset management tools are related to storing and versioning the
above-mentioned data. It is possible that asset management tools implement oper-
ations to store and version data on external databases.

The next category are experimentation management tools. Experimentation man-
agement tools are more focused on ML experiments. Thus, they are useful during
the development and optimization stage of a ML model system. They help prac-
titioners to organize and evaluate different experiments [18].

Features include the collection of meta information that is related to an experi-
ment. In this case, meta information means, amongst other, references to code or
git versions or the environment in which the experiment is being run. Experimen-
tation management tools should support logging. Logging means that the user can
choose metrics, parameters or other artifacts which will be collected and versioned
by the tool. Experimentation management tools usually also have visualization
features. They visualize the metrics which are used to evaluate and compare ML
experiments. In most cases, it is possible to export an overview over the experi-
ments together with their metrics.

In [7] Idowu et al. proposed a metamodel for experimentation management tools.
In their paper on this metamodel, they also introduced core features for experi-
mentation management and summarized challenges.

Next in the list is run orchestration. Run orchestration refers to tools that allow
the user to organize their different experiments. This allows for more efficient use
of time and computation power available.

Tools that support run orchestration usually implement other features like asset

18

2 Background

or experimentation management as well.

The last category on the list is MLOps. MLOps refers to all actions that manage
the complete model’s lifecycle [18]. This includes amongst others monitoring.
MLOps is not the focus of this thesis. Therefore, we will not go into depth on
features available for such tools.

2.4 Multi Machine Learning Model Systems

In this section, we will take a look at multi machine learning model systems. The
term refers to systems that consist of more than one ML model. It is important to
note that in our understanding, the ML models are not independent of each other.
This means that those models have a common influence on a result or output.
Most commonly, multi machine learning model systems are related to intelligent
systems or autonomous behavior.

Over the course of the thesis, we will differentiate between two cases or structures
for Multi Machine Learning Model Systems. The first one being that two models
run sequential. In this case, the output of the first model serves as input for the
second model.

In the second case, two or more models are ordered parallel. This means that,
the input of all parallel MLL models has a common impact on the next system
component. This component can be an algorithm or a ML model. In the case that
it is a ML model, the models that are running parallel and the model that fuses
their output are also structured sequentially.

All two cases, sequential structure, parallel structure, are visualized below. Figure
2.8 shows the sequential structure that was described. Figure 2.9 visualizes the
parallel structure. The last component in Figure 2.9 could be both a ML model
or other software component.

Both structures are not mutually exclusive. They can be combined to create more
complicated systems. It is important to note that if a system has a more compli-
cated structure, it can always be broke down to smaller components that match
the structures that were described. A section from a system that contains multi-
ple ML models in a structure as described before will be referred to as ML model
pipeline or in short pipeline in the next chapters. The term Multi Machine Learn-
ing Model System refers to the complete system, if such a system contains more

19

2 Background

Machine Learning Machine Learning

Input —» Model * Model

—» Output

Figure 2.8: Sequential Structure of Multi Machine Learning Model System. Input
is passed to the first ML model, processed and then the output of the
first ML model is passed to the next ML model to produce the output

Machine Learning
Input —>) Model
. . Machine Learning
Input —» Machlnmzlazlarnlng » Model or other —> Output
[Software Component
Machine Learning
Input —>) Model

Figure 2.9: Parallel Structure of Multi Machine Learning Model System. n ML
models receive input that is independent of each other. The output of
the ML models is passed to the next component to produce the final
output.

than one ML model, as described before.

The goal of this thesis is to evaluate what challenges there are for running ML
experiments and optimizing a ML model pipeline. We will evaluate how the per-
formance and the loss of such a Multi Machine Learning Model System can be
evaluated, and how the different structures that were described here affect the
performance and loss.

2.4.1 Example for Multi Machine Learning Model Systems in
Autonomous Driving

An example of Multi Machine Learning Model Systemsm in the context of au-
tonomous driving is Apollo. [4] Apollo is an ADS system that was developed by

20

2 Background

Baidu. The following contains a short introduction to Apollo and outlines the sys-
tem architecture. By taking a look at Apollo, we will be able to draw comparisons
to the subject system used in this thesis and generalize the experiences made in
the context of ADS and ML experiments to any Multi Machine Learning Model
System.

Vehicle_Cruise_Cutin

Vehicle_Cruise_Go

Vehicle_Junction Map

Vehicle_Junction MLP

Vehicle_Lane_Scanning

‘Vehicle MLP

Vehicle RNN

LiDAR Velodyne_16
Vehicle_Lane_Aggregate
LiDAR Velodyne_64

Pedestrian LSTM

LiDAR Velodyne_128

Figure 2.10: Overview of the relevant components in Apollo. The image is Figure
1 from [3]. It shows the data flow through the system and highlights
the relevant components. The green boxes are MLL models. The figure
shows that information is processed by a camera and a LiDAR and
process using ML models and other software components to detect
objects like traffic lights, lane markings, bicycles, pedestrians, and
other vehicles. The information about all of these objects is used for
the trajectory prediction, which is necessary to foresee the behavior
of other traffic participants.

An overview of the relevant parts involving ML models in Apollos system architec-
ture can be seen in Figure 2.10. There we can see that Apollo relies on information
from both LiDAR and Camera to make decisions. The information from both sen-
sors is being processed individually and later fused. The data from the camera is
used to detect traffic lights and lanes. Other objects are detected with both the
data from the camera and from the LiDAR after the signals were fused.

The structure that is visible fits the structural types for Multi Machine Learning
Model Systems that were described in section 2.4. In Apollo, some models run
sequential while others are running parallel to each, other. This shows that the
structures identified before are useful to achieve a generalization of experiences
made with ADS. The results of this thesis can be applied to any system that im-
plements ML in a parallel or sequential structure.

21

2 Background

Peng et al. analyzed the usage of ML models and stated that there are a total of
28 ML models in the system [3]. Not all of these models are used simultaneously.
From Figure 2.10 we can see that 18 of the 28 ML models are used simultaneously.
The models are imported and run from several ML frameworks. This is what mo-
tivates the necessity to take a look at the development and optimization practices
related to ML models in large software applications.

Chapter 3 will show that the software architecture of the subject system is very sim-
ilar. Thus, the subject system can be used to gather representative results, while
remaining manageable without creating too much of an overhead. The number of
ML models in Apollo that need to be developed and optimized shows the necessity
to evaluate development strategies and the usage of experimentation management
tools. Chapter 4 and 5 will evaluate ML experiments and management tools in
systems like Apollo.

22

3 Subject System — KoopaCar

3 Subject System — KoopaCar

As mentioned before, this thesis is a case study collecting experiences with ML
management tools in Multi Machine Learning Model Systems. Therefore, it is
necessary to introduce a subject system. Since the focus of this thesis are Multi
Machine Learning Model Systems, the subject system needs to contain more
than one ML model. Its structure should also be similar to real applications
of Multi Machine Learning Model Systems. The system should also be easy to
handle and run to reduce the overhead for running and managing the subject
system. Consequently, the KoopaCar will be used as subject system for this the-
sis.

3.1 Application of the KoopaCar

The KoopaCar was first developed as a prototype for a race car for the Formula
Student Germany [5|. Formula Student Germany is a design competition where
groups of students design and develop racecars. There are different events where
teams compete with their self build racecars against each other. One part of the
events are static events, where teams present their designs and business plans re-
lated to the race car. The other type of events are dynamic events. Another part
of the events are dynamic events, which can best be described as races and are
scored based on the time it takes to complete the course. Recently, the Formula
Student Germany began to host a driverless competition. In this competition,
teams compete with self-driving racecars. A detailed description of all events and
rules can be found in the Formula Student rule book. [19]

Inspired by the RUB Motorsports [20] team, groups of student developed proto-
types for the Formula Student driverless competition using a Turtlebot3 [21]. The
RUB motorsports team is a team of students from the Ruhr Universitdt Bochum
that participates in the Formula Student Germany. In the Formula Student com-
petition, racetracks are always marked with different colored cones. The left side
of the racetrack is marked with blue cones and the right side with yellow cones.
The start and stop area is surrounded with orange cones [19]. The goal for the
prototype is to detect the racetrack and drive through it without any user input.

23

3 Subject System — KoopaCar

In the best case scenario, the Trutlebot would drive two laps. In the first lap, it
would create a map of the racetrack. In the second lab, the Turtlebot can the
follow the optimal trajectory.

An example of the KoopaCar operating environment can be seen in Figure 3.1.
Figure 3.1a is a drawing of what a racetrack could look like. In this example, the
racetrack is almost circular. The start and stop area is framed with four orange
cones. The outer circle is the left track border and is marked with blue cones.
The inner circle is the right track border and is marked with yellow cones. This
makes the driving direction clockwise. Figure 3.1b shows a top-down view of the
racetrack inside the simulation used for development.

A AAAAAALA
A AAAAAAA A

A A~ monsoer

A A A A
A A
A AA AA AA A

(a) Drawing of a racetrack. (b) Image of the racetrack taken in a
simulation.

Figure 3.1: Examples for a racetrack following the Formula Student rule book.
The driving direction is counterclockwise. The starting area is at the
bottom of the figures, marked with four orange cones. The yellow cones
mark the right side of the racetrack and the blue cones the left side.
Figure 3.1b is a screenshot from a simulation. The simulation software
that was used is Gazebo [22|. The simulation environment that was
used to create the screenshot can be found in [9].

The next sections describe the KoopaCar’s hardware and software architecture.
Despite the KoopaCar being developed as a prototype previous to thesis, more
development was necessary to fulfill the additional requirements for the subject
system. As mentioned before, the system needs to rely on more than one ML model
and still be fairly simple to reduce any overhead to evaluate MLL management tools
in Multi Machine Learning Model Systems.

24

3 Subject System — KoopaCar

3.2 Hardware Architecture

The hardware used for the KoopaCar is a Turtlebot3. The Figure 3.2 gives an
overview of the hardware. The Turtlebot is a small drivable robot with multiple
layers. At the core is a microcontroller that is connected to multiple sensors and
a motor unit. In general, the Turtlebot can be upgraded by adding additional
sensors |23]. The Turtlebot that is used for the KoopaCar has a two-wheel drive, a
Raspberry Pi camera [24], and a LDS-01 LiDAR sensor [25]. The usage of cameras
and LiDAR sensors in ADS is very common since both sensors complement each
other well [26], but some systems use additional sensors to obtain more informa-
tion to make more reliable assumptions and predictions on their surrounding. The
KoopaCar only relies on images taken from the camera and scans returned from
the LiDAR. Both sensors are described more detailed in the following.

LDS-01 LiDAR

»
!
| | | \

Camera

7

(a) Back of the KoopaCar (b) Front of the KoopaCar

Figure 3.2: The figures show images of the KoopaCar. The KoopaCar consists of
multiple layers. On top of it is the LDS-01 LiDAR. The layer below
holds the computation unit. At its core is a Raspberry Pi [27|. On the
bottom layer, the motor and wheels are mounted. The red markings
in the images indicate the position of the most important components
of the KoopaCar.

The Raspberry Pi camera is a simple camera module. The small module is mounted
on the top front of the Turtlebot. It can be used to take still images or transmit
a video stream. The camera can be accessed via APIs using Python.

25

3 Subject System — KoopaCar

A LiDAR sensor is used to collect distance measurements of the sensors surround-
ing using light. It sends out light beams in every direction. The sensor detects the
scattered light that returns to the sensor. Using the time it takes for the light to
return, the sensor then calculates the distance the beam traveled. The results are
commonly known as scan or LiDAR scan. The LDS-01 is a 2d LiDAR sensor. This
means that the sensor returns a 2-dimensional point cloud. With the knowledge of
the distance for every beam, one can calculate coordinates in the plane the LIDAR
beams travel in.

3.3 Software Architecture

data —

input Perception MNavigation and Driving —» movement

o) | > =4

Localization and Mapping

Figure 3.3: High level description of the KoopaCar’s software architecture. The
architecture consists of three modules, the Perception module, the Lo-
calization and Mapping module, and the Navigation and Driving mod-
ule, which are represented by the three boxes in the figure. The black
arrows indicate the flow of data and information between the three
modules. The data input for the Perception module originates from
the sensors that are used. The figure states that the output of the
system is movement. What is meant with this is that what can be
perceived as a result of the internal computation is the movement of
the KoopaCar, and thus it is shown as so-called output.

This section describes the software architecture. The first part of this section will
be a high level description. The later parts contain a more in depth description of
the individual modules.

On a higher level of abstraction, the system architecture can be split into three
part. There is a Perception module, a Localization and Mapping module, and
a Navigation and Driving module, as can be seen in Figure 3.3. The perception
module is used to detect objects in the immediate surrounding of the KoopaCar.
Using the information gathered in the perception module, the Localization and
Mapping module creates a map and localizes the KoopaCar in it. Lastly, the

26

3 Subject System — KoopaCar

Navigation and Driving module uses both the map and the information on the
immediate surrounding to navigate the KoopaCar through the racetrack. It inter-
acts with the motor to control speed and orientation. This thesis focuses on ML
models and their interaction. Since no other module but the perception module
uses ML models, it has the most relevance for this thesis. The implementation of
the KoopaCar can be found in [§].

3.3.1 Perception Module

The perception module works with ROS 2 nodes and topics. The concept behind
both being modularizing code and exchanging a continuous flow of data. A longer
description of the concepts can be found in chapter 2. A graph of the nodes and
topics as well as the data flow can be seen in Figure 3.4.

The perception module takes data from the camera and the LiDAR as input. The
data is processed independently for each input using ML models. As can be seen
in Figure 3.4 the ML models run parallel to each other. The following contains
a step by step description that follows the data flow through the graph of ROS2
nodes.

The camera sends images to the corresponding topics. To this end, the camera node
uses a Python API to take images. Images are sent to the image processing node
using the topic /image raw. The image processing node can be used to edit or pro-
cess the image. One possibility would be to resize the images. The image processing
node then publishes the images to the topic /proc_img.

3.3.1.1 Yolov5 in the KoopaCar

The camera object detection mode subscribes to this topic and performs object
detection on the images. To this end, the node uses the ML model Yolov5 [28].
Yolov5 is the fifth complete version of the model called Yolo [29]. Yolovb treats the
object detection as a single regression problem. This means that a single model
is used, which takes images as input and outputs bounding boxes and labels for
detected objects. With this approach, the model is faster than comparable models
and achieves high accuracy [28]. More information on Yolo in general and Yolovh
can be found in [29] and [28].

The KoopaCar uses an implementation of Yolovh that is published and maintained
by Ultralytics. [30] Ultralytics implemented Yolov5 in PyTorch and provides all
necessary scripts to train the model on custom data, evaluate the model perfor-
mance and export the model to other formats like TensorFlow lite. Yolovb takes

27

3 Subject System — KoopaCar

LDS-01 Lidar

3

¥

" RaspbermryPi

Camera -—P Camera Node
|
K Hé}a\;\r'éré-._l
II.Componem I.I
- Sensor .1
—

Image Processing

— Ros 2 Node

__ Hardware Component

Node

Lidar Object / b
Detection Node cone_scan 0Xes

Camera Object
Detection Node

v

Sensorfusion Node

Localization and Mapping

Icone_position

+
Driving and Navigation

LA

Figure 3.4: Low-level description of the KoopaCar’s Perception module. The figure
shows the low level system architecture of the perception module. The
gray boxes are ROS 2 nodes, and the white boxes with the rounded

corners are ROS 2 topics.

The back arrows indicate the data flow

through the system. The elements with dotted lines put the system
into the context of the complete system. The data flow stems from
the sensors, which provide the input. The results of the Perception
module are passed to the other software modules used in the system,
the Localization and Driving module and the Driving and Navigation

module.

images and inputs and outputs bounding boxes and labels for the objects it detects.
The bounding boxes are published to the topic /bbozes.

3.3.1.2 LiDAR-CNN

Parallel to this, LIDAR scans are being published to the topic /scan. Lidar scans
are sent as ROS 2 sensor messages that contain a vector of length 360 together with

28

3 Subject System — KoopaCar

A (yon Wo1 Hoz)

T i (yio w1 w12)
T = — R - femade —— boodey —F U= .

: - é . :
E350 \ : L (yaman Wasag Wasoz)

*
[1ud
2y

Figure 3.5: Architecture of the CNN with 1d convolutions used to classify LIDAR
scans, called LIDAR-CNN. The input for the ML model is a vector
with length 360. A series of 1d convolutional layers is used to extract
features and perform a semantic segmentation. The 1d convolution
is visualized in red. The ML model consists of one input layer, 20
convolutional layers, and one output layer. All layers use ReLU as
activation function, except from output layer, which uses Softmaz. The
output of the model is a 360x3 matrix. It contains the probability that
a point belongs to the three classes, for every element that was input
into the model. There are no pooling layers used.

additional information about the LiDAR. Each entry in the vector corresponds to
the distance a LIDAR beam traveled. This is done automatically, when using the
default Turtlebot3 setup.

The lidar object detection node tries to detect cones in the vicinity of the KoopaCar
using data provided by the LiDAR. To this end, the node performs a semantic seg-
mentation. This means that an algorithm or ML model is used to assign labels to
every point in the input vector. In the case of the KoopaCar the labels are cone,
no-cone, and outlier.

The semantic segmentation in the KoopaCar is performed using a CNN. Deciding
on a ML model to use in the KoopaCar was a tedious process. There are several
complete implementations for ML. models that implement object detection or seg-
mentation on LiDAR data, like Yolovh. The problem is that all of these models
use LiDAR data with more layers, than the KoopaCar can access. This means
that to be able to use one of these models, modifications in the code would have
been necessary. The alternative solution was to implement our own CNN. The ad-
vantage of this solution is that the model can be fitted to the requirements of the
KoopaCar. It is also a contrast to Yolov the other ML model in the KoopaCar,
which can prove interesting, when we will begin with ML experiments and exper-

29

3 Subject System — KoopaCar

imentation management in the later chapters.

The LiDAR-CNN that is used in the KoopaCar is inspired by the 2dLaserNet
proposed in [31]. The 2dLaserNet uses 1d convolutions to process LiDAR scans.
Following this, the architecture of the LIDAR-CNN was derived. The architecture
can be seen in Figure 3.5. The vector of length 360 taken from the LiDAR scan
message is used as input. The CNN then performs the semantic segmentation
and outputs a 360x3 matrix containing probabilities for the three class labels for
every entry in the input vector. The points that have a high probability (above
a set threshold) that they belong to the cone class are run through a clustering
algorithm to identify sets of points that belong to the same cone. The cone cen-
ter and with that the cone position is being approximated by extending the line
between the point from each cone cluster that is closest to the KoopaCar and
the KoopaCar’s position. The cone positions that were derived are then being
published to the topic /cone scan.

3.3.1.3 Sensor Fusion

After the camera object detection node and the lidar object detection node pub-
lished the predictions on cones in the KoopaCar’s vicinity, next both predictions
are being fused. To this end, the Sensor fusion Node subscribes to the topics
/cone_scan and /bbozres and performs a late sensor fusion. Late sensor fusion
means that the data from the sensors that are being fused was processed prior to
the fusion. In the case of the KoopaCar it means that the estimated position of
cones is known from processing LiDAR scans and the label of cones is known for
cones that are in the camera’s field of view. The goal now is to determine the
position of the cones in the KoopaCar’s field of view by supplementing the data
from the /cone scan. To this end, an algorithm iterates through the bounding
boxes, starting with the one that matches the cone closest to the KoopaCar. How
close the cone is to the KoopaCar is derived from the height of the corresponding
bounding box. For every bounding box, the algorithm then estimates what angle
to the KoopaCar the cone is located. Using the estimated angle, searches for a
cone center from the /cone scan that lies within a range around it. In the case
that more than cone cluster matches the range, the one closest to the KoopaCar
is chosen. After matches were found, the cones’ positions, which are gathered
from cone clusters, and their corresponding labels, which are gathered from the
bounding boxes, are published to the topic /cone_ position. The sensor fusion is
visualized in Figure 3.6.

30

3 Subject System — KoopaCar

Actual cone
position

Predicted

cone center Cone in the

P image —
R

" . a® = Clusterfrom
" LIDAR scan

Range where the
algorithm searches

Actual cone
for cone centers

Range where the
F“_‘-—-Gamera's ¥ algorithm searches

field of view '-. for cone centers

KoopaCar

KoopaCar
(a) Top-down view (b) 3d view

Figure 3.6: The figures are a visualization of the sensor fusion algorithm used in
the KoopaCar Perception Module. The algorithm relies on cone pre-
dictions in images and LiDAR scans. It uses the position of a cone
in the image to find an approximated angle range, where it searches
for a cone prediction from the LiDAR. The range is indicated by the
dotted line in both figures. The 3d view shows what the sensor fusion
looks like from the point of view of the camera. The dark yellow cone
in the back is the cone in the image. The lighter yellow cone is the
actual cone that was perceived. The actual cone is visualized by the
yellow circle in the top-down view. The top-down view shows what
the sensor fusion looks like from the point of view of the LiDAR data.
The black dots indicate the LiDAR scan. The circle with the x marks
the predicted cone position.

3.4 Comparison to Autonomous Driving Systems
(ADS)

This thesis investigates ML management tools and their impact on the devel-
opment of ML models in Multi Machine Learning Model Systems. The main
inspiration for these systems comes from ADS. Therefore, the subject systems
used to collect experiences has to be comparable to real Multi Machine Learning
Model Systems or more specific ADS. This section outlines differences between
the KoopaCar and ADS and also shows that despite those differences the systems
are still comparable. The similarities and differences are shown in Table 3.7 and
described in depth in the following.

31

3 Subject System — KoopaCar

Similarities

Differences

Uses LiDAR and camera to gather in-
formation on the surrounding.

The surrounding of the KoopaCar is
limited to a racetrack and thus a sim-
plified version of the real world.

Similar system architecture. Process-
ing sensor data, using ML models, and
high level sensor fusion.

The KoopaCar can only drive slowly
and has limited hardware capabilities
for computation.

Fulfills the same or similar tasks, like

KoopaCar does not have to follow traf-

fic rules.

object detection and sensor fusion.

Table 3.7: Table outlining the similarities between the KoopaCar and real ADS
systems.

3.4.1 Similarities

The first similarity is the sensors that are used in the systems. The KoopaCar
relies on LiDAR data to gather distance information of its surrounding and sup-
plements this data using images from a camera. The same sensors are used in
real world ADS like Apollo [3]. While it is possible that other sensors are used to
supplement the data in addition to the LIDAR and camera, the usage of multiple
sensors is common, and they usually always include LiDAR and camera. This is,
because both sensors provide different types of information.

Next, the system architecture is very similar as well. This is partially because
the usage of different sensors induces a certain structure. The data from the sen-
sors needs to be processed and fused to make useful assumptions on the systems
surrounding. The late fusion that is performed in the KoopaCar can be found in
Apollo as well [3].

The last similarity is that the KoopaCar fulfills similar tasks as real world ADS do.
What is meant with this is that after the environment was perceived, similar deci-
sions have to be made to plan a route and trajectory to follow.

3.4.2 Differences

The main difference between the KoopaCar and other ADS is the application en-
vironment of the system. The environment in which the KoopaCar operate is
limited to a racetrack. Additionally, it can be assumed that there are no other
contestants or obstacles on the track. Thus, the KoopaCar only needs to perceive
the boundaries of the track. ADS like Apollo, operate in the real world and have
to manage the normal traffic. Other traffic participants are bicycles, pedestrians,

32

3 Subject System — KoopaCar

and other vehicles.

Another difference is that the KoopaCar can only drive at low velocities. As a
result, there is no way in which people in the KoopaCar’s surrounding can be in-
jured. This means that there are fewer concerns for safety.

While the KoopaCar fulfills similar tasks to real ADS, the tasks are not the same.
The main difference is that the KoopaCar does not have to follow traffic rules.
This makes the decisions that have to be made simpler.

It can be seen that the KoopaCar is in many ways similar to real ADS. The
difference is that the KoopaCar is simplified in many ways. This means that the
implementation and maintenance of the system is easier. Despite the system being
less complicated, it is similar enough to real ADS to ensure that the results of this
thesis can be transferred.

33

4 Machine Learning Experiments in Multi Machine Learning Model Systems

4 Machine Learning Experiments in
Multi Machine Learning Model
Systems

This section investigates how ML experiments work in Multi Machine Learning
Model Systems. The goal is to outline the differences to normal ML experiments
to gather expectations for features of ML, management tools. Section 2.4 outlined
the structure of Multi Machine Learning Model Systems. It stated that there are
three basic structures into which any Multi Machine Learning Model System can
be broken down. The first structure are ML models in a sequential order, and the
second and third structure are parallel models that produce the input for another
ML model or different software component.

Currently, it is common practice to optimize each model in a Multi Machine Learn-
ing Model System individually. The underlying assumption is, that if the loss of
each component in a system is minimized, then the overall loss will be minimized
as well. This section investigates, whether this approach is optimal based on the
structures of the Multi Machine Learning Model System. The first sections will in-
troduce experiment or training patterns. A pattern describes ways the ML model
pipeline with parallel structured models can be optimized. The later part of this
chapter will focus, on the implementation of such patterns or experiments in the
context of the subject system.

The KoopaCar, which is the subject system used in this thesis, is a simplified
version of an ADS. It only uses two ML models that are structured parallel. As
a result, we will only be able to investigate experimentation and training patterns
for parallel ordered ML model pipelines. More precisely, we will only be able to
investigate patterns for two parallel models whose result is fused using a software
component that is not a ML model to produce a combined output.

The idea behind a training pattern is, that it describes the flow of data through
the pipeline as well as the loss that is used to optimize ML models during training.
Figure 4.1 shows the type of ML model pipeline that will be used to describe and
investigate different patterns. It also highlights the data flow and loss at several

34

4 Machine Learning Experiments in Multi Machine Learning Model Systems

points in the system. The data flow is shown by the yellow lines in the figure. The
loss can be calculated after every component, ML model or otherwise. To this end,
the output of the component will be compared to an expected result or ground
truth.

The different patterns utilize the data flow and loss differently to optimize the mod-
els. The following sections will introduce the patterns that were considered as pos-
sible approaches for the optimization of a ML model pipeline. Each section will out-
line the pattern and give suggestions for the implementation.

Data Flow / Forward
Pass

ML Model 1
Loss Model 1

Sotware Component End Loss

Data input

Loss Model 2
ML Model 2

Figure 4.1: Data flow through the ML pipeline on the forward pass. The yellow
arrows indicate the flow of data. The boxes are ML models or other
software components. The figure shows the loss that is available at
different points in the pipeline.

4.1 Experiment Pattern 1 — Individual Model
Training

When using the first pattern, each ML model is trained and optimized separately.
The idea is that by minimizing the error, each model produces, the error in the
pipeline’s output is minimized as well. Individual Model Training is the approach
for training that is most commonly used. Each model is trained by first passing the
data through the network on the forward pass, and then updating the parameters
that define the models by calculating the loss at the end of the forward pass and
propagating this loss through the model on the backward pass. This is visualized
in Figure 4.2.

For this training pattern to work, a data set for every model with the inputs and
expected outputs in necessary. Using this data, it is possible to calculate the loss
for every ML model individually and update the corresponding model.

35

4 Machine Learning Experiments in Multi Machine Learning Model Systems

O

ML Model 1

Loss Model 1

- —»End Loss

Data input

O

Loss Model 2
ML Model 2 K

Figure 4.2: Training and optimizing a pipeline using Individual Model Training.
The data is passed through every ML model. The loss for every model
is calculated and used to update the corresponding model. The rest of
the pipeline is not necessary for training.

On a software scale, the first training pattern is implemented by creating a train-
ing script for every ML model that is being used. Since this is common practice,
models like Yolovb are deployed with a corresponding training script.

A possible disadvantage of this training pattern is, that it optimizes the individ-
ual ML models further than it would have been necessary. In the case of the
KoopaCar, the Yolovh model optimizes the positions of the bounding boxes as
well as the labels. Since the labels, are the most important information for the
result of the pipeline, the accuracy of the bounding boxes has less impact on
the end result and does not have to be full optimized to achieve the same end
result.

4.2 Experiment Pattern 2 — Partial End Loss
Training

The second pattern changes that not all ML models are trained individually, as
in the first pattern. Instead, a part of the ML models is updated using the end
loss. The rest of the pipeline will be trained and optimized independently with its
individual loss. This means for the corresponding model, normal experiments will
be run, as in Individual Model Training. Figure 4.3 visualizes the pattern.

In this case, the necessary data set becomes more complicated. First, all the
inputs are needed. Next, the expected outputs of the ML model that is trained
independently are needed. Lastly, the expected output of the ML model pipeline
is needed as well. Using all this information, it is possible to calculate the losses
for the individual models and the end loss.

36

4 Machine Learning Experiments in Multi Machine Learning Model Systems

/" update 3 Backward Pass Step 2
. Module <--._
1 Forward Pass ‘L e
Y I,-/éorm:uhe Losft;(\-\l
! | each Model using | <~ Backward Pass Step 1
ML Model 1 LossModel 1 \ gna LD;E"?/-"" - ':\.2,'

Model or Algorithm

(Fusion results) End Loss

Data Input

1 Forward Pass < \
LY
\'\-—/

ML Model 2

Update
Module

Figure 4.3: Training and optimizing a pipeline using training Partial End Loss
Training. One of the ML models is updated using the end loss. To this
end, the forward pass is extended and the end loss calculated. Next,
the loss needs to be traced back to the ML model. In this step, the
loss for model 1 is calculated. This is indicated in red and blue. The
other model is trained individually, this is indicated in green.

To be able to implement Partial End Loss Training the training algorithms used
to train the ML models that are now being trained using the end loss need to be
split into their forward and backward passes. More on this will follow in 4.3. The
rest of the MLL models can be trained using an independent training script.

The advantage of this training pattern, compared to the first pattern is, that
the ML models that are updated using the end loss are not optimized further
than necessary. Another reason for using this approach could be, that the end
loss does not include the information needed to update the models. This means,
that it might be possible that the end prediction does not include the complete
output of the ML model and thus the loss is not representative of the model’s
performance.

4.3 Experiment Pattern 3 — Simultaneous End Loss
Training

In the third pattern, the whole pipeline is being trained as one. This means that
the loss at the end of the pipeline is being used to optimize the models, no matter
their position in the pipeline. Figure 4.4 visualizes the pattern. The data is passed

37

4 Machine Learning Experiments in Multi Machine Learning Model Systems

/" update 3 Backward Pass Step 2
_ Module <--._
1 Forward Pass i o
LR b T,
- o /Compute Loss far™,
P ML Model 1 ' | each Model using | Backward Pass Step 1
Lo Loss Model1 ...\ " EndLos /-< e '2
I‘g: \
= Model or Algorithm
i%: (Fusion results) End Loss
Lan 1 Forward Pass
P M
Loss Model 2
ML Model 2 .
“ Update M-

(ot (3)Backward Pass Step2

Figure 4.4: Visualization of the training process for an ML model pipeline using
Simultaneous End Loss Training. In this figure both ML models are
being updated using the end loss. The data is passed through the
whole pipeline, indicated in yellow. After the end loss is calculated
and processed, which is indicated in red, the ML models are updated.
This is indicated in blue.

through the complete pipeline and the loss calculated at the end. This loss is then
being used to update the ML models. In the case of the KoopaCar, the loss needs
to be split into a loss indicating the error in the position of a prediction and a loss
indicating the label of the prediction. This process is necessary to use the correct
loss to update the ML models.

The information that is necessary for this approach to work is the input data and
the expected output of the MLL model pipeline. Using this, the deviation between
the predicted and expected output can be calculated.

To implement this pattern, the training algorithms of the ML models need to
be split into the respective forward and backward passes. In each epoch during
training, first the batch of data samples would be passed through the ML model
pipeline and with this through the ML models. This will be called forward pass on
the scale of the pipeline. Next, the loss at the end of the pipeline is calculated. This
loss is then being propagated back through the system. This means that the end
loss is being traced back to each model in a way, that the loss that was induced by
the corresponding model becomes apparent. Next, the models are being updated
by running the backward pass with the corresponding loss, that was measured at
the end of the pipeline.

The advantage of this training pattern is that, with most certainty, the end result
of the pipeline is being optimized, and the ML models are not optimized further
than necessary. The disadvantage is that it is uncommon to train ML models this

38

4 Machine Learning Experiments in Multi Machine Learning Model Systems

way. Consequently, there is no easy solution to implement Simultaneous End Loss
Training. Another problem is, that during the fusion of the ML models predictions
information can be lost. This information can have no further impact on the
training of the ML model. It is unclear, if and how the end loss is representative
to update the ML models.

It is left to determined, how using the end loss affects the training progress of the
ML models.

4.4 Experiment Pattern 4 — Alternating End Loss

Training
/" Update 3 Backward Pass Step 2
. Module =<-.
1 Forward Pass ¢ . —
s ‘V I,-/(;qujhe Losfu\(\-‘l
s ' | each Model using | o Backward Pass Step 1
Lo ML Model 1 LossModel1 ..\ Endio= /¢ - A2/
= 4 7y
s B L ' Model or Algorithm)
:%: OR : {Fusion results) End Loss
Lal 1 Forward Pass ;
I ¥

ML Model 2
Update Backward Pass Step 2
Module 3

Figure 4.5: Visualization of the training process for an ML model pipeline using
Alternating End Loss Training. Here the data is again passed through
the whole pipeline, indicated in yellow. Then the end loss is being
calculated and processed, as can be seen in the red markings. After
this, one of the two ML models is updated.

The fourth pattern is very similar to the third pattern. But instead of updating
both models in every step, only one model will be updated. Figure 4.5 visualizes
the process involved in training. The process in running such experiments is the
same as for the second. The main difference is that after the end loss was calcu-
lated, code logic decides which model will be optimized. The motivation behind
this pattern is, that it is possible that one model performs better than the other.
To optimize the end loss it might not be necessary to train both models in every
iteration but only the one, that has a lower accuracy. As a result, fewer calcula-
tions might be performed.

39

4 Machine Learning Experiments in Multi Machine Learning Model Systems

There could also be variations in which both models are updated until the loss
for a model lies under a predefined threshold. Once the model’s loss is under the
threshold, it will not be updated in the next training iterations. This approach
could be implemented similar to early stopping approaches in MLL model training.
The training continues until all models are under the threshold.

The data that is necessary for this pattern to work, is the same as for the second
training pattern. The general implementation is the same as for the second pattern
and comes with the same challenges as well. The only addition is the code logic
that determines which model is being updated.

An advantage of the fourth training pattern could be that each iteration of the
training algorithm becomes more efficient. This is because fewer operations are ex-
ecuted in every iteration. On the other hand, it is not clear, if this results in more
iterations being necessary to achieve the same results as for the second training pat-
tern. This means, that the total efficiency stays the same.

4.5 ML experiments on the subject system

To investigate how the patterns presented in the previous sections perform, exper-
iments involving the possible implementations for the different patterns were run.
The structural example, used to motivate and visualize the patterns, was based
on the ML model pipeline in the KoopaCar. The system architecture for the
KoopaCar was described in depth in section 3.3, a short summary follows. Images
taken by the cameras are processed using Yolovd while LiDAR scans are being
processed by a Convolutional Neural Network, that was implemented using Ten-
sorFlow Keras. The results of both models are fused in the sensor fusion. The
result of the pipeline are positions of cones relative to the KoopaCar and the cone
classes for every cone. The ML model pipeline as it was just described can be seen
in Figure 4.6. This pipeline is part of the system of nodes that was shown in Figure
3.4. The first experiment will be to optimize the model used for processing LIDAR
scans. The second experiment was to optimize Yolovb, which was trained on a
custom data set. Both of these experiments can be matched to the first pattern,
described in section 4.1.

The third experiment is to train the ML model pipeline as one system, following
the third pattern. While the first two experiments will be fairly trivial, the imple-
mentation and results of the third one are uncertain.

Therefore, the focus in the first two experiments will be on running and evaluating
the experiments, while the focus for the third is the implementation.

The ML experiments can be found in [8] on the branch tools-mlflow.

40

4 Machine Learning Experiments in Multi Machine Learning Model Systems

Images Camera Object
+ ——— | Detection Node
(Yolovs) Bounding Boxes

A

Cone Position

Sensor Fusion Node " Cone Labels

ML models

v

.H.H.H.H.H.‘
Data Input

LIDAR

scans LiDAR Object Cone Center

Detection Node
{custom CNN)

Figure 4.6: ML model pipeline in the subject system (KoopaCar)

4.5.1 Building and Optimizing ML Models using Individual
Model Training

The first two experiments will focus on optimizing the MLL models in the KoopaCar
using the first experimentation or training pattern, which is Individual Model
Training. This means, that the ML model pipeline is not used. Instead, we
will use a data set for each model and run experiments separately. The datasets
contain the input and the expected outputs of the ML models. Using the out-
puts, the deviation between expectations and predictions is used to calculate the
loss.

4.5.1.1 Optimizing the LIDAR-CNN

The model used to process the LiIDAR scans is a convolutional neural network
(CNN). The model performs a semantic segmentation on the LiDAR scans, which
are sets of vectors consisting of 360 scalars. One vector corresponds to one scan.
The model’s output is a vector for every vector input, consisting of probabilities for
each class. The result of this segmentation is used to identify clusters of points that
belong to the same cone. The cone’s position is being approximated by extending
the line between the cluster and the KoopaCar. A more detailed description and
figures visualizing it can be found in Section 3.3.

The experiments that were performed, tried to optimize the accuracy of the seg-
mentation by tuning the hyperparameters. The hyperparameters that were changed
over the course of the experiments are the number of epochs, the batch-size and
the training validation split.

The data set that was used consists of 392 scans. The scans were collected in a
simulation built in Gazebo [9]. A scan includes the inputs from camera and Li-
DAR, the expected results for both models, and the correct positions of the cones
relative to the KoopaCar. The scans were all taken by placing the KoopaCar in

41

4 Machine Learning Experiments in Multi Machine Learning Model Systems

50 different positions over 8 different simulations. Some scans had to be discarded
due to mislabeling, thus resulting in the 392 scans used for training and validation.

In the experiment, the goal was to find a combination of batch-size, epochs and
training-validation split that results in short training times and minimizes the loss.
The loss function that was used is Cross-Entropy. Cross-Entropy is often used as
loss function for classification problem with multiple classes. We also used Mean
Squared Error (MSE) for a series of experiments. MSE did not yield any different
results, but Cross-Entropy made spikes and overfitting more visible. The following
experiments were all run with Cross-Entropy as loss function.

First, we will take a look at how the training validation split affects the training
results. We ran a training iteration with a validation-training split of 20,/80, mean-
ing 80% of the dataset are used as a training set and 20% are used for validation.
In this run, we used a batch-size of 16, and we ran training for 64 epochs. This
run will be compared to a training run with a training-validation split of 10,/90,
batch-size of 16, and 64 epochs. Figure 4.7 shows the training loss and the valida-
tion loss over the course of training for the first run, meaning training validation
split of 20/80. The x-axis shows the epochs. Figure 4.8 shows the training and
validation loss as well but for the second run, meaning a training validation split
of 10/90 was used. Using a larger share for the validation set, means that the
size of the training set is reduced. In our case, the dataset is already fairly small.
Due to this reason, it is advisable to use a training-validation split of 10/90. By
comparing the plot, we can see, that the validation loss becomes larger for a larger
validation set. When the validation set is too small it becomes more difficult to
detect overfitting, but on the other hand is enough data in the training set cru-
cial to make sure the ML model learns the necessary features. In Figure 4.8 the
validation loss has less and smaller spikes, than in Figure 4.8. This means, that
there is less variance. Both options are equal. The training loss has less variance
for a bigger training set, but the validation loss becomes smaller due to the size of
the validation set. Going forward, we will use a training validation split of 10/90.

Next, we will try to find a batch-size, that optimizes the training further. To this
end, we will run the previous run with a training-validation split of 10/90 and 64
epochs again. Once we will use a batch-size of 8 and once a batch size of 32. Figure
4.9 shows the training and validation loss per epoch for the run with batch-size
32. Figure 4.10 shows the plot of the training and validation loss for batch-size
8. The run with batch-size 32 showed fewer spikes and irregularities. The curve,
especially at the end of training, is smoother for a batch-size of 8. Since the data

42

4 Machine Learning Experiments in Multi Machine Learning Model Systems

cccccc

Figure 4.7: LIDAR-CNN training results. The training was run with a training
validation set of 20/80, a batch-size of 16 and was run for 64 epochs.
The validation loss is about as high as the training loss over the course
of the 64 epochs. There are some small spikes in the validation loss.
The training loss shows minor irregularities.

cccccc

Figure 4.8: LIDAR-CNN training results. The training was run with a training
validation set of 10/90, a batch-size of 16 and was run for 64 epochs.
The validation loss is lower than the training loss in the beginning,
but is about the same towards the end of training. There are a few
small spikes in the validation loss. The training loss does not show any
irregularities.

only consists of vectors of size 360 there should be no problem with the memory
usage of the machine used for training. This means for the last experiments we
will be using a batch-size of 32.

Lastly, we want to see at what point overfitting occurs, to be able to achieve
the best training results possible. To this end, we ran the previous experiment
again with an increased number of epochs. We used a batch-size of 32 and a
training-validation split of 10/90. Training ran for 512 epochs. A plot of the
training and validation loss can be seen in Figure 4.11. The curve shows, that with
increasing number of epochs the number of spikes rises significantly. Additionally,
after around 100 to 150 epochs, the validation loss becomes higher than the training
loss and starts to diverge. The end result of this series of experiments is, that due
to the limited amount of data, a training-validation split of 10/90 yields better

43

4 Machine Learning Experiments in Multi Machine Learning Model Systems

nnnnnn

Figure 4.9: Lidar-CNN training results. The training was run with a training
validation set of 10/90, a batch-size of 32 and was run for 64 epochs.
The validation loss has a few notable spikes. The training loss has only
one notable spike.

N

Figure 4.10: Lidar-CNN training results. The training was run with a training
validation set of 10/90, a batch-size of 8 and was run for 64 epochs.
The training loss does not show any irregularities. The validation loss
has a high variance, meaning there are several small spikes.

eeeeee

nnnnnn

Figure 4.11: LIDAR-CNN training results. The training was run with a training
validation set of 10/90, a batch-size of 32 and was run for 512 epochs.
The validation and training loss converges for the 100 epochs. After
this, it is notable, that the validation loss begins to diverge. There
are several spikes on both the training and the validation set. The
spikes become worse the longer the training lasts.

training results. It is feasible to use a batch-size of 32. This does not impact
the efficiency of the training negatively, but rather makes the training loss spike

44

4 Machine Learning Experiments in Multi Machine Learning Model Systems

less and converge better. Training should not run any longer than 128 epochs.
After that, overfitting occurs, which means, that the ML model performs worse on
previously unseen data.

4.5.1.2 Optimizing Yolov5 on Custom Dataset

For training and optimizing Yolovh, we will only take a look at the impact of the
batch-size and number of epochs. Since Yolov5 is trained on image data and is
in general a significantly more complex ML model compared to the LIDAR-CNN
from the previous experiment, this time we will have to focus more on finding a
set of hyperparameters that make the training process efficient while optimizing
the ML model’s performance.

While evaluating the model’s performance, we will take an especially close look at
the classification error. Yolov) provides for both training and validation set three
different error metrics, the box_loss, the cls_loss, and the obj loss. The box_loss
is the loss that describes the error regarding the position of bounding boxes. It
is calculated using bonding box regression. The 0bj loss describes the error on
whether an object exists at a position. Last, the cls loss is the loss describing
the error in classification. This means, the deviation in the assigned labels. Since
Yolov5 is mainly used to determine a cones class, this is the loss that will be mainly
used in the following experiments.

The first series of experiments will evaluate the effect of the batch-size on training.
We created two runs. The first run used a batch-size of 8 and the second one of
32. The number of epochs is 128 for both runs. The rest of the hyperparameters
are the default Yolovh parameters.

Since the training and validation cls_loss did not reveal any distinctive features,
the other losses were also used to evaluate the influence of the batch-size on training
Yolov5. Figure 4.12 shows the different losses over the course of training for a
batch-size of 8. Figure 4.13 shows the same metrics for a batch-size of 32. It
seems, that a smaller batch-size yields better results, since there are fewer spikes.
There is only one large spike in the validation obj loss. The loss for a batch-
size of 8 shows fewer irregularities and thus a smoother curve. The problem is,
that the ML model trains faster with a batch-size of 32. Training the model
with a batch-size of 32 takes 5.2 minutes, and training with a batch-size of 8 6.7
minutes for 128 epochs. Therefore, we will use a batch-size of 16 as a compromise.

With the results from the last experiment, we will now evaluate at what point,
the model begins to overfit, so that the number of epochs that yields the lowest

45

4 Machine Learning Experiments in Multi Machine Learning Model Systems

nnnnnn

Figure 4.12: Yolov5 training results. Training was run using a batch-size of 8 and
lasted for 128 epochs. The plot shows the training and validation loss
for the losses Yolovh provides. Apart from an immense spike in the
validation obj loss around epoch 5 the losses all converge smoothly.

eeeeee

Figure 4.13: Yolov) training results. Training was run using a batch-size of 32
and lasted for 128 epochs. There are several spikes in the training
and validation obj loss and the validation box loss. The rest of the
losses converge smoothly.

loss without overfitting can be chosen. We are using a batch-size of 16 and run
the training for 512 epochs. There were no indicators for overfitting. Thus, we
repeated the training with the same hyperparameters and doubled the number of
epochs. Figure 4.14 shows the training results for an experiment with batch-size
16 and 512 epochs. There are still no indicators for overfitting. Despite that, it
seems that the training cls loss converges towards 0.03. After around 200 epochs
the loss is slightly higher than 0.03 and after 512 epochs the loss is still close to
0.03. The same is true for the other metrics that can be seen in the plot in Figure
4.14.

The spikes in the beginning of the training indicate, that it might be advisable to
use a batch-size of 8 instead of 16.

46

4 Machine Learning Experiments in Multi Machine Learning Model Systems

cccccc

Figure 4.14: Yolov5 training results. Training was run using a batch-size of 16 and
lasted for 512 epochs. There are several spikes in all the losses in the
beginning of the training until about epoch 50 to 60. From there on,
the training converges. After around 200 epochs, there is no progress
in training.

4.5.1.3 Result of Individual Model Training

Following the optimization of the individual models, it is left to determine the
effect on the end result of the pipeline. To this end, it is necessary to implement
loss functions. A suggestion would be to use an approach similar to bounding box
regression to determine the deviation of the position in the prediction as pos_loss.
The deviation in the labels or classification could be measured using the Cross-
Entropy loss function.

As can be seen in Section 4.5.2 the implementation of these loss functions is unfin-
ished. The problem is that the training and optimization of the ML models using
Individual Model Training, was done using the individual training scripts for each
ML model. To evaluate the end loss over the epochs of training, a script combining
the different training algorithms would have been necessary. The implementation
for this was not finished due to problems in the implementation problems. The
problems are highlighted in Section 4.5.2.

Another problem is the data set. The set contains the positions of every cone that
is in the simulation. To be able to calculate the loss, the expected output of the
pipeline needs to be used. The problem is that the KoopaCar does not perceive
every cone in the environment. The data set should be refined further to contain
the expected output of the ML model pipeline.

4.5.2 Training the Complete Pipeline using Simultaneous End
Loss Training

Training the complete pipeline is a training pattern proposed in section 4.3. This
section will cover efforts that were made to implement the training pattern and

47

4 Machine Learning Experiments in Multi Machine Learning Model Systems

run experiments.

To start off, there were two general approaches to implement pattern 43 The first
one, that was also proposed in section 4.3, is to reorganize all the forward and
backward passes in a single loop. An alternative implementation would be to use
the training loop of one of the models and integrate the other models into this
loop. To this end, the training loop of the first model is interrupted between the
forward and backward pass and additional code to train the other models added.

Implementation Approach 1. The advantage of the first implementation is
that the solutions scales for an increasing number of ML models. It is not trivial,
which model’s algorithm should be chosen to include the pipeline training, when
implementing the second approach. Additionally, the training algorithm could
include a lot of unnecessary dependencies that create an overhead in training. Re-
structuring the training in an independent loop, treats all models, that are part
of the pipeline, equally. The problem with the first approach is that most ML
model training algorithms are not meant to be taken apart and split into their
respective passes. Especially, when using a ML framework and not implementing
the ML model from scratch, it might not be possible to run the respective passes
separately with code logic influencing the backward pass in between the passes.
While implementing the pipeline training using the first approach, several prob-
lems arose. The main problem was, that the Yolovb model, that was used in the
KoopaCar has a lot of dependencies. Due to the lack of knowledge of the different
Yolovh model classes and the overwhelming amount of errors, the approach was
eventually abandoned. The main issue was to create a Yolovb model object that
is intact. It became apparent that the object was corrupt, when we were not able
to predict bounding boxes using the object. The output, the model returned, was
unexpected. It is possible that one or multiple layers were missing, or other steps
had to be added to create an intact model.

Implementation Approach 2. The second approach has the advantage, that at
least one model’s training algorithm can be kept intact. This means, that it was
possible to avoid taking apart the Yolov5 training and instantiate a new Yolovh
model. Thus, it was possible to find a workaround for the main problems with the
first implementation approach.

In the second approach, the Yolovb training algorithm was used as it was. In
between the Yolov) forward and backward pass, new code was integrated that ran
the forward and backward pass for the LIDAR-CNN.

This solution solved problems that lead us to abandon the first approach, but in
doing so showed different problems, that already persisted before. The problem is

48

4 Machine Learning Experiments in Multi Machine Learning Model Systems

that it does not seem to be possible to train a TensorFlow Keras model and use a
loss to update the weights, that was not calculated using the model internal y and
Ypred- What this means is that to train the model and update the weight in each
iteration, the loss function is being called. It is possible to implement a custom
loss function, but the problem is that the loss function needs to be differentiable to
provide gradients to update the model’s weights. It does not seem to be possible
to inject a loss, that was calculated outside the Keras training loop, and use this
loss to update the weights.

A solution would be to implement the LiDAR-CNN from scratch with the help
of a MLframework. There might be other solutions, but no feasible solution was
found over the course of this thesis.

Apart from the problems in the implementation process mentioned above, it would
have been necessary to calculate an end loss and use this loss to update the ML
models in the pipeline.

It is uncertain how this could have been done in the context of the subject system.
It was mentioned in a previous section that the relationship between the ML mod-
els and the output of the ML model pipeline is not always trivial. Section 4.3 also
stated, that it is unclear what the best way is to update the ML models using the
end loss. Using the KoopaCar as an example, this problem can be phrased more
precisely.

In the case of the KoopaCar the output of the ML model pipeline provides the
cones’ positions and the cones’ labels. The positions of the prediction can be com-
pared against the one of the ground truth using an approach similar to bounding
box regression. In this approach, the difference between the prediction and the
truth is being calculated, by comparing the respective area and the overlap of
prediction and truth. The difference is then being normalized to form the loss.
The labels are being processed by applying Cross-Entropy. This means, that there
are two losses at the end of the pipeline. The first is the end/pos_loss and the
second is the end/cls_loss. One problem is that the data set that was used does
not contain the expected output. Instead, it contains the true position for every
cone in the simulation.

Another problem is that during the sensor fusion, a lot of information on bounding
boxes and the LiDAR scans is lost. The only information that is still there at the
end of the pipeline is on cones and Yolovh predictions that were matched in the
sensor fusion. It is uncertain how the training is affected, if the limited information
on LiDAR scans and bounding box prediction is used to update the ML models.
In addition, it is not clear, how the information on the deviation of the cone’s

position relates to the results of the semantic segmentation that was performed by
the LIDAR-CNN.

49

4 Machine Learning Experiments in Multi Machine Learning Model Systems

In general, it became apparent, that the proposed way to approach training ML
models in Multi Machine Learning Model Systems, comes with a lot of challenges
during implementation. The problem is that it is not common to split the training
the way it would be necessary to implement training patterns proposed in this
thesis. ML model frameworks like TensorFlow Keras make it easy to implement
simple models. If practitioners or researchers want to use training algorithms, they
will have to rely on other methods to implement the ML model. It is not clear if
this problem persists with other ML model frameworks.

More time for research and development into the training patterns is necessary to
make meaningful statements on their benefits for Multi Machine Learning Model
Systems.

20

5 Machine Learning Management Tools and Multi Machine Learning Model
Systems

5 Machine Learning Management
Tools and Multi Machine Learning
Model Systems

The goal of this thesis is to evaluate experimentation management tools in Multi
Machine Learning Model Systems. Research question 2 investigates how exist-
ing experiment management tools can improve the development of Multi Machine
Learning Model Systems. Research question 3 then investigates how the tools
could be further developed to improve the development. To this end, experiment
management tools were applied in ML experiments on the subject system, the
KoopaCar described in Chapter 3, to collect experiences and begin to answer the
two research questions.

Therefore, we will first take a look at available tools and select a tool to evaluate in
this chapter. Then, the tool will be introduced, and its main features summarized
to get an overview in advance. Later there will be a report on experiences that
were made using the tool in the context of the subject system. Note, as a basis
for the evaluation, we will use the experiments proposed and described in chapter 4.

5.1 Tool Selection

To begin, we will select a tool to be evaluated. To this end, we will formulate
a search query based on important keywords. To limit the results from the ini-
tial search, inclusion and exclusion criteria will be applied to the search results.
From the remaining results, an experimentation management tool is chosen that
holds a wide popularity. The motivation for this kind of prioritization is that
due to the limited time for this thesis, it is not possible to analyze a wide array
of experimentation management tools. By prioritizing a popular experimentation
management tool, the results of this evaluation will have a wider influence on
practitioners.

o1

5 Machine Learning Management Tools and Multi Machine Learning Model
Systems

5.1.1 Sources and Search Query

Google will be used as the primary source for ML management tools. Important
keywords that will be used in the search queries are listed in Table 5.1.

Machine Learning Experimentation Man- | Versioning
agement Tools
Multiple Model Machine | Asset Management Tool | Reusable
Leaning System
Multi Machine Learning | Tracking Tool Reproducibility
Model System

Table 5.1: Keywords for MLL management tool selection

From the keywords, the following search query was derived:

Q: ((Machine Learning) OR (Multiple Model Machine Learning) AND (((Ezper-
imentation OR Asset Management) OR Tracking) Tools) AND (Versioning
OR Reusable OR Reproducibility

Note that the terms Multiple Model Machine learning and Multi Machine Learn-
ing Model Systems did not result in search results for tools that support Multi
Machine Learning Model Systems. This aligns with the first literature research
into the topic. There are no tools that specialize for the usage in the context of
Multi Machine Learning Model Systems. In addition, the keyword Multi Machine
Learning Model Systems limited the search result, which is why it was not used in
the query.

Among the Google search results was a blog post by Neptune AI.[32] The blog
post gave a good overview over ML management tools and their features, and was
used in addition to the rest of the search results.

5.1.2 Selection Criteria

The following selection criteria were used to select ML model tools for evaluation.
The criteria are split into inclusion and exclusion criteria. If a tool meets the
inclusion criteria, it is eligible for selection. If a tool conflicts with any of the
exclusion criteria, it is being discarded from the pool of tools to be evaluated.
The selection criteria used for the tool selection in this thesis are inspired by the
selection criteria in [6].

02

5 Machine Learning Management Tools and Multi Machine Learning Model
Systems

5.1.2.1 Inclusion Criteria

The inclusion criteria are:

ICy Primary purpose is experimentation management or whole lifecycle

ICy Usage with Git, direct integration or project structure that works with Git
1C5 Flexible project structure

The idea behind I is that the primary focus of this thesis is on experimentation
management. Thus, we will need to evaluate tools that support common features
for experimentation management like logging and visualization. To this end, we
will focus on experimentation management tools or tools that support the whole
life cycle of a ML model or Machine Learning Model System. The latter usually
implement experimentation management features in addition to the DevOps fea-
tures that are common for such tools.

The idea behind IC5 is that Git is essential in modern software development. We
want to be able to use Git during the development of the subject system. The
motivation for this criterion is that, there are asset management tools that do
not rely solely on Git. The problem with git is that it is not powerful enough to
support every asset and the amount of data used for ML experiments.

A flexible project structure, as it was named in 1Cj, is essential for the usage with
the subject system and most other Multi Machine Learning Model Systems. In the
case of the subject system, the system has a project structure that is induced by
ROS. During the selection process of the ML management tool, it is not clear how
ML experiments fit into this structure. Thus, to be able to explore all possibilities
and options, it is important that the experimentation management tool allows a
user defined project structure.

5.1.2.2 Exclusion Criteria

The exclusion criteria are:

EC, lack of documentation (in English)

EC5 inaccessible without a license

EC5 framework proposed in paper but not actually implemented

The exclusion criteria focus mainly on the accessibility of the tool and the docu-
mentation.
It is important that the tool is documented in English. Otherwise, the tool cannot

23

5 Machine Learning Management Tools and Multi Machine Learning Model
Systems

be used by most practitioners. Next, the tool should be available without pur-
chasing a license. ML management tools should be available without barriers.
Next, frameworks that are only proposed in papers and not implemented are of
no benefit for the thesis. The idea is to evaluate the benefits of MLL management
tools, by applying them to the subject system.

5.1.3 Tools

The initial Google search supplemented with the Neptune Al blog post mentioned
earlier yielded a total of 18 different machine learning management tools. All tools
are listed in the following.

e MLflow e DVC by iterative.ai

e Kubeflow e Weights and Bias

e Tensor Board e Verta

e Pachyderm e AWS Sagemaker Studios
e (Clear.ml

e Sacred

e Polyaxon

e Guild.ai

e Neptune Al

e Comet

e Determined.ai
e Datum

e Feature Forge

After applying the inclusion and exclusion criteria, the last four tools in the list,
the ones in the right column, were eliminated. The reasons for this are that DVC is
a tool that only implements asset management. The other tools are not available
without paid licenses.

While taking a closer look at the tools in question in became apparent that most
of the tools implement the same or very similar features. From the first glance,
there is no reason to assume that any of the tools might be an especially good or
bad fit for Multi Machine Learning Model Systems.

o4

5 Machine Learning Management Tools and Multi Machine Learning Model
Systems

Therefore, the tool that will be evaluated is MLflow. It implements features that
most of the other tools implement as well. The features that are presented on the
tool’s website could be beneficial for ML experiments in Multi Machine Learning
Model Systems. Note that one can assume that the experiences and results made
with MLFlow are with most certainty transferable to other MLL management tools.
As mentioned before, due to the limited time available for this thesis, only one tool
will be evaluated. In addition to the similarity of features, MLFlow is also a tool
that appears in many blog posts from websites in the machine learning community.
Combined with the ratings on the tool’s GitHub repository, let us assume that the
tool is popular.

With this in mind, the next section will outline the approach to evaluating the ex-
perimentation management tool that was selected. The last section in this chapter
will describe MLFlow in depth and presents the tool’s evaluation.

5.2 Tool evaluation

The evaluation of tools in this thesis is only based on experiences. To this end, the
tool will first be introduced, which includes a summary of the core features and
tool usage. Next, the experiences made while running the experiments that were
introduced in 4.5 will be presented. There are some aspects that will be focused
on that might be of interest for practitioners or other researchers.

The first aspect is effort. Effort corresponds to the time and the amount of work
necessary to start using the tool. It also refers to the amount of additional code
or workload necessary to use the tool for an ML experiment.

The next aspect is flexibility. Flexibility refers to the project structure. The
structure is often induced by practices related to the field of application. In the
case of the subject system, the project structure is induced by the usage of ROS.
Flexibility means that the project structure can be arbitrary for the tool to work.
Lastly, there will be a focus on the general features available for the tool that is
being evaluated. This will extend the previous summary of the available features
with a report on how useful they were when running the experiments on the subject
system. A focus will be on whether a feature was especially useful in the context
of Multi Machine Learning Model Systems.

25

5 Machine Learning Management Tools and Multi Machine Learning Model
Systems

5.3 MLFlow

MLFlow is an open source ML management tool designed to improve the devel-
opment of MLL models and Machine Learning Model System. The tool supports
asset management, experimentation management, run orchestration, support for
deploying, and maintaining models. In the following, we will take a look at key
concepts in MLflow and some important features. Later, we will take a look at
experiences made with MLflow while working with the subject system.

The experiments and thus the logging can be found in [8] on branch tools-mlflow.

5.3.1 Main Concepts of MLflow

There are four main concepts in MLflow. The first is MLflow Tracking, then
MLflow Projects, MLflow Models, and last MLflow Registry. Each of those con-
cepts implements different ML management features. The features reach from
simple asset management to DevOps features.

The first concept is MLflow tracking. This is also the simplest of the MLflow
concepts. With MLflow tracking, practitioners are able to log parameters, code
versions, metrics, and output. Logs are created when running machine learning
code.

MLflow Tracking is a combination of a Python API and a UI. The API can be
used to log different types of artifacts at runtime from the machine learning code.
The UI can then be used to organize the logs further and compare experiment
runs. It is possible to visualize metrics as a graph.

The Ul is hosted to a free port, either on the local machine or by a server or
database. There are several possible setups that are described in the MLflow doc-
umentation.

The next concept is MLflow Projects. MLflow Projects allow users to package their
machine learning code in a project to make it reproducible. To create a project,
any directory or git repository can be used. A YAML formatted file is then used
to specify the project. This file is called MLproject file. An example of such a file
can be seen in Listing 5.2.

In the MLproject file, the user defines the project’s name. In the example, the
project’s name is koopacar. Next, the Python environment that is used to ex-
ecute the project is specified. It is possible to use a virtual environment or a
Conda environment. It is also possible to not specify any environment and use

o6

5 Machine Learning Management Tools and Multi Machine Learning Model
Systems

the local environment instead. In the example, a virtual environment was used,
which is specified in the file requirements.yaml. The requirements.yaml file holds
a list of packages and package versions that exist in the environment. Follow-
ing the project name and environment are the entry points. Entry points can
be viewed as commands that can be executed in the MLproject. For every en-
try point, the practitioner needs to specify a command and can define param-
eters. In the example the entry points are lidar, yolo, and main. main is the
default entry point that is executed if no entry point is specified. In the example,
there are a number of parameters with default values for each of the entry points.

name: koopacar
python_env: requirements.yaml

entry_points:
lidar:

parameters:

data_path: { type: string, default: "/home/ubuntu/koopacar-system/data/perception/
training_data/lidar_03" }

val_split: { type: float, default: 0.2 }
epochs: int
batch_size: int

command: "python3 src/perception/models/lidar/train.py -d {data_path} -V {val_split} -B {

batch_size} -e {epochs}"

yolo:

parameters:
model-cfg: { type: string, default: "yolovbn.yaml" }
epochs: { type: int, default: 64 }
batch-size: { type: int, default: 16 }
data: { type: string, default: ’complete_O4.yaml’ }

command: "python3 src/perception/models/camera/train.py --data {data} --epochs {epochs} --

weights ’’ --cfg {model-cfg} --batch-size {batch-size} --cache"

main:
parameters:
model-cfg: { type: string, default: "yolovbn.yaml" }
epochs: { type: int, default: 64 }
batch-size: { type: int, default: 16 }
data: { type: string, default: ’custom.yaml’ }

command: "python3 src/perception/models/camera/train.py --data {data} --epochs {epochs} --
weights ’? --cfg {model-cfg} --batch-size {batch-size} --cache"

Listing 5.2: Example for an MLProject File, MLproject from [8] on branch
tools-mlflow. The file is YAML formatted. It defines the project
name, Python enviornment and entry points for the project. The
entry points are lidar, yolo and main. For each entry points a series of
parameters were defined and a command that is executed. The entry
point main and [idar are the exact same in this example.

An MLproject can be executed either using the MLflow command line tool or the

57

5 Machine Learning Management Tools and Multi Machine Learning Model
Systems

Python API. Using the Python API makes it possible to organize projects runs
and different entry points into a multistep workflow. This feature is what was
previously introduced as run orchestration.

The multistep workflow organizes the execution of experiment runs using the entry
points from the MLproject file. Using the Python API, the entry points can be
started and the status of the processes can be checked. Consequently, the multistep
workflow implements run orchestration.

MLflow Models is a format to package ML models. A model can be saved in dif-
ferent flavors. Flavors refer to the API or software that was used to develop the
model. An example for such a flavor is PyTorch. MLflow Models can be served
and used by downstream applications.

The last concept that was listed is MLflow Registry. MLflow Registry is used to
support the full lifecycle of a ML model. An MLflow Model can be registered to
use features for the complete ML model’s lifecycle. It allows model lineage and
versioning. In addition, it also allows sorting models into development stages and
transition between them.

Since the focus of the thesis is on ML experiments, the concepts MLflow Tracking
and MLflow Projects will be the focus of the thesis. The concepts MLlow Models
and MLflow Registry will be left out in the evaluation. In the following, features
from MLflow Tracking were used to log metrics in different ML experiments on
the subject system. We will also evaluate the benefits of organizing the subject
system as MLflow Project.

The following sections are a collection of experiences made while working with
MLflow in the context of an ADS system prototype. The prototype or subject
system was used as motivation to run a set of experiments. The experiments that
were run, and their evaluation, can be found in section 4.5.

5.3.2 Tracking in Single ML Model Experiments

The first experiments were with single ML models that were to be optimized. The
MLflow Python API was used to track metrics used by a TensorFlow Keras model.
Listing 5.4 contains an extract from the script used for training the Keras model.
The extract shows the usage of the MLflow Python API.

o8

5 Machine Learning Management Tools and Multi Machine Learning Model
Systems

def train(data_path):
mlflow.tensorflow.autolog()

Listing 5.3: Example of MLflow Tracking an a ML experiment, lidar_train.py
from [8] on branch tools-mlflow. The code shows the first lines
of the function train(). There the MLflow Python API is used
to log metrics using the call mlflow.tensorflow.autolog(). This
automizes the logging and works since the ML is implemented in
TensorFlow.

def main():
parser = argparse.ArgumentParser ()
parser.add_argument(’-d’, ’--data’, type=str, help="Reference a path to the data set as
absolute path. -d / --data",
required=True)

args = parser.parse_args()
mlflow.set_experiment ("lidar-cnn")
with mlflow.start_run():

train(args.data)

if name__ == ’__main__’:

main()

Listing 5.4: Example of MLflow Tracking an a ML experiment, 1lidar_train.py
from [8] on branch tools-mlflow. The code extract shows the
function main(). After the arguments that are passed to main are
prased, the MLflow Python API is used to set the experiment and
start an experiment run. In the experiment the function train() is

called.

The usage of the Python API is simple and well documented. When using a pop-
ular ML framework like TensorFlow or PyTorch for training, it is not necessary to
manually add metrics that need to be tracked. The Python API from MLflow au-
tomatically tracks the metrics used in the model. Therefore, it is not necessary to
add a lot of code manually to implement tracking. Since it is also possible to track
metrics and parameters manually, MLflow tracking can also be useful in Multi
Machine Learning Model Systems and ML models that were implemented without
relying on a ML framework for training. Runs are organized into experiments. It
is possible to maintain multiple experiments simultaneously and compare different
runs of the same experiment. Consequently, it is possible to create experiments for
every model in a system or other experiment type. For more information about
experiment types, read Chapter 4. On the other hand, apart from logging metrics

29

5 Machine Learning Management Tools and Multi Machine Learning Model
Systems

and organizing and versioning runs, MLow Tracking has no more interesting fea-
tures.

To store and maintain artifacts belonging to an ML experiment, MLflow creates a
new directory, called mlruns, in the directory the experiment was run from. This
directory contains a folder for every experiment. The folders are named using the
experiment ID that MLflow assigns either randomly or can be alternatively set by
the user. The folder for an experiment contains directories for every experiment
run. Instead of logging to a local directory, it is also possible to store artifacts,
parameters, and metrics in a remote database. In our case, we only used tracking
to a local directory. When running a lot of experiments, a lot of data is accumu-
lated. Thus, is might be reasonable to use tracking on a remote server or database
instead.

When running experiments using MLflow Tracking for every model in the system,
it also means that for every model there is a different miruns folder, assuming
the different ML models are not located in the same directory. At least, this was
the case for the KoopaCar. With an increasing number of ML models, it might
become difficult to navigate between different experiments.

Next, we used MLflow for a different ML experiment. In this case, the ML model
that was used for experiments was yolovh. Yolovh is a ML model deployed by
Ultralytics [33]. It comes with several Python scripts, for example, scripts that
allow users to train the model on custom data. For training the model with MLflow
Tracking, the fork from the Ultralytics repository by ElefHead was used. Since
the training script for yolovb is more complicated than the one for the previous
model. Yolov5 allows the implementation of logging by using callbacks.

The MLflow Python API was used to implement callbacks, which are called at
several stages of the training algorithm. Whenever one of the callbacks is called,
the following functions from the MLflowLoggers class are called to manage MLflow
Tracking.

The only problem with the code was that the whole repository was stored to log
the model. Doing so filled up the disk quickly. To work around this, the functions
manually passed.

5.3.3 MLflow Project for the KoopaCar

Both experiments were also run as MLflow Project in addition to the normal
MLflow Tracking. Creating an MLproject file and adding default parameters for
the different entry points made it easier to run the same experiment repeatedly.
Part of the MLproject file can be seen in Listing 5.2. Other benefits of creating

60

5 Machine Learning Management Tools and Multi Machine Learning Model
Systems

an MLproject are MLflow stores and displays more meta information, as well as
providing the command that can be used to reproduce the experiment.

In later stages, a virtual environment was used to run the experiments. By doing so
and adding the corresponding YAML file to the MLproject file, running the project
and the experiments on another system became easy. Creating an MLproject is
simple and does not take up a lot of time. The improved consistency and easy
execution of experiments is a nice feature.

Another benefit of running experiments as MLflow Project is that the miruns
directory is located in the same directory as the MLproject file. In the case of the
subject system, this means that the mlruns directory is located in the root of the
repository, which is convenient.

5.3.4 MLflow Ul for Comparing Runs and Plotting

The MLflow Ul was used to visualize and compare different runs. The Ul can
be started from the directory that contains the mliruns directory and hosted to
the localhost or a remote server. The Ul can be viewed from any browser by
connecting to the server or machine hosting the UI on the corresponding port.
When first starting the Ul, the user sees an overview over experiments and runs
of those experiments. The overview can be seen in Figures 5.5 and 5.6. In the top
left corner is a list of the experiments in the directory. The runs for the selected
experiment are shown in the middle of the UI. The overview can be shown as a
table, as it is in Figure 5.5. Alternatively, the user can configure a chart view. In
the chart view, chosen metrics of the runs are plotted together. This can be seen
in Figure 5.6. In the example, the left plot is a bar plot showing the losses for the
experiments. The plot next to it shows again the loss, but this time plotted as
curves against the number of epochs.

In addition to the overview over experiments and runs, a run can be selected to
provide more information on meta information and parameters, code, artifacts,
or metrics that were logged. The screenshot in Figure 5.7 shows what this looks
like. Some of the information that is shown in the screenshot is only stored and
shown, if configuring the directory as MLflow Project, marked in green. Meta
information, description, parameters, metrics, tags, and artifacts are listed below
each other in the overview. Each category can be opened up or closed down to
reveal or hide the information. Meta information includes, the experiment name,
run name, corresponding IDs, duration, username, date, Git commit, status, and
lifecycle stage. If the experiment is run as MLproject it also includes the entry
point that was used and the source meaning the project. The run command is
only available, if the experiment was run as MLproject. The command can be used

61

5 Machine Learning Management Tools and Multi Machine Learning Model
Systems

Experiments @ | lidar-enn © oo e

> Description e

Time croated: Altime ~ State Acive -

List of Experiments

List of Runs for lidar-cnn —

(Table view)

S—

@ 20dsysage 585 5 kospac

@ 21daysam 37min 5 knopac.

® victorious-trout-39: @ 21 daysago 26s = koopac

1 matshing s d

Figure 5.5: Overview of the MLflow UI. The screenshot shows the table view of
the lidar-cnn experiments. The red box on the top left highlights the
different experiments that can be selected. The names for the different
runs were created automatically. It is possible to rename the runs or
to assign a user defined name when recording an experiment run. The
big red box in the middle of the screenshots highlights the table view
of runs that were logged under the experiment name lidar-cnn.

) Experiments Models

Experiments @E | Jidar-cnn B e e

sa

+ sageran

o
List of Experiments
.
A A
List of Runs for fidarcnn — 7]
(Chart view) e
.

meiciog s Pl

Figure 5.6: Overview of the MLflow UI. The overview is the same as in Figure
5.5. Instead of the table view, the red box in the middle highlights
the chart view. In this view, charts can be used to compare different
experiment runs directly.

to reproduce the experiment. The description can be used to add a user defined
description. The tabs for parameters and metrics contain lists of the parameters

62

5 Machine Learning Management Tools and Multi Machine Learning Model
Systems

and metrics that were used in training. Lastly, the artifacts contain any artifacts
logged during the experiment run. This usually includes the trained model.
Figure 5.8 shows how metrics for a run are plotted. On the left-hand side is a tool-
bar from which, amongst others, additional metrics can be selected. In the middle,
the user can see the plot, which can be adjusted. The user can for example zoom
in or manipulate the axes. Below the plot is a list with important values for the
metrics shown in the plot. The minimum, maximum and last value are printed.
The plot can be downloaded as spreadsheet (.csv) or image in different data for-
mats.

Run Name Meta Information

waarenn »
placid-sow-435 /
Run D — Dl 202300427 219634

Only for MLFlow
Project
Command to Reproduce Run

Artifacts (here saved model)

MLflow Model

The cade snippets below demensirate hew to make predictions Lsing the |egged model You ean slsa register | 1o the model regisiry 10 versian

Make Predictions

Datarame:

Figure 5.7: Overview of experiment run. The Screenshot shows the overview of
an experiment run. On the top is a collection of meta information.
Below is the run command that can be used to reproduce the run.
The description was left empty. Following this are menu points for
parameters, metrics, tags, and artifacts. They can be opened up to
reveal more information on the run.

5.3.5 Experiments with Multiple Machine Learning Models

In this section, we will focus on how MLflow can be used to run ML models in
Multi Machine Learning Model Systems. In Chapter 4 four training patterns were
proposed that can be used to train ML model pipelines. A pipeline in this context
is a segment of the Multi Machine Learning Model System that includes two or
more ML models.

63

5 Machine Learning Management Tools and Multi Machine Learning Model
Systems

Plot

Toolbar for
Plotting

Important values

4

Figure 5.8: Plotting metrics for experiment run. The screenshot shows what the
menu to plot metrics for an experiment run looks like. There are
options on the left-hand side that allow the user to format the plot
and select different or additional metrics to plot. The plot is shown
in the middle of the screenshot. Below is a list with interesting or
important values for every metric in the plot.

The four patterns are Individual Model Training, Partial End Loss Training, Si-
multaneous End Loss Training, and Alternating End Loss Training. The biggest
difference is between the first and the last three training patterns. The first pat-
tern trains the ML models in the pipeline independent of each other. The other
three patterns rely on the end loss of the pipeline to train the models. The differ-
ence between the three being, when and which ML model is updated. For more
information on this, read Chapter 4.

Experiments for the Individual Model Training do not differ from common ML
experiments. The training for each ML model can be run from their individual
training scripts. It could be possible to use a multistep workflow to evaluate the
end loss in between the model updates.

Experiments for the last three training patterns differs a lot from common ML
experiments. The only support for End Loss Training Patterns would be multi-
step workflows. The training algorithms for each model have to split into their
respective forward and backward passes. The passes are then called using entry
points in the multistep workflow.

64

5 Machine Learning Management Tools and Multi Machine Learning Model
Systems

The problem with the multistep workflow is that it is not well suited for the type
of experiments that were proposed in this thesis. It is a feature meant for run
orchestration and thus only allows the user to start processes in form of entry
points. The status of the processes can be used to implement further code logic,
but neither is suited for experiments with the End Loss Training Patterns.

Since the entry points are only mappings of Python scripts and functions to MLflow
commands, it is advisable to implement the training algorithms without a multi-
step workflow. The necessary training algorithms can be implemented by calling
the corresponding scripts and functions without using the MLflow entry points.
These only create more abstraction in the code, which leads to errors and makes
the development process more complicated.

In general, there are no conflicts in using MLflow with a Multi Machine Learn-
ing Model System. Most features are usable regardless of the complexity of the
project or number of ML models used. MLflow is very flexible in how it can be
used. The Python API offers the user the possibility to use MLflow in a way, such
that tracking and versioning works for multiple ML models in one project.
Despite the flexibility, there is no special support for Multi Machine Learning
Model System, as was expected. MLflow tracking worked well and in regard to
this there are no missing features. Logging is flexible in a way that in addition to
loss and other common metrics, it would also be possible to log the execution time
of ML models.

Despite this, the implementation of End Loss training patterns was not finished.
The problem for this lies not with experimentation management tools, but rather
ML practices and ML frameworks. It is possible that more advanced experimenta-
tion management tools can support the development and training in such patterns
further. Because of more urgent issues on the matter, there are no specific sugges-
tions for features of such tools to be made at this point.

65

6 Result and Conclusion

6 Result and Conclusion

This chapter will be a collection of the results of this thesis. To this end, we will
take a look at the learnings and put them into the bigger context. We will also
take a look at problems and challenges, and then take a look at possible next steps.
The goal of this thesis was to analyze and evaluate experimentation management
tools in multi machine learning model systems. To this end, we derived three
research questions.

RQ1: How do the ML experiments during the development of ADS and the man-
agement of such experiments and corresponding assets differ from the work-
flow related to other single ML model development and maintenance that is
common in other fields?

RQ2: How can experimentation management tools improve the development of
intelligent systems that integrate several ML models?

RQ3: How can existing experimentation management tools be further developed
to better support the development of intelligent systems implementing inte-
grating multiple ML models?

To be able to provide answers for the research questions, we took a look at ML
model experiments in Multi Machine Learning Model Systems. The findings are
summarized in the following.

6.1 Conclusion

By taking a look at Apollo and the subject system of this thesis, the KoopaCar,
we noticed that ML models in Multi Machine Learning Model Systems follow a
certain structure. They are either running sequentially, meaning one model follows
the other, or parallel, meaning two or more ML models provide input for an addi-
tional ML model or another software component. This thesis took an in depth look
at the parallel structures of Multi Machine Learning Model Systems. From this,
four training patterns were derived. The patterns are Individual Model Training,

66

6 Result and Conclusion

Partial End Loss Training, Simultaneous End Loss Training, and Alternating End
Loss Training.

The first training pattern is to train every ML model independently. For the other
patterns, the forward and backward passes for each model are split, and the end
loss is used to update the ML models. The second training pattern updates all
models in every training iteration. The third training pattern does not update
both models in every iteration. Instead, only the ML model creating the biggest
error is updated. The last and fourth training pattern updates a part of the ML
models with the end loss, and the rest of the ML model is trained independently.
An effort was made to run experiments to evaluate the different training patterns.
We ran and evaluated experiments focusing on the first training pattern. While
implementing experiments for the other training patterns, we encountered many
hurdles. Therefore, based on the work of this thesis, there are no definite results
to be presented on the training patterns.

The experiments that were previously mentioned were used to evaluate and analyze
how experimentation management tools can be used to help with the development
of multi MLL model systems. To this end, a methodical search was performed to
survey possible experimentation management tools to be analyzed. From the pool
of possible tools, MLFlow was selected.

With MLflow, different features were used to support the ML experiments that
were previously mentioned. We used tracking and the MLFlow project structure
to organize and log metrics during experiments for single ML models. The features
were also usable for other experiments that were proposed. The MLFlow features
were flexible to be used in almost any context.

6.2 Results

With this in mind, we are able to answer the research questions. The answer to
research question 1 is that ML experiments can differ from normal ML experi-
ments. This can be seen in the different training patterns. The End Loss training
patterns all rely on splitting the respective passes for each ML model, which is an
uncommon method. While experiments for a single ML only focus on optimizing
the one model, ML, models in Multi Machine Learning Model Systems can be put
into a bigger context. The dependency on the result of other models makes it more
difficult to optimize the end result of a Multi Machine Learning Model System.
These dependencies have to be taken into account when running ML experiments.

67

6 Result and Conclusion

The answer to research question 2 is that there are ML management tools and
especially experimentation management tools that support the development of
Multi Machine Learning Model Systems. The features of the most common tools
are usually very basic and versatile. Neither the project nor the code is forced into
patterns that conflict with other practices. Our findings are that using experimen-
tation management tools with Multi Machine Learning Model Systems improves
the development process the same way as it does for single ML models.

The findings for the first two research questions revealed on the one hand that
experimentation management tools can offer some support to the development of
Multi Machine Learning Model Systems. On the other hand, there are a lot of
open questions around the types of experiments that can be run in Multi Machine
Learning Model Systems. Therefore, the answer to research question 3 is that at
this point in time, there are no specific features missing. Note that experimenta-
tion management tools offer no dedicated support to the development process.

Problems. That this thesis did not identify a reason for further research and
development of experimentation management tools, does not mean that no chal-
lenges or problems came up while evaluating experimentation management tools
in Multi Machine Learning Model Systems.

One finding of this thesis is that there is little to no research into ML experi-
ments in Multi Machine Learning Model Systems. Consequently, the four training
or experimentation patterns were proposed. The problems occurred when im-
plementing experiments to compare the different patterns. The main problem is
that the TensorFlow Keras is a high-level API for TensorFlow and thus did not
allow individualizing the training algorithm as would have been necessary with-
out implementing the whole training algorithm from scratch. It can be assumed
that the same is true for other high-level APIs. Training the ML models this
way is not common practice, therefore, practitioners often implement ML mod-
els from scratch using low-level APIs, which allows more room for individualiza-
tion.

6.3 Outlook

In outlining and evaluating current problems and the state of the research, this
thesis serves as a motivation for future work.

There are two main points that deserve additional research and effort to find con-
clusive results.

The first point are the four training patterns that were proposed in Chapter 4. It

68

6 Result and Conclusion

is left to compare the different patterns in a series of experiments comparing the
time and effort it takes to optimize the performance of a Multi Machine Learning
Model System, and how the performance of the Multi Machine Learning Model
System is affected by the different training patterns.

The second point goes hand in hand with the first one. This thesis identified that
the implementation of ML models needs to be done using low-level APIs to be
able to individualize the training algorithm. Despite the existence of such APIs, it
is difficult to develop new ML models or even modify existing models like Yolovh
to fit into for example the four training patterns. The problem is that research
or software engineers that work on robotics, ADS, or other intelligent or Multi
Machine Learning Model Systems are no experts in the field of ML or AI. There
has been research into the practices regarding the development of ML models. To
name an example, Amershi et al. published a case study on software engineering
practices in ML model development. [34] The problem is that the research does
not put enough focus on the role of ML frameworks. Therefore, it could prove
beneficial to take a deeper look at ML model frameworks and other practices re-
garding the implementation from a software engineering point of view.

The conclusion of this thesis that experimentation management tools are useful
for developing Multi Machine Learning Model Systems. The proposed patterns
and the subject system are two valuable contributions that lay a foundation for
further research.

Software that was produced over the course of this thesis can be found in [8] and

[9]-

69

List of Figures

2.1

2.2

2.3

24

2.5

2.6

2.8

A graphical overview over the lifecycle of a ML Model or ML Model
System. The figure is based on Figure 1 from [6]. The lifecycle
is split into four phases Requirements Analysis, Creating Dataset,
Developing ML Model, and DevOps Work. The big gray errors
indicate the transitions between the phases. Below the phases im-
portant work steps are listed. L.
Example for a Multilayer Perceptron (MLP). The MLP has three
hidden layers. It takes an input x of size n and outputs a vector y
of size m. The first layer is called input layer and the last output
layer
The same multilayer perceptron as in Figure 2.2 with a single per-
ceptron highlighted in the second hidden layer. The figure shows
the input and output of the perceptron, together with the compu-
tations that happen in between. Note that the biases are missing
in this description.o oL
Overview over a selection of activation functions. The figure shows
the plot for the linear, sigmoid, ReLLU and Softmax activation func-
tions. The activation functions are all used in different use-cases.

Activation functions are used in MLPs, CNNs and other ML models.

Example of a convolutional neural network. The blocks symbolize
the input. The red markings indicate how one element of the input
affects the elements of the output, this is what is known as sparse
connectivity.o
Example of a pooling layer. The example shows the application of
max pooling to a 4x4 matrix. In max pooling, the input is split into
sections and the maximum value from each section is selected. The
other values are discarded. The result is a 2x2 matrix.
Sequential Structure of Multi Machine Learning Model System. In-
put is passed to the first ML model, processed and then the output
of the first ML model is passed to the next ML model to produce
theoutput

70

9

List of Figures

29

2.10

3.1

3.2

3.3

Parallel Structure of Multi Machine Learning Model System. n ML
models receive input that is independent of each other. The output
of the ML models is passed to the next component to produce the
final output.
Overview of the relevant components in Apollo. The image is Figure
1 from [3]. It shows the data flow through the system and highlights
the relevant components. The green boxes are ML models. The
figure shows that information is processed by a camera and a LIDAR
and process using ML models and other software components to
detect objects like traffic lights, lane markings, bicycles, pedestrians,
and other vehicles. The information about all of these objects is
used for the trajectory prediction, which is necessary to foresee the
behavior of other traffic participants.

Examples for a racetrack following the Formula Student rule book.
The driving direction is counterclockwise. The starting area is at
the bottom of the figures, marked with four orange cones. The
yellow cones mark the right side of the racetrack and the blue cones
the left side. Figure 3.1b is a screenshot from a simulation. The
simulation software that was used is Gazebo [22]. The simulation
environment that was used to create the screenshot can be found in
[9]. « .
The figures show images of the KoopaCar. The KoopaCar consists
of multiple layers. On top of it is the LDS-01 LiDAR. The layer
below holds the computation unit. At its core is a Raspberry Pi
[27]. On the bottom layer, the motor and wheels are mounted.
The red markings in the images indicate the position of the most
important components of the KoopaCar.
High level description of the KoopaCar’s software architecture. The
architecture consists of three modules, the Perception module, the
Localization and Mapping module, and the Navigation and Driving
module, which are represented by the three boxes in the figure. The
black arrows indicate the flow of data and information between the
three modules. The data input for the Perception module originates
from the sensors that are used. The figure states that the output of
the system is movement. What is meant with this is that what can
be perceived as a result of the internal computation is the movement
of the KoopaCar, and thus it is shown as so-called output.

24

71

List of Figures

3.4 Low-level description of the KoopaCar’s Perception module. The
figure shows the low level system architecture of the perception
module. The gray boxes are ROS 2 nodes, and the white boxes
with the rounded corners are ROS 2 topics. The back arrows indi-
cate the data flow through the system. The elements with dotted
lines put the system into the context of the complete system. The
data flow stems from the sensors, which provide the input. The
results of the Perception module are passed to the other software
modules used in the system, the Localization and Driving module
and the Driving and Navigation module. 28

3.5 Architecture of the CNN with 1d convolutions used to classify Li-
DAR scans, called LIDAR-CNN. The input for the ML model is a
vector with length 360. A series of 1d convolutional layers is used
to extract features and perform a semantic segmentation. The 1d
convolution is visualized in red. The ML model consists of one input
layer, 20 convolutional layers, and one output layer. All layers use
ReL U as activation function, except from output layer, which uses
Softmaz. The output of the model is a 360x3 matrix. It contains
the probability that a point belongs to the three classes, for every
element that was input into the model. There are no pooling layers
used. ..o 29

3.6 The figures are a visualization of the sensor fusion algorithm used
in the KoopaCar Perception Module. The algorithm relies on cone
predictions in images and LiDAR scans. It uses the position of
a cone in the image to find an approximated angle range, where
it searches for a cone prediction from the LiDAR. The range is
indicated by the dotted line in both figures. The 3d view shows what
the sensor fusion looks like from the point of view of the camera. The
dark yellow cone in the back is the cone in the image. The lighter
yellow cone is the actual cone that was perceived. The actual cone is
visualized by the yellow circle in the top-down view. The top-down
view shows what the sensor fusion looks like from the point of view
of the LiDAR data. The black dots indicate the LiDAR scan. The
circle with the x marks the predicted cone position. 31

4.1 Data flow through the ML pipeline on the forward pass. The yellow
arrows indicate the flow of data. The boxes are ML models or other
software components. The figure shows the loss that is available at
different points in the pipeline. 35

72

List of Figures

4.2

4.3

4.4

4.5

4.6
4.7

4.8

4.9

Training and optimizing a pipeline using Individual Model Training.
The data is passed through every ML model. The loss for every
model is calculated and used to update the corresponding model.
The rest of the pipeline is not necessary for training.
Training and optimizing a pipeline using training Partial End Loss
Training. One of the ML models is updated using the end loss. To
this end, the forward pass is extended and the end loss calculated.
Next, the loss needs to be traced back to the ML model. In this
step, the loss for model 1 is calculated. This is indicated in red and
blue. The other model is trained individually, this is indicated in
GUEEIL. o v v i i e e
Visualization of the training process for an ML model pipeline us-
ing Simultaneous End Loss Training. In this figure both ML models
are being updated using the end loss. The data is passed through
the whole pipeline, indicated in yellow. After the end loss is calcu-
lated and processed, which is indicated in red, the ML models are
updated. This is indicated in blue.
Visualization of the training process for an ML model pipeline us-
ing Alternating End Loss Training. Here the data is again passed
through the whole pipeline, indicated in yellow. Then the end loss is
being calculated and processed, as can be seen in the red markings.
After this, one of the two ML models is updated.
ML model pipeline in the subject system (KoopaCar)
LiDAR-CNN training results. The training was run with a train-
ing validation set of 20/80, a batch-size of 16 and was run for 64
epochs. The validation loss is about as high as the training loss
over the course of the 64 epochs. There are some small spikes in the
validation loss. The training loss shows minor irregularities.
LiDAR-CNN training results. The training was run with a training
validation set of 10/90, a batch-size of 16 and was run for 64 epochs.
The validation loss is lower than the training loss in the beginning,
but is about the same towards the end of training. There are a few
small spikes in the validation loss. The training loss does not show
any irregularities.o
Lidar-CNN training results. The training was run with a training
validation set of 10/90, a batch-size of 32 and was run for 64 epochs.
The validation loss has a few notable spikes. The training loss has
only one notable spike. L

43

43

73

List of Figures

4.10

4.11

4.12

4.13

4.14

5.9

5.6

Lidar-CNN training results. The training was run with a training
validation set of 10/90, a batch-size of 8 and was run for 64 epochs.
The training loss does not show any irregularities. The validation
loss has a high variance, meaning there are several small spikes.
LiDAR-CNN training results. The training was run with a training
validation set of 10,/90, a batch-size of 32 and was run for 512 epochs.
The validation and training loss converges for the 100 epochs. After
this, it is notable, that the validation loss begins to diverge. There
are several spikes on both the training and the validation set. The
spikes become worse the longer the training lasts.
Yolovb training results. Training was run using a batch-size of 8 and
lasted for 128 epochs. The plot shows the training and validation
loss for the losses Yolovh provides. Apart from an immense spike
in the validation obj loss around epoch 5 the losses all converge
smoothly.
Yolov) training results. Training was run using a batch-size of 32
and lasted for 128 epochs. There are several spikes in the training
and validation obj loss and the validation box loss. The rest of
the losses converge smoothly.
Yolovh training results. Training was run using a batch-size of 16
and lasted for 512 epochs. There are several spikes in all the losses
in the beginning of the training until about epoch 50 to 60. From
there on, the training converges. After around 200 epochs, there is
no progress in training. Lo oL

Overview of the MLflow UI. The screenshot shows the table view
of the lidar-cnn experiments. The red box on the top left high-
lights the different experiments that can be selected. The names
for the different runs were created automatically. It is possible to
rename the runs or to assign a user defined name when recording
an experiment run. The big red box in the middle of the screen-
shots highlights the table view of runs that were logged under the
experiment name lidar-cnn.
Overview of the MLflow UI. The overview is the same as in Figure
5.5. Instead of the table view, the red box in the middle highlights
the chart view. In this view, charts can be used to compare different
experiment runs directly.o 0oL

44

74

List of Figures

5.7 Overview of experiment run. The Screenshot shows the overview of

5.8

an experiment run. On the top is a collection of meta information.
Below is the run command that can be used to reproduce the run.
The description was left empty. Following this are menu points for
parameters, metrics, tags, and artifacts. They can be opened up to
reveal more information on therun. 63
Plotting metrics for experiment run. The screenshot shows what the
menu to plot metrics for an experiment run looks like. There are
options on the left-hand side that allow the user to format the plot
and select different or additional metrics to plot. The plot is shown
in the middle of the screenshot. Below is a list with interesting or
important values for every metric in the plot. 64

75

List of Tables

2.7

3.7

5.1

List of Hyperparameters and the effect on the ML model’s behavior.
The table is based on Table 11.1 in [12]. For more information on

the different hyperparameters and their effect, read [12]. 14
Table outlining the similarities between the KoopaCar and real ADS

systems. L 32
Keywords for MLL management tool selection 52

76

Listings

5.2

5.3

5.4

Al

Example for an MLProject File, MLproject from [8] on branch
tools-mlflow. The file is YAML formatted. It defines the project
name, Python enviornment and entry points for the project. The
entry points are lidar, yolo and main. For each entry points a series
of parameters were defined and a command that is executed. The
entry point main and lidar are the exact same in this example. . . .
Example of MLflow Tracking an a ML experiment, 1idar_train.py
from [8] on branch tools-mlflow. The code shows the first lines
of the function train(). There the MLflow Python API is used
to log metrics using the call ml1flow.tensorflow.autolog(). This
automizes the logging and works since the ML is implemented in
TensorFlow.
Example of MLflow Tracking an a ML experiment, lidar_train.py
from [8] on branch tools-mlflow. The code extract shows the
function main(). After the arguments that are passed to main are
prased, the MLflow Python API is used to set the experiment and
start an experiment run. In the experiment the function train()
iscalled.

Extract from mlflow utils.py from [35]. The code extract shows the
implementation of logging functions used to run MLflow Tracking
in Yolovb. The functions are part of a class called MLflowLogger.
The methods delegate the logging to the MLflow Python APIL.

77

o7

82

Bibliography

1]

[5]
6]

Sina Shafaei, Stefan Kugele, Mohd Hafeez Osman, and Alois Knoll. “Un-
certainty in Machine Learning: A Safety Perspective on Autonomous Driv-
ing”. In: Computer Safety, Reliability, and Security. Ed. by Barbara Gallina,
Amund Skavhaug, Erwin Schoitsch, and Friedemann Bitsch. Cham: Springer

International Publishing, 2018, pp. 458-464. I1SBN: 978-3-319-99229-7 (cit. on
p. 1).

Markus Winkler, Hakan Erander, Jerome Buvat, Amrita Sengupta, Rainer
Mehl, Sandhya Sule, Subrahmanyam KVJ, and Yashwardhan Khemka. The
autonomous car A consumer perspective. Tech. rep. Capgemini Research In-

stitute, 2019. URL: https://www. capgemini.com/wp-content/uploads/
2019/05/30min-%E2%80%93-Report.pdf (cit. on p. 1).

Z. Peng, J. Yang, T. -. P. Chen, and L. Ma. “A first look at the integration
of machine learning models in complex autonomous driving systems: A case
study on Apollo”. In: ESEC/FSE 2020 - Proceedings of the 28th ACM Joint
Meeting European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 2020, pp. 1240-1250. DOI: 10.1145/
3368089.3417063. URL: https://jinqiuyang.github.io/papers/fse20.
pdf (cit. on pp. 1, 2, 21, 22, 32).

Baidu. Apollo. Accessed Apr. 10, 2023. URL: https://developer.apollo.
auto/ (cit. on pp. 2, 20).

Formula Student Germany. Accessed Apr. 11, 2023. URL: https: //www.
formulastudent.de/fsg/ (cit. on pp. 2, 23).

Samuel Idowu, Daniel Striiber, and Thorsten Berger. “Asset Management
in Machine Learning: A Survey”. In: ICSE’21: ACM/IEEE International
Conference on Software Engineering, Software Engineering in Practice Track
(SEIP). 2021, pp. 51-60 (cit. on pp. 3, 7, 18, 52).

Samuel Idowu, Daniel Striiber, and Thorsten Berger. “EMMM: A Unified
Meta-Model for Tracking Machine Learning Experiments”. In: SEAA’22:

FEuromicro Conference on Software Engineering and Advanced Applications.
IEEE. 2022 (cit. on pp. 3, 18).

78

https://www.capgemini.com/wp-content/uploads/2019/05/30min-%E2%80%93-Report.pdf
https://www.capgemini.com/wp-content/uploads/2019/05/30min-%E2%80%93-Report.pdf
https://doi.org/10.1145/3368089.3417063
https://doi.org/10.1145/3368089.3417063
https://jinqiuyang.github.io/papers/fse20.pdf
https://jinqiuyang.github.io/papers/fse20.pdf
https://developer.apollo.auto/
https://developer.apollo.auto/
https://www.formulastudent.de/fsg/
https://www.formulastudent.de/fsg/

Bibliography

191

[10]

[11]
[12]

[13]

[14]

[15]

[16]

Henriette Knopp and Tim Nyul. koopacar-system. GitHub repository. 2023.
URL: https://github.com/JetteJarl/koopacar-system (cit. on pp. 4,
27, 40, 56, 57, 59, 69, 83).

Henriette Knopp and Tim Nyul. koopacar-simulation-assets. GitHub reposi-
tory. 2023. URL: https://github.com/JetteJarl/koopacar-simulation-
assets (cit. on pp. 4, 24, 41, 69, 83).

Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William
Woodall. “Robot Operating System 2: Design, architecture, and uses in the
wild”. In: Science Robotics 7.66 (2022), eabm6074. DOI: 10.1126/scirobotics.
abm6074. URL: https://www.science.org/doi/abs/10.1126/scirobotics.
abm6074 (cit. on p. 5).

ROS 2 Documentation: Foxry. Accessed Apr. 14, 2023. URL: https://docs.
ros.org/en/foxy/index.html (cit. on p. 5).

lan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MITP,
2018 (cit. on pp. 6, 7, 9-16).

Ding-Xuan Zhou. “Theory of deep convolutional neural networks: Down-
sampling”. In: Neural Networks 124 (2020), pp. 319-327. 1SSN: 0893-6080.
DOI: https://doi.org/10.1016/j.neunet.2020.01.018. URL: https:
//www .sciencedirect.com/science/article/pii/S0893608020300204
(cit. on p. 10).

Y. Xu and R. Goodacre. “On Splitting Training and Validation Set: A Com-
parative Study of Cross-Validation, Bootstrap and Systematic Sampling for
Estimating the Generalization Performance of Supervised Learning”. En-
glish. In: Journal of Analysis and Testing 2.3 (2018). Cited By :277, pp. 249
262. URL: www.scopus.com (cit. on p. 13).

PyTorch. PyTorch. Accessed Apr. 10, 2023. URL: https://pytorch.org/
(cit. on p. 16).

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, lan Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur,
Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Mur-
ray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learn-
ing on Heterogeneous Systems. Software available from tensorflow.org. 2015.
URL: https://www.tensorflow.org/ (cit. on p. 16).

79

https://github.com/JetteJarl/koopacar-system
https://github.com/JetteJarl/koopacar-simulation-assets
https://github.com/JetteJarl/koopacar-simulation-assets
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://docs.ros.org/en/foxy/index.html
https://docs.ros.org/en/foxy/index.html
https://doi.org/https://doi.org/10.1016/j.neunet.2020.01.018
https://www.sciencedirect.com/science/article/pii/S0893608020300204
https://www.sciencedirect.com/science/article/pii/S0893608020300204
www.scopus.com
https://pytorch.org/
https://www.tensorflow.org/

Bibliography

[17] Keras. Accessed Apr. 13, 2023. URL: https://keras.io (cit. on p. 16).

[18] Jakub Czakon. ML Ezperiment Tracking: What It Is, Why It Matters, and
How to Implement It. Accessed Apr. 13, 2023. URL: https://neptune.ai/
blog/ml-experiment-tracking (cit. on pp. 17-19).

[19] Formula Student Germany. Formula Student Rules 2022. 2022. URL: https:
//www.formulastudent .de/fileadmin/user_upload/all/2022/rules/
FS-Rules_2022_v1.0.pdf (cit. on p. 23).

[20] RUB Motorsports. Accessed Apr. 11, 2023. URL: https://www.rubmotorsport.
de/ (cit. on p. 23).

[21] Turtlebot3. Accessed Apr. 13, 2023. URL: https://www. turtlebot . com/
turtlebot3/ (cit. on p. 23).

[22] Gazebo Simulation. Accessed Apr. 11,2023. URL: https://staging.gazebosim.
org/home (cit. on p. 24).

[23] Turtlebot3 e-Manual Overview. Accessed Apr. 13, 2023. URL: https://
emanual . robotis . com/docs /en/platform/ turtlebot3 /overview/
#toverview (cit. on p. 25).

[24] Camera. Accessed Apr. 13, 2023. URL: https://www.raspberrypi.com/
documentation/accessories/camera.html (cit. on p. 25).

[25] Turtlebot3 e-Manual Appendiz LDS-01. Accessed Apr. 13, 2023. URL: https:
/ / emanual . robotis . com/docs/en/platform/turtlebot3/appendix _
1ds_01/ (cit. on p. 25).

[26] Feihu Zhang, Daniel Clarke, and Alois Knoll. “Vehicle detection based on Li-
DAR and camera fusion”. In: 17th International IEEE Conference on Intel-
ligent Transportation Systems (ITSC). 2014, pp. 1620-1625. DOI: 10.1109/
ITSC.2014.6957925 (cit. on p. 25).

[27] Raspberry Pi hardware. Accessed Apr. 13, 2023. URL: https://www.raspberrypi.
com/documentation/computers/raspberry-pi.html (cit. on p. 25).

[28] Glenn Jocher. YOLOvS. May 18, 2020. URL: https://docs.ultralytics.
com/ (cit. on p. 27).

[29] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only
Look Once: Unified, Real-Time Object Detection. 2015. DOI: 10 . 48550 /
ARXIV . 1506 . 02640. URL: https://arxiv . org/abs/ 1506 . 02640 (cit.
on p. 27).

[30] Glenn Jocher. YOLOwS by Ultralytics. Version 7.0. May 2020. DOI: 10.5281/
zenodo.3908559. URL: https://github.com/ultralytics/yolov5b (cit. on
p. 27).

80

https://keras.io
https://neptune.ai/blog/ml-experiment-tracking
https://neptune.ai/blog/ml-experiment-tracking
https://www.formulastudent.de/fileadmin/user_upload/all/2022/rules/FS-Rules_2022_v1.0.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2022/rules/FS-Rules_2022_v1.0.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2022/rules/FS-Rules_2022_v1.0.pdf
https://www.rubmotorsport.de/
https://www.rubmotorsport.de/
https://www.turtlebot.com/turtlebot3/
https://www.turtlebot.com/turtlebot3/
https://staging.gazebosim.org/home
https://staging.gazebosim.org/home
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/#overview
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/#overview
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/#overview
https://www.raspberrypi.com/documentation/accessories/camera.html
https://www.raspberrypi.com/documentation/accessories/camera.html
https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_01/
https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_01/
https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_01/
https://doi.org/10.1109/ITSC.2014.6957925
https://doi.org/10.1109/ITSC.2014.6957925
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html
https://docs.ultralytics.com/
https://docs.ultralytics.com/
https://doi.org/10.48550/ARXIV.1506.02640
https://doi.org/10.48550/ARXIV.1506.02640
https://arxiv.org/abs/1506.02640
https://doi.org/10.5281/zenodo.3908559
https://doi.org/10.5281/zenodo.3908559
https://github.com/ultralytics/yolov5

Bibliography

[31] Burak Kaleci, Kaya Turgut, and Helin Dutagaci. “2DLaserNet: A deep learn-
ing architecture on 2D laser scans for semantic classification of mobile robot
locations”. In: Engineering Science and Technology, an International Journal
28 (2022), p. 101027. 1SSN: 2215-0986. DOI: https://doi.org/10.1016/j.
jestch.2021.06.007. URL: https://www.sciencedirect.com/science/
article/pii/S2215098621001397 Ojt.on.p.SO)

[32] Patrycja Jenkner. 15 Best Tools for ML Ezperiment Tracking and Manage-
ment. Accessed Apr. 13, 2023. URL: https://neptune.ai/blog/best-ml-
experiment-tracking-tools (cit. on p. 52).

[33] Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec, NanoCode012,
Yonghye Kwon, Kalen Michael, TaoXie, Jiacong Fang, imyhxy, Lorna, Zeng
Yifu, Colin Wong, Abhiram V, Diego Montes, Zhiqiang Wang, Cristi Fati,
Jebastin Nadar, Laughing, UnglvKitDe, Victor Sonck, tkianai, yxNONG,
Piotr Skalski, Adam Hogan, Dhruv Nair, Max Strobel, and Mrinal Jain.
ultralytics /yolovs: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation.
Version v7.0. Nov. 2022. DOI: 10 . 5281 /zenodo . 7347926. URL: https:
//doi.org/10.5281/zenodo.7347926 (cit. on p. 60).

[34] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald
Gall, Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zim-
mermann. “Software Engineering for Machine Learning: A Case Study”. In:
2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). 2019, pp. 291-300. DOTI: 10.
1109/ICSE-SEIP.2019.00042 Qﬁt.on,p.69)

[35] Ganesh Jagadeesan. Yolovs/dev/mliflow-resume. https://github.com/ElefHead/
yolovh /tree/dev/mlflow-resume. 2022 (cit. on p. 83).

[36] Gartner. Gartner Forecasts More Than 740,000 Autonomous-Ready Vehicles
to Be Added to Global Market in 2023. Nov. 2019. URL: https://www.
gartner . com/en/newsroom/press-releases/2019-11- 14 - gartner -
forecasts-more-than-740000 - autonomous - ready - vehicles-to-be-
added-to-global-market-in-2023.

[37] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. “Caffe: Con-
volutional Architecture for Fast Feature Embedding”. In: arXiw preprint
arXiv:1408.5093 (2014).

81

https://doi.org/https://doi.org/10.1016/j.jestch.2021.06.007
https://doi.org/https://doi.org/10.1016/j.jestch.2021.06.007
https://www.sciencedirect.com/science/article/pii/S2215098621001397
https://www.sciencedirect.com/science/article/pii/S2215098621001397
https://neptune.ai/blog/best-ml-experiment-tracking-tools
https://neptune.ai/blog/best-ml-experiment-tracking-tools
https://doi.org/10.5281/zenodo.7347926
https://doi.org/10.5281/zenodo.7347926
https://doi.org/10.5281/zenodo.7347926
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://www.gartner.com/en/newsroom/press-releases/2019-11-14-gartner-forecasts-more-than-740000-autonomous-ready-vehicles-to-be-added-to-global-market-in-2023
https://www.gartner.com/en/newsroom/press-releases/2019-11-14-gartner-forecasts-more-than-740000-autonomous-ready-vehicles-to-be-added-to-global-market-in-2023
https://www.gartner.com/en/newsroom/press-releases/2019-11-14-gartner-forecasts-more-than-740000-autonomous-ready-vehicles-to-be-added-to-global-market-in-2023
https://www.gartner.com/en/newsroom/press-releases/2019-11-14-gartner-forecasts-more-than-740000-autonomous-ready-vehicles-to-be-added-to-global-market-in-2023

A Appendix

def log_artifacts(self, artifact: Path, relpath: str = None) -> None:
"""Member function to log artifacts (either directory or single item).
Args:
artifact (Path): File or folder to be logged
relpath (str): Name (or path) relative to experiment for logging artifact in mlflow
if not isinstance(artifact, Path):
artifact = Path(artifact)
if artifact.is_dir(Q):
self.mlflow.log_artifacts(f"{artifact.resolve()}/", artifact_path=str(artifact.stem))
else:
self.mlflow.log_artifact(str(artifact.resolve()), artifact_path=relpath)

def log_model(self, model_path: Path, model_name: str = None) -> None:
"""Member function to log model as an Mlflow model.
Args:
model_path: Path to the model .pt being logged
model_name: Name (or path) relative to experiment for logging model in mlflow
nnn
self.mlflow.pyfunc.log_model(artifact_path=se1f.model_name if model_name is None else
model_name,
code_path=[str (ROOT.resolve())],
artifacts={"model_path": str(model_path.resolve())},
python_model=self .mlflow.pyfunc.PythonModel())

def log_params(self, params: Dict[str, Any]) -> None:
"""Member funtion to log parameters.
Mlflow doesn’t have mutable parameters and so this function is used
only to log initial training parameters.
Args:
params (Dict[str, Anyl): Parameters as dict
try:
flattened_params = MlflowLogger._flatten_params(params_dict=params)
run = self.client.get_run(run_id=self.run_id)
logged_params = run.data.params

self .mlflow.log_param(key=k, value=v) for k, v in flattened_params.items()
if k not in logged_params and v is not None and str(v).strip() != ""]
except Exception as err:
LOGGER.warning (f"M1flow: failed to log all params because - {err}")

def log_metrics(self, metrics: Dict[str, float], epoch: int = None, is_param: bool = False) ->
None:
"""Member function to log metrics.
Mlflow requires metrics to be floats.
Args:
metrics (Dict[str, float]): Dictionary with metric names and values

82

A Appendix

epoch (int, optional): Training epoch. Defaults to None.
is_param (bool, optional): Set it to True to log keys with a prefix "params/". Defaults

to False.
prefix = "param/" if is_param else ""
metrics_dict = {
f'"{prefix}{k.replace(’:’,’-?)}": float(v)

for k, v in metrics.items() if (isinstance(v, float) or isinstance(v, int))}
self .mlflow.log_metrics(metrics=metrics_dict, step=epoch)

Listing A.1: Extract from mlflow utils.py from [35]. The code extract shows the
implementation of logging functions used to run MLHow Tracking in
Yolovh. The functions are part of a class called MLflowLogger. The
methods delegate the logging to the MLflow Python API.

Other software that was produced over the course of this thesis can be found in
[8] and [9].

83

	Erklärung
	Introduction
	Context
	Problem
	Research Questions
	Approach

	Background
	Robotics Operating System (ROS 2)
	Machine Learning Models and Machine Learning Experiments
	Development Cycle of Machine Learning Models Systems
	Multilayer Perceptron
	Convolutional Neural Networks
	Machine Learning Model Training
	Overfitting and Underfitting
	Hyperparameters
	Machine Learning Model Evaluation
	Machine Learning Experiments

	ml Experimentation Management Tools
	Multi Machine Learning Model Systems
	Example for Multi Machine Learning Model Systems in Autonomous Driving

	Subject System – KoopaCar
	Application of the KoopaCar
	Hardware Architecture
	Software Architecture
	Perception Module
	Yolov5 in the KoopaCar
	LiDAR-CNN
	Sensor Fusion

	Comparison to ads
	Similarities
	Differences

	Machine Learning Experiments in Multi Machine Learning Model Systems
	Experiment Pattern 1 – Individual Model Training
	Experiment Pattern 2 – Partial End Loss Training
	Experiment Pattern 3 – Simultaneous End Loss Training
	Experiment Pattern 4 – Alternating End Loss Training
	ml experiments on the subject system
	Building and Optimizing ml Models using Individual Model Training
	Optimizing the LiDAR-CNN
	Optimizing Yolov5 on Custom Dataset
	Result of Individual Model Training

	Training the Complete Pipeline using Simultaneous End Loss Training

	Machine Learning Management Tools and Multi Machine Learning Model Systems
	Tool Selection
	Sources and Search Query
	Selection Criteria
	Inclusion Criteria
	Exclusion Criteria

	Tools

	Tool evaluation
	MLFlow
	Main Concepts of MLflow
	Tracking in Single ml Model Experiments
	MLflow Project for the KoopaCar
	MLflow UI for Comparing Runs and Plotting
	Experiments with Multiple Machine Learning Models

	Result and Conclusion
	Conclusion
	Results
	Outlook

	List of Figures
	List of Tables
	Listings
	Bibliography
	Appendix

