
HAnS: IDE-Based Editing Support for
Embedded Feature Annotations

Johan Martinson∗
Herman Jansson∗

Chalmers | University of Gothenburg
Sweden

Mukelabai Mukelabai
Chalmers | University of Gothenburg

Sweden

Thorsten Berger
Ruhr University Bochum, Germany
Chalmers | University of Gothenburg,

Sweden

Alexandre Bergel
Dept. of Computer Science,
University of Chile, Chile

Truong Ho-Quang
Chalmers | University of Gothenburg

Sweden

ABSTRACT
When developers maintain or evolve software, they often need to
know the locations of features. This proves challenging when the
feature locations are not documented, when the code was written
by different developers who may have left the organization, or
when the developer’s memory of the implementation has faded.
Automated feature location techniques are hard to adopt in practice,
especially since they boast toomany false positives. To address these
challenges, embedded feature annotations have been proposed to
allow developers to trace features in code during development with
minimal effort. However, tool support is needed for developers to
effectively record and use these annotations. We propose HAnS as a
tool to meet this need; it is implemented as an IntelliJ IDE plugin to
support developers seamlessly record feature locations while they
write their code. HAnS supports developers when mapping features
to software assets, such as files and code fragments, with code
completion and syntax highlighting. It also provides functionality to
browse feature definitions and locations, as well as refactor features.
A demo video is available at https://youtu.be/cx_-ZshHLgA.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Software maintenance tools.

KEYWORDS
feature location, embedded feature annotations, tool support, IDE
ACM Reference Format:
Johan Martinson, Herman Jansson, Mukelabai Mukelabai, Thorsten Berger,
Alexandre Bergel, and Truong Ho-Quang. 2021. HAnS: IDE-Based Editing
Support for Embedded Feature Annotations. In 25th ACM International Sys-
tems and Software Product Line Conference - Volume B (SPLC ’21), September
6–11, 2021, Leicester, United Kingdom. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3461002.3473072

∗Both authors contributed equally.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’21, September 6–11, 2021, Leicester, United Kingdom
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8470-4/21/09. . . $15.00
https://doi.org/10.1145/3461002.3473072

1 INTRODUCTION
Features [7, 12, 15] drive the development of software-intensive
systems. Almost all agile processes, such as SCRUM and XP, rely
on features to organize teams and software releases [17]. While
developers may document the list of features available in a system
at the time of release, it is often the case that they do not record
where those features are located in code, but instead retain that
knowledge in their minds. Consequently, when they need to evolve
or maintain features, for instance, to fix bugs, developers spend con-
siderable effort to first locate the features in code before proceeding
with their maintenance tasks—in fact, feature location is one of
the most common activities of developers [8, 21, 25]. However, it
is a daunting task, especially, when the features being located were
implemented long after implementation, possibly by different de-
velopers who may have left the organization; or when the features
cross-cut several folders, files, or code fragments within files.
While the feature location problem may not be prevalent in soft-

ware product lines [4, 9], which already have techniques to manage
features, it is a significant problem inmany long-lived systems, espe-
cially when these realize variants using clone& own. Latest, when
cloned variants are re-engineering into configurable product-line
platforms [4, 5, 14], features and their locations need to be known,
which have then ideally already been tracked during clone& own.
Since manual [16] and automated [21] retroactive feature location
techniques have been shown to be ineffective or inefficient[19, 25],
developers must record feature locations early during development.
To that end, embedded feature annotations [11, 23] have been pro-
posed to record features during development. These annotations
have been standardized with a common notation [22] that develop-
ers can use, and empirical evidence [11] suggests that the benefits
of the annotations outweigh the costs of recording them. Since
the annotations are embedded within the assets, they naturally
co-evolve with the assets when the code is copied or moved around,
and developers do not need to maintain external documentation
of the feature locations, e.g., in traceability databases [18].
However, tool support is needed to effectively use feature annota-

tions and to encourage developers to record them with minimal in-
trusion during development activities. We propose HAnS1 (Helping
Annotate Software) as an IDE plugin to help developers annotate
software assets, such as folders, files and code fragments, with the

1https://bitbucket.org/easelab/hans-text/

https://youtu.be/cx_-ZshHLgA
https://doi.org/10.1145/3461002.3473072
https://doi.org/10.1145/3461002.3473072
https://bitbucket.org/easelab/hans-text/

SPLC ’21, September 6–11, 2021, Leicester, United Kingdom Martinson, Jansson, Mukelabai, Berger, Bergel, Ho-Quang

ClaferIDE
client

views
input
clafermodel
control

jquery
helpSystem
icons

processManagement
polling
timeout

file structure feature model

1 md_input.js
2 input
3 md_clafermodel.js
4 clafermodel

folder(3), file(4), and fragment(5) mapping
ClaferIDE

.git/
Server/

Client/
.feature-to-folder
.feature-to-file
md_input.js
md_clafermodel.js
md_control.js
Commons/

help_getter.js
Images/

client

//&line [polling, timeout]
32 this.pollingTimeoutObject = null; …
479 //&begin [polling]
480 …Control.method("onPoll",

function(responseObject)
530 //&end [polling]

2
3

4

5

1

Figure 1: Embedded feature annotations [11, 22]

features they implement. HAnS provides editing support for devel-
opers to (i) map features to assets, with code completion for feature
names and syntax highlighting, (ii) browse feature definitions and
locations, and (iii) refactor features, e.g., rename or remove features.
We demonstrate HAnS, targeting developers who write feature-

oriented code and need to trace the locations of the features in
code. We discuss the challenges it addresses, the annotation con-
cepts it uses, and finally present its capabilities and how effective
they are in supporting 13 developers who participated in our initial
experiments to record and maintain feature annotations.

2 BACKGROUND AND CHALLENGES
Recording feature locations proactively during development poses
a few challenges that we seek to address with our tool HAnS.
Challenge 1: How to record feature locations with minimal
intrusion to development activities. Since recording features
long after implementation or externally neither minimizes devel-
oper effort nor improves accuracy when recovering feature loca-
tions, HAnS is engineered as an IDE plugin with editing support
for developers to seamlessly annotate code with features as they
write the code. HAnS’ annotation mechanism allows developers to
record feature locations at folder-, file-, code fragment-, and line-
level [11, 22], according to the project’s notion of features. Note
that these are traceability, not variability annotations.
Figure 1 shows the annotation mechanism HAnS uses [22] (spec-

ification available at [1]). Folders and files are mapped to their fea-
tures using textual files placed within the project structure, while
fragments and individual lines of code are mapped using in-line
comments. For instance, in Fig. 1, the folder Client is mapped to
the feature client by adding the file .feature-folder within the folder
and writing the feature client within this file as shown in part 3 of
the figure. The files md_input.js and md_clafermodel.js are mapped
to the features input and clafermodel respectively, by adding the
textual mapping file .feature-files in the same folder where the
files reside then recording the mapping as shown in part 4 of Fig. 1.
Fragments and lines are mapped as shown in part 5 of the figure;
for lines, the annotation appears at the end of the line mapped.
HAnS’ annotation mechanism is programming language inde-

pendent since it uses plain text files for folder and file annotations
while it relies on the commenting style of each programming lan-
guage for fragment annotations. As an IDE plugin it works for all
languages the IDE supports. Even though HAnS is currently an
IntelliJ plugin, it provides the basis for similar plugins in other
major IDEs, such as Microsoft’s Visual Studio or VSCode.

Challenge 2: How to effectively record feature locations. To
effectively record feature locations, developers must be able to (i)
consistently use feature names—correctly spelled or qualified; (ii)
correctly map features to assets—adhere to the annotation specifica-
tion to allow visualization tools retrieve all locations; (iii) browse fea-
tures and their code, e.g., traverse from the feature model to all loca-
tions of a selected feature; and (iv) refactor annotations, e.g., renam-
ing a feature. HAnS addresses these challenges through consistency
rules [1] and a wide range of features we discuss in detail in Sec. 3.

3 THE HANS PLUGIN
To illustrate HAnS’ functionality, let us assume Gretel is a software
developer building a Java Snake game. She wants to use HAnS to
record feature locations during development.

3.1 Mapping Features to Code
To start with, Gretel must create a text file called .feature-model, in
the project’s root folder, in which she would add all features of her
project. This file is needed for all other functionality, such as code
completion for feature names and feature browsing, to work. Note
that sub-features can have same names in the feature model, pro-
vided they have unique parent features. However, they must be least
partially qualified when mapping them to assets. Gretel might want
to map features to an entire folder, file, code fragment, or even an
individual line of code. To map a folder to one or more features, she
adds the text file .feature-to-folder within the folder and writes the
features in the file—one line per feature (part 1 in Fig. 2). Similarly, to
map files to their features, she adds the text file .feature-to-filewithin
the folder where the files to be mapped are located, and then she
writes each mapping using two lines: top line for the files, the bot-
tom line for the features mapped to the files (part 2 in Fig. 2). HAnS
provides menus to create and edit all the above feature mapping
files. To map features to fragments or individual lines of code, she
writes the annotations within Java’s single-line comments, wrap-
ping the features in&begin[] and&end[] or&line[] tags respectively
(part 3 in Fig. 2). She can write fragment annotations faster in two
ways: She can either type any of the three different tags and press
TAB to complete it: (i) &begin—creates a &begin[|] tag with a match-
ing &end[|] tag; (ii) &line—creates the &line[|] tag and; (iii) &end—
creates the &end[|] tag; or, she can select any code fragment and
pressCTRL-ALT-J, which displays options to surround the codewith
different templates. If she chooses the &begin template, HAnS will
wrap the code between&begin[|] and&end[|] tags as shown in Fig. 3.

3.2 Browsing Features
Gretel might want an easier way to browse through her hierarchical
list of features or even find all locations of a selected feature. HAnS
provides a graphical view of the textual feature model with The
Feature Model View window (part 4 in Fig. 2). If Gretel wants to view
all usages of the feature Food—a snake eats food to grow in length,
she can right-click the feature and select Find Usages in the context
menu that appears. The resulting view shows all the usages of the
feature Food (left side of Fig. 4); clicking on any of the usages opens
the specific location of the feature (right side of Fig. 4). If Gretel
chooses, she can also directly open the .feature-model file and ctrl-
click on the feature Food to browse its locations as described above.

HAnS: IDE-Based Editing Support for Embedded Feature Annotations SPLC ’21, September 6–11, 2021, Leicester, United Kingdom

Figure 2: Example of the HAnS plugin in action

The syntax highlighting makes it easy for Gretel to quickly spot her
feature. Additionally, syntax highlighting is context aware: if code
is annotated with a feature absent from the feature model, it is high-
lighted differently, and it notifies developers in the problems tab of
IntelliJ. Part 5 of Fig. 2 shows this for a misspelled feature Positions.

3.3 Refactoring Annotations
If Gretel wants to rename a feature, she can use IntelliJ’s refactoring
short-cut—SHIFT-F6—from within an annotation and choose a new
name. This will rename all references to the feature. Or, she can use
the context menu in the Feature Model View to rename the feature.
From the Feature Model View she can also add or delete features.

3.4 HAnS Visualization
We also extend HAnS with interactive visualizations and metrics
that would allow Gretel to visually explore, for instance, how scat-
tered or tangled features are, thereby reducing Gretel’s reliance on

Figure 3: Example of using the surrounding live templates

external visualization tools. Since visualizations allow developers
to comprehend more complex systems, they can further encourage
developers to use annotations. Inspired by our previous tools [3, 10],
the current visualizations show (i) the mapping between features
and code as a graph, (ii) the tangling of features in a graph, where
the width of edges corresponds to the degree of tangling between
features (nodes), and (iii) metrics such as scattering degree or lines
of feature code for a given feature. The plugin HAnS-vis is still
under development, but can be used prototypically already.2

2https://bitbucket.org/easelab/hans-vis/

Figure 4: Example of using find usages

https://bitbucket.org/easelab/hans-vis/

SPLC ’21, September 6–11, 2021, Leicester, United Kingdom Martinson, Jansson, Mukelabai, Berger, Bergel, Ho-Quang

4 BENEFITS AND EXPERIENCES
To gather qualitative feedback on HAnS’ effectiveness and usability,
we conducted a user study with 13 participants with an average
programming experience of 2.5 years; 7 were professional devel-
opers, and 6 were Master’s students. The participants were tasked
to extend a Snake3 game by adding new features and refactoring
some existing ones, with and without the plugin. Afterwards, they
were asked to complete a questionnaire about their experience.
While basic IDE functionalities such as code completion and

syntax highlighting did not influence the participants’ opinions for
or against HAnS, since they were expected, feature browsing and
refactoring did. For tasks that required participants to map features
to code, there were marginal differences in participants’ perceived
effort required, especially since the subject project was small and
the assigned features were few. However, participants found HAnS’
feature referencing and refactoring functionality very useful since
it was much harder for them to rename all references of a feature, or
to view all locations of the feature without HAnS than with HAnS.
We also found that, overall, participants made fewer annotation

mistakes when working with HAnS than without because of HAnS’
support for code completion and syntax highlighting. The mistakes
included forgetting to qualify features whose names need to be least
partially qualified, using the wrong annotation syntax, forgetting to
define a feature in the feature model, and misspelling a feature’s
name. However these mistakes were also influenced by how fa-
miliar the participants were with the annotation mechanism: we
observed that those participants who first performed some tasks
with HAnS enabled then switched to working without HAnS still
made mistakes even when they worked with HAnS.
Overall, while the participants indicated that they were moti-

vated to use embedded annotations, and found HAnS useful and
effective for recording feature locations, some still found difficulties
to reason about the different granularities of features and when to
annotate specific code with a feature.

5 RELATEDWORK
While most feature visualization tools target features in software
product lines or highly configurable systems [13, 20], a few target
embedded feature annotations. Among these are: FLORiDA [3]—
a standalone Java application that provides several feature views
and metrics e.g., tangling and scattering degree; FeatureVista [6]—a
standalone application that provides interactive feature views for
object oriented systems; and FeatureDashboard [10]—an eclipse plu-
gin that provides views and metrics similar to FLORiDA. However,
these tools offer no editing support.
FAXE [22] is a feature annotation extraction engine that formal-

izes the common notation which HAnS uses to represent embedded
annotations proposed by Ji et al. [11]. It is available as a Java library
that retrieves annotations, calculates metrics, finds inconsistencies,
and renames features; but offers no editing support.
Seiler et al. [24] propose Java-specific annotations to trace code

and requirements, and provide a recommender system to suggest
annotations to developers. Similarly, Abukwaik et al. [2] propose a
recommender to suggest Ji et al.’s [11] annotations when developers
forget to annotate their source code during commits. While they
3https://github.com/johmara/Snake

offer no editing support, such recommenders complement HAnS
by ensuring that developers continuously annotate code.

6 CONCLUSION
We presented HAnS, an IntelliJ IDE plugin to help developers seam-
lessly record feature locations while they write their code. HAnS
effectively supports developers to record features and map assets
to them, offering code completion of feature names and syntax
highlighting to obtain consistent annotations. It allows browsing
feature definitions and locations, and it supports refactoring of
features. Future work includes disseminating the annotation tool
and collecting longitudinal data about its effectiveness.

REFERENCES
[1] 2021. FAXE Online Appendix. https://bitbucket.org/easelab/faxe.
[2] Hadil Abukwaik, Andreas Burger, Berima Kweku Andam, and Thorsten Berger.

2018. Semi-automated feature traceability with embedded annotations. In ICSME.
[3] Berima Andam, Andreas Burger, Thorsten Berger, and Michel R. V. Chaudron.

2017. FLOrIDA: Feature LOcatIon DAshboard for extracting and visualizing
feature traces. In VaMoS.

[4] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[5] Wesley K. G. Assunção, Roberto E Lopez-Herrejon, Lukas Linsbauer, Silvia R
Vergilio, and Alexander Egyed. 2017. Reengineering Legacy Applications Into
Software Product Lines: A Systematic Mapping. Empirical Software Engineering
22, 6 (2017), 2972–3016.

[6] Alexandre Bergel, Razan Ghzouli, Thorsten Berger, and Michel R. V. Chaudron.
2021. FeatureVista: Interactive Feature Visualization. In SPLC.

[7] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Adeline Silva,
Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. 2015. What is a feature?
a qualitative study of features in industrial software product lines. In SPLC.

[8] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas Webster. 1993. The Concept
Assignment Problem in Program Understanding. In ICSE.

[9] Paul Clements and Linda Northrop. 2001. Software Product Lines: Practices and
Patterns. Addison-Wesley.

[10] Sina Entekhabi, Anton Solback, Jan-Philipp Steghöfer, and Thorsten Berger. 2019.
Visualization of feature locations with the tool featuredashboard. In SPLC (2).

[11] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. 2015.
Maintaining feature traceability with embedded annotations. In SPLC. ACM.

[12] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer Pe-
terson. 1990. Feature-oriented domain analysis (FODA) feasibility study. Technical
Report. CMU SEI.

[13] Christian Kästner, Salvador Trujillo, and Sven Apel. 2008. Visualizing Software
Product Line Variabilities in Source Code.. In SPLC (2).

[14] Jacob Krueger and Thorsten Berger. 2020. Activities and Costs of Re-Engineering
Cloned Variants Into an Integrated Platform. In VaMoS.

[15] Jacob Krueger, Wanzi Gu, Hui Shen, Mukelabai Mukelabai, Regina Hebig, and
Thorsten Berger. 2018. Towards a Better Understanding of Software Features
and Their Characteristics: A Case Study of Marlin. In VaMoS.

[16] Jacob Krüger, Thorsten Berger, and Thomas Leich. 2018. Features and how to find
them: a survey of manual feature location. LLC/CRC Press.

[17] Craig Larman. 2008. Scaling lean & agile development: thinking and organizational
tools for large-scale Scrum. Pearson Education India.

[18] Salome Maro, Anthony Anjorin, Rebekka Wohlrab, and Jan-Philipp Steghöfer.
2016. Traceability maintenance: factors and guidelines. In ASE.

[19] Francisca Pérez, Jorge Echeverría, Raúl Lapeña, and Carlos Cetina. 2020. Compar-
ing manual and automated feature location in conceptual models: A Controlled
experiment. Information and Software Technology 125 (2020), 106337.

[20] Andreas Pleuss, Rick Rabiser, and Goetz Botterweck. 2011. Visualization tech-
niques for application in interactive product configuration. In SPLC (2).

[21] Julia Rubin and Marsha Chechik. 2013. A survey of feature location techniques.
In Domain Engineering.

[22] Tobias Schwarz, Wardah Mahmood, and Thorsten Berger. 2020. A Common
Notation and Tool Support for Embedded Feature Annotations. In SPLC.

[23] Marcus Seiler and Barbara Paech. 2017. Using Tags to Support Feature Manage-
ment Across Issue Tracking Systems and Version Control Systems. In REFSQ.

[24] Marcus Seiler and Barbara Paech. 2019. Documenting and Exploiting Software
Feature Knowledge through Tags. In SEKE.

[25] Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. 2013. How Devel-
opers Perform Feature Location Tasks: A Human-Centric and Process-Oriented
Exploratory Study. Journal of Software: Evolution and Process 25, 11 (2013).

https://github.com/johmara/Snake
https://bitbucket.org/easelab/faxe

	Abstract
	1 Introduction
	2 Background and Challenges
	3 The HAnS Plugin
	3.1 Mapping Features to Code
	3.2 Browsing Features
	3.3 Refactoring Annotations
	3.4 HAnS Visualization

	4 Benefits and Experiences
	5 related work
	6 conclusion
	References

