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Abstract—Scenario-based testing for automated driving sys-
tems (ADS) must be able to simulate traffic scenarios that rely
on interactions with other vehicles. Although many languages
for high-level scenario modelling have been proposed, they
lack the features to precisely and reliably control the required
micro-simulation, while also supporting behavior reuse and test
reproducibility for a wide range of interactive scenarios. To fill
this gap between scenario design and execution, we propose
the Simulated Driver-Vehicle Model (SDV) to represent and
simulate vehicles as dynamic entities with their behavior being
constrained by scenario design and goals set by testers. The
model combines driver and vehicle as a single entity. It is based
on human-like driving and the mechanical limitations of real
vehicles for realistic simulation. The layered architecture of the
model leverages behavior trees to express high-level behaviors
in terms of lower-level maneuvers, affording multiple driving
styles and reuse. Further, optimization-based maneuver planner
guides the simulated vehicles towards the desired behavior. Our
extensive evaluation shows the model’s design effectiveness using
NHTSA pre-crash scenarios, its motion realism in comparison to
naturalistic urban traffic, and its scalability with traffic density.
Finally, we show the applicability of SDV model to test a real
ADS and to identify crash scenarios, which are impractical to
represent using predefined vehicle trajectories. The SDV model
instances can be injected into existing simulation environments
via co-simulation.

I. INTRODUCTION

Testing automated driving systems (ADS) requires simulating
a wide range of operating scenarios to ensure their safety and
conformity to traffic regulations and industry standards. As
the responsibility for the driving task shifts from the human
driver to the ADS with increasing levels of automation [1],
the system is required to handle interactions with the other
road users, in particular with human-operated vehicles (HVs).
Scenarios for verification and validation must reflect how these
dynamic interactions between humans and the subject system
can unfold in real traffic.

Figure 1 shows an example based on the National Highway
Traffic Safety Administration’s (NHTSA) pre-crash scenario
catalog [2]. In this scenario, the vehicle operated by the subject
ADS (aka Ego vehicle) moves in traffic when V2 cuts in
front of it, leading to a near-collision. This cut-in maneuver
likely triggers a reaction by several other close-by vehicles,
and the Ego’s reaction strongly influences how the scenario
unfolds. Testing the ADS capabilities in collision avoidance
in such scenarios requires models that are able to represent
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Fig. 1. A challenging interaction between Ego and HVs based on a pre-crash
scenario from NHTSA [2] and using the SDV model in simulation: (left) the
SDV Model as V2 performs the cut-in maneuver targeting Ego, and (right) a
high-fidelity co-simulator renders the scene.

and simulate the dynamics of the traffic, including the HVs
and their interactions with Ego.

Many Domain-Specific Languages (DSLs) for scenario-
based testing have emerged to support the scenario design
and representation. As such, they include models for HVs
and allow testers to define the HVs’ behavior and guide
their interactions with Ego when executed by simulation
tools during testing. However, these languages are typically
limited to relatively simple models, such as using an event-
based orchestration mechanism that directly manipulates the
simulated vehicle’s primitive attributes [3], [4]. In such a
model, a condition may trigger a direct assignment to the
vehicle’s position and velocity. The focus of these languages is
declaratively specify “what a vehicle must do” and “where it
must be” in a particular scenario, but without detailing “how”
it moves. Consequently, this approach relies on a simulation
tool to implement the actual vehicle behavior, either by
translating the high-level definition to the vehicle simulation
model internal (and often implicit) to the tool or by forcing
the change in vehicle state, while disregarding the limitations
of a real vehicle in traffic. The potential mismatch between
what is specified by the language and the actual vehicle
behavior compromises test reproducibility across simulation
environments and validity of the test results.

An alternative approach is to use catalogs of predefined
trajectories (PDTs), either extracted from traffic or designed by
testers using a variety of mathematical functions or polylines,
and orchestrate them via triggers [5], [3], [6], [7]. This
approach brings realistic trajectories to HVs. However, the
traffic is a dynamic system with complex interactions amongst
participants, as the example in Figure 1 illustrates. Further,
ADS sub-systems often exhibit some non-determinism [8],
which leads to non-determinism in the overall ADS behavior.
A predefined behavior at the level of trajectories is unlikely
to adequately account for the wide range of possible reactions
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in a dynamic interaction between the ADS and the traffic and
also achieve reproducibility. Further, such PDTs are typically
specific and limited to certain road geometries.

To fill this gap between scenario design and execution, this
paper contributes a model to specify and simulate realistic
HV behavior in ADS scenario testing, while affording high
expressiveness, execution accuracy, scalability, and reuse. We
refer to our model as the GeoScenario Simulated Driver-
Vehicle model (or simply SDV model). It extends the base
scenario-definition language GeoScenario [5] with HVs as
dynamic agents in both scenario representation and simulation
execution. The SDV model encapsulates driver and vehicle as
a single entity and is based on two main layers: Behavior and
Maneuvers. The Behavior layer is a higher level of abstraction
aimed at coordinating the vehicle behavior using an explicit,
user-oriented DSL. The Maneuver layer generates the actual
vehicle trajectories and is designed to approximate how real
vehicles drive on the road and optimize for the scenario
test objective. Both layers are highly configurable to allow
multiple driving styles, subject to the physical limitations
and nonholonomic properties [9] of a typical road vehicle
operating on structured roads.

We evaluate the SDV model in terms of (i) scenario de-
sign effectiveness, which includes expressiveness, execution
accuracy, and reuse, using NHTSA pre-crash scenarios; (ii)
its motion realism in comparison to naturalistic urban traffic;
(iii) its scalability with traffic density; and (iv) its practical
applicability to test an actual ADS. The results show that the
model is able to successfully express and accurately execute
all eighteen NHTSA vehicle-to-vehicle pre-crash scenarios,
except one scenario variant. In comparison, only four scenarios
are effectively expressible using PDTs, which is our baseline.
In particular, lane-change and crossing-path scenarios are
highly unpractical with the baseline and benefit the most
from the new model. The SDV model also results in high-
levels of internal reuse, achieving over 80% on average for
the NHTSA scenarios. Using naturalistic traffic data from
a busy urban intersection, we show how the motion of the
simulated vehicles is similar to that of the real vehicles when
operating under the same conditions. In the best performing
scenarios (first quartile), the synthetic trajectories from the
model are almost indistinguishable from empirical vehicles,
with an average spatio-temporal trajectory distance of less than
55 cm (while the average from all scenarios is 1.24 m). We
also show that the model scales in scenarios with up tp 10-
20 simultaneous highly-interactive vehicles, while maintaining
simulation quality and consistency in the driving task. Finally,
we demonstrate the model’s applicability in ADS scenario-
based testing with a real subject system, and its ability to
reveal collision scenarios that cannot be expressed using the
baseline.

A reference implementation of the model is available to the
research community with a full scenario simulation tool that
is ready to be integrated in co-simulation with any simulation
environment. The tool-set and additional model documentation
is available in the companion website.1

1https://geoscenario2.readthedocs.io

II. BACKGROUND AND RELATED WORK

A. Scenario-Based Testing

The usage of the term scenario varies depending on the author
or discipline [10]. In our work, we rely on Ulbrich et al., who
analyzed the concept across multiple disciplines and proposed
a definition based on requirements for ADS testing:

“A scenario describes the temporal development between
several scenes in a sequence of scenes. Every scenario starts
with an initial scene. Actions and events as well as goals
and values may be specified to characterize this temporal
development in a scenario.” [11]

The scenario-based design paradigm considers scenarios
as a central concept to support the development of complex
systems throughout the entire lifecycle, from helping to derive
initial requirements to validating the system during the test-
ing [12]. Kaner et al. [13] define scenario-based testing as the
dominant paradigm of black-box testing, where scenarios are
used to check how the system copes with both nominal and off-
nominal situations. In the automotive context, ISO 26262 [14]
and ISO/PAS 21448 [15] guide the development of safety-
critical electrical/electronic vehicle systems and mandate the
use of scenarios as part of validation activities.

Scenarios can be defined at different levels of abstraction.
Menzel et al. [16] propose three such levels within the ISO
26262 systems engineering process: (i) functional scenarios,
being high-level natural language descriptions in the concept
phase, (ii) logical scenarios, being semi-formal models with
state space parameters and their ranges in the development
phase, and (iii) concrete scenarios, represented in an exe-
cutable format with concrete values in the test phase. In this
work we focus on the levels (ii) and particularly (iii), since
they are closer to the level of detail required for simulation.

Researchers and engineers design scenarios based on expert
knowledge and the common traffic situations the ADS must
be able to cope with, or by reproducing and augmenting
situations collected from traffic databases. For example, Com-
monRoad [6], a benchmark for motion planners, provides
scenarios extracted from NGSIM data [17]. A scenario can also
be systematically generated to achieve specific test goals, e.g.,
lead the system to trigger a certain behavior such as an emer-
gency maneuver, or find a critical situation leading to a crash.
For example, Abdessalem et al. [18], [19] use evolutionary
optimization methods combined with surrogate model learning
to find crash scenarios. Given a parameterized scenario space,
the evolutionary search produces subsequent generations of
parameter values with increasing criticality based on how the
system performs under simulation. Similar methods are also
used to test autonomous parking systems [20].

B. Scenario Representation and Driver Behavior

Multiple tool-independent DSLs have emerged in recent years,
providing a formal definition of scenario structure, behavior,
test conditions, and pass/fail criteria to support scenario-based
design and testing in simulation. The goal is to offer a uniform
representation and semantics across methods and tools. The
scope and structure of each language vary, but fundamentally
they all define how vehicles behave in traffic and orchestrate

https://geoscenario2.readthedocs.io
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interactions with Ego that must be executed by a simulation
tool during the test. We focus our discussion on how some of
the prominent languages specify this behavior.

OpenScenario [3] is a standard managed by the Association
for Standardization of Automation and Measuring Systems
(ASAM). The format describes dynamic content in driving
simulation applications in combination with OpenDRIVE [21],
which specifies the road structure. It covers traffic and driver
behavior, weather, environmental events, and other features.
It includes the description of a driver, but there is no model
for driver behavior in any form other than “road following.”
The standard also does not contain maneuver models or a
vehicle model. Maneuvers are described in terms of actions
(e.g., change the vehicle’s position or speed), and trajectories
(defined as a polyline, clothoid, or spline).

The Measurable Scenario Description Language (MSDL)
[4] expands the concepts of OpenScenario. The language uses
modifiers to change the behavior of the agents similarly to
actions from OpenScenario. It introduces parameter variability
(a range instead of a single value) along with constraints to
narrow down values and connect multiple parameters (e.g.,
velocity of vehicle A is between 10 and 20 m/s and less than
vehicle B). The language represents the vehicle behavior at
the logical abstraction level and supports generating concrete
scenarios by picking random values while obeying the con-
straints.

Other formats are Scenic [22], Scenario Description Lan-
guage (SDL) [23], and SceML [24]. A common trait amongst
them is that they are primarily declarative languages. They
define “what” must happen in a scenario during key events
without specifying “how.” Their approach relies on external
models running in simulation to handle the execution.

Finally, our language GeoScenario [5] provides mechanisms
to represent road users and an orchestration system to allow
testers’ control of how they interact with Ego. The language
tackles the multi-agent orchestration via triggers, but is limited
at the individual vehicle behavior to select among PDTs
specific to the road. The SDV model extends GeoScenario
with interactive and flexible driver behavior.

C. Models for Traffic Simulation

Traffic simulation has a wide range of applications and can
be used to generate the motion of vehicles at various levels
of detail. Macroscopic traffic models describe vehicle motion
and interaction in terms of flow and density. They are mainly
used for large scale simulation over a road network [25]. Since
they are not suitable for street-level motion and interactions
between vehicles, they cannot be used for ADS testing.

In contrast, microscopic traffic models can generate vehicle
motion and interactions at the individual vehicle level at the
cost of limited scalability [26]. They are able to encode simple
rules that allow a vehicle to follow waypoints or the structure
of the road, avoid frontal collisions by alternating between
driving and stopping, and perform maneuvers triggered by
conditions [27], [28], [29]. However, while capturing this
reactive behavior, they usually lack enough detail to simulate
complex interactions between the vehicle under test and other

road users in realistic conditions. For example, they often use
simplistic motion limited to a constant velocity throughout a
maneuver and disregard the physical limitation of a real vehi-
cle. They also cannot represent complex interactions, such as
vehicles responding to merge attempts, using the available road
space to navigate around obstacles, or skillfully navigating an
intersection with multiple influencing factors (e.g., vehicles,
pedestrians, and traffic regulation). The supported behavior is
rigid, and it is hard or impossible to encode the fine-grained
details that replicate human driving.

Some micro-models target a particular maneuver, for exam-
ple, a lane-change model encoding the accelerating/decelerat-
ing behavior based on surrounding vehicles [30], or the driver’s
decision and conditions that trigger the maneuver [31]. While
these models better capture details at the maneuver level and
allow testers to cover a range of parameters, they are suitable
for testing specific functions and subsystems (for instance,
testing the ADS emergency break) in a very constrained
environment. They do not cover the complexity of the full
driving task required for scenarios in system-level testing.
Attempting to combine multiple maneuver-specific models
into a simulated agent would be challenging since every model
has its own set of assumptions and constraints.

A different approach is to learn models directly from data.
Krajewski et al. [32] build a lane-change model by using
unsupervised learning to extract primitive attributes from lane
changes observed in the highD dataset [33]. The resulting
model can then be used to generate synthetic lane change
maneuver trajectories in new scenarios. The main limitation
in a purely data-driven approach is the inherent bias in the
data used to build the model. While most available datasets
cover common situations, driver mistakes and safety-critical
scenarios are rarely captured in such data sources. Also, they
can capture the diversity of driving styles in one road envi-
ronment, but are difficult to generalize to other environments.
TrafficSim [34] uses a hybrid approach to build a model by
learning from naturalistic data and also encoding common-
sense rules to guide the driving task. This hybrid approach
shows promising results in imitating the human-driving and
its diversity of driving-styles, while still reacting to traffic.
However, agents are not fully controllable and cannot be
adapted to new scenarios by freely assigning new goals or
styles based on a new scenario design.

Overall, traffic simulation models are built for simulated
agents to drive independently without collisions. As a result,
they tend to limit the controllability by the tester. For scenario-
based testing, the simulation model must serve the scenario
goals. If the evolution between scenes is not controllable, and
the agents are not guaranteed to reach the target situation (as
specified by parameters, such as a time gap for a maneuver),
even the most realistic traffic simulation will not be suitable.
Thus, scenario-based testing requires expressiveness, control-
lability, and realistic behavior.

D. Behavior Trees

Behavior Trees (BTs) is a control architecture that emerged
from the gaming industry and plays a significant role in
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robotics. Its design aims to address the shortcomings of finite
state machines and their variations, and provide improved
modularity, reusability, scalability, and readability [35]. The
tree-like structure of BTs conveys a hierarchical understanding
of how composition operators coordinate elemental behaviors,
such as maneuvers, to perform the desired overall behavior.
There are two types of tree nodes: control nodes and behavior
nodes.

Control nodes, or operators, are responsible for coordinat-
ing the execution of their children nodes. In the classical
architecture, there are three operators: the fallback, sequence,
and parallel nodes. The fallback operator resembles the logic
operator or, but with a short-circuit semantics. This node
commands a sequential execution of its children, left-to-
right, and returns success immediately when a child succeeds;
otherwise it executes the next child. It returns failure when
none of the children succeed. The sequence operator resembles
the short-circuit logic operator and. This node also commands
a sequential execution of its children, left-to-right, but returns
failure immediately when a child fails; otherwise it executes
the next child. It returns success when all of the children
succeed. Last, the parallel operator commands the execution
of all children at the same time. The rule for success or failure
of the parallel operator is user-defined.

Behavior nodes are responsible for encoding domain-
specific tasks, which BTs then compose into the overall desired
behavior. These nodes are the interface to the concrete low-
level behaviors. A behavior node returns success when its
task succeeds, or ‘running’ while the task is under execution,
or failure when the task fails. The expressive, modular, and
interpretable representation of BTs makes them suitable for
representing driver behavior in test scenarios.

III. SDV MODEL DESIGN AND ARCHITECTURE

We now introduce the structure of the GeoScenario Simulated
Driver-Vehicle model (SDV) and its components. For simplic-
ity and scalability, the model combines driver and vehicle
as a single entity, abstracting away driver inputs, such as
steering angle, braking, and throttle. The resulting behavior
(model output) is the vehicle movement: position, velocity,
acceleration, and heading at each point in time, referred to as
VehicleState.

We design a layered architecture inspired by the seminal
works of Michon [36] and Boer et al. [37], which propose a
hierarchical structure of the driving task with strategic (e.g.,
route selection), tactical (maneuver selection), and control
(maneuver execution) levels. According to Boer et al. [37], the
driving task can be characterized as a goal-directed behavior,
where the goal is typically composed of “a set of higher-level
needs whose interaction affects how drivers orchestrate the set
of observable low-level driving tasks.” Our model architecture
targets the tactical and control levels, with a focus on the ease
of use for testers to express the overall tactical behavior in
the behavior layer, and the remaining two layers providing
reusable maneuver planning and execution in (see Figure 2):

• The Behavior Layer structures the driver tactical behav-
ior. It breaks down the complex driving task into smaller

Fig. 2. GeoScenario SDV model overview. The model combines driver and
vehicle into a single entity and outputs the resulting vehicle state in simulation.

tasks and coordinates maneuvers via a user-oriented DSL
that consists of BTs and elemental maneuvers.

• The Maneuver Layer is responsible for trajectory plan-
ning. It turns a maneuver decision from the BTs into a
viable motion profile based on the road, the surrounding
actors, and the maneuver parameters.

• The Execution Layer is responsible for trajectory execu-
tion in simulation. The result is the vehicle state as the
output from the SDV model to the simulation.

A. World Model and Vehicle Representation

We assume that a simulation holds a ground-truth bird’s-eye-
view representation of the world in two-dimensional Carte-
sian coordinates, including all the static elements of the
scenario (road geometry and network, regulatory elements,
static objects) and a simulation state for all dynamic elements
(pedestrians, vehicles, and regulatory element state). Amongst
the vehicles, Ego represents the vehicle under test, and its
state is determined by an Ego vehicle model controlled by
the ADS under test. The remaining vehicles can be SDV
model instances, vehicles simulated by an unknown model,
or vehicles controlled by a human during test. In the world
representation, they are equal traffic participants with a body
and a physical presence. All dynamic actors are perceived by
each other through their type and the state over time:

VehicleStateCartesian(t) = [x, ẋ, ẍ, y, ẏ, ÿ, θ]t (1)

B. Vehicle Motion and Traffic State Estimation

The vehicle driving mission is defined by a start state and a
route assigned in GeoScenario as part of the scenario design.
The scenario route is a sequence of points to be visited
(in order), and its last point is the goal. From the Lanelet
Map routing graph [38], we generate a sub-map of connected
lanelets visiting each route point on a shortest path, if such a
route exists in the road network. With all the lanelets in this
route, a global path is formed by a sequence of points from
the lane centre line. It is used to guide the vehicle motion and
its progress along the route to the goal point. If the vehicle
deviates from this route (after a scenario event), a new route
is generated from the last state to the remaining route points.

The SDV parameterizes and plans its motion in its dynamic
Frénet reference frame [39], rather than the global Cartesian
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Fig. 3. Road Geometry and vehicle displacement from original coordinates
are transformed into Frenet Frame using the tangential and normal vectors ~t,
~n from the lane centre line (shown in red).

coordinates of the simulation environment. This is motivated
by the fact that safety requirements on the motion of an on-
road vehicle are typically specified relative to its Frénet frame
derived from the local lane geometry (e.g., see [40]). For a
given global path segment surrounding the vehicle position
(which aligns with the local lane centre line), we fit a spline,
which we refer to as the reference path and use it for the frame
transformation. The reference frame (Frénet frame) is given by
the tangential ~t and normal ~n vectors at the point along the arc
length of this path that is closest to the vehicle. The resulting
frame’s S axis represents the longitudinal displacement along
this path, and the D axis represents the lateral displacement
(Figure 3). The vehicle motion is represented by a trajectory
that combines two independent polynomial functions S(t)
and D(t) in the Frénet frame, and T as the total time (2).
Velocity and acceleration are the first and second derivatives,
respectively, yielding the longitudinal and lateral state (3):

Trajectory = [S,D, T ] (2)

VehicleStateFrénet(t) = [S(t− t0), Ṡ(t− t0), S̈(t− t0),

D(t− t0), Ḋ(t− t0), D̈(t− t0)]

for 0 ≤ t− t0 ≤ T (3)

The SDV trajectory is planned by the Maneuver Layer
(Section III-D) in the Frénet frame, and the current SDV
state is then translated to the Cartesian frame state (1) by the
Execution Layer at each simulation cycle.

The Traffic State Estimation is a support task transforming
the state of the static and dynamic elements, including Ego,
that surround the reference path into the SDV’s reference
frame (see Figure 2). Since both the SDV and the traffic
are moving, the task predicts the state of the world for the
next point in time when the Maneuver Layer will generate
a new trajectory for the SDV. This predicted traffic snapshot
in Frénet frame, along with the map, represents a simplified
representation of the world, which is then used for decision
making and trajectory generation.

C. Behavior Layer

Given a route and the estimated traffic state, this layer
performs the decision making, modeled using BTs. In each
execution cycle, the SDV executes the main BT, which is
a directed rooted tree with internal nodes being operators
controlling the flow and leaf nodes being either (i) conditions
to be evaluated (based on the traffic state), (ii) decisions that

start (or end) maneuvers, or (iii) references to sub-trees. Figure
4 shows a graphical representation of two sample trees, with
the left one being the main tree, and the right one being a sub-
tree referred to from the main one. The main tree first checks
the sequence node, which tests whether the vehicle reached its
goal; if this test succeeds, then the tree will issue a decision to
stop (stop maneuver). Otherwise the vehicle continues driving
by executing the sub-tree on the right, which first checks if
there is a lead vehicle, in which case it issues the follow
maneuver; otherwise it commands cruising at a set velocity.

The key motivation to use BTs is to provide test engineers
with an easy-to-use means to specify scenario-specific SDV
behavior. Rather than using a full-fledged behavior planner
for an entire ODD (Operational Design Domain) to control
an SDV, they can specify scenario-specific “micro-planners”
by composing, parameterizing, and, if needed, customizing
reusable BTs, expressed in a user-oriented DSL. This is
possible since the driving task can be broken into smaller sub-
tasks (e.g, road following, handling traffic lights, switching
lanes), each encapsulated in a separate tree, and stored in
a library. Test engineers can select the BTs representing the
behaviors needed for a test scenario from the library and easily
compose them through the sub-tree reference mechanism (as
in Figure 4). They can also modify the driving style of an SDV
by modifying BT parameters, and inject misbehaviors, such as
dangerous cut-ins, by replacing normal maneuvers with BTs
that represent such misbehaviors. Compared to using a full-
fledged behavior planner, this approach shields the engineers
from the decision logic needed to support other scenarios and
thus eliminates unnecessary complexity. Section V shows a
practical BT and how it captures a range of behaviors via
parameters (Figure 13). Further examples are available in the
online documentation.

Fig. 4. Graphical representation of a sample SDV BT structuring the decision-
making with conditions (c) and maneuvers (m). ’?’ is the fallback operator
(short-circuit or), and → is the sequence operator (short-circuit and).

D. Maneuver Layer

This layer is responsible for the actual vehicle motion on the
road. It receives a maneuver decision from the Behavior Layer
and implements it by generating a feasible trajectory, which
can be performed by a real vehicle. To achieve this, the model
is bounded by a set of feasibility constraints respecting the
vehicle dynamics. This is an important distinction from the
behavior models assumed by the scenario definition languages
and traffic simulators discussed in Section II.

A maneuver is “goal-oriented vehicle motion control be-
havior undertaken by a human driver or an ADS in order to
achieve a specific result/outcome.” [41] A key element of the
result is the target state of the vehicle, such as reaching a
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desired velocity or an adjacent lane and challenging Ego is a
specific way. Furthermore, the maneuver must account for the
road geometry, other traffic, including Ego, and the desired
driving style, according to the test objectives.

Each maneuver is defined through a set of trajectory
characteristics relative to the road environment. A maneuver
exposes a set of parameters to control it according to scenario
objectives. We use existing maneuver catalogs [41], [42] and
implement a subset to support the evaluation in Section V:
velocity keeping, vehicle following, lane swerving (used for
lane change and swerve-in-lane), merge-in-front, stop, and
reverse. Note that these are elemental maneuvers, and com-
posite maneuvers are implemented as BTs over the elemental
maneuvers. For instance, lane maintenance composes velocity
keeping, vehicle following, and stop. The maneuvers instan-
tiate a general model (see Figure 5), which has three steps:
(i) finding the target states for the maneuver, (ii) generating
candidate trajectories, (iii) selecting an optimal trajectory.
Each of these steps is controlled by a set of configurable
parameters, allowing testers to realize a particular driving style
or misbehavior. The generated trajectories are kept short (2
to 5 seconds), but some maneuvers, e.g., vehicle following,
are performed over extended periods of time and, therefore,
consist of a sequence of trajectories. The Behavior layer
decides when to start, finish, or abort a maneuver.

1) Target Finding: Each maneuver has its own criterion
to define a target state and a time to reach it. Target finding
requires evaluating the road structure, traffic, and other objects.
For example, the target for velocity keeping is to reach and
keep a target velocity, while in the same lane; and the target
for vehicle following is to reach and keep a certain target
gap. The maneuver configuration is used to adjust the desired
behavior according to the scenario goals by assigning target
ranges to these parameters. Any lateral position relative to the
current lane can be used, but if the maneuver is a lane swerve,
the position is relative to the target lane. In the merge-in-front
maneuver, the goal is to reach the same lane as the target
vehicle, while achieving the target differences in position,
velocity, and acceleration (δS). These target parameters allow
simulating a dangerous cut-in maneuver by setting the gap to
be small and closing. Our online documentation has a detailed
description of maneuvers and target configuration options.

While defining the maneuver configuration, parameters can
be set as a single value or a value range, e.g., a vehicle target
speed of exactly 14 m/s, or within 20 % from 14 m/s. During
execution, our model samples multiple values for each range
parameter independently and creates a target state set as a
Cartesian product over the parameter value sets. The sampling
method of choice and the number of samples per parameter are
configurable. The target state set is used to generate multiple
trajectory candidates and select the best trajectory, filtering out
configurations that may be infeasible or suboptimal.

2) Trajectory Generation: Given a target state set, trajec-
tory generation computes a smooth motion profile between
the current vehicle state and each target state in the Frénet
frame. We use an approach that plans each trajectory as
a pair of quintic polynomials, in longitudinal and lateral
direction, respectively [39], which minimizes jerk to reflect

smooth and comfortable driving. A quintic polynomial is a
jerk-minimal connection between two points P0 and PT , in
a one-dimensional problem with p(t) as location and T as
the motion duration [43]. The total accumulated jerk over the
one-dimensional trajectory is given by 4:

Jp,T :=

∫ t=T

t=0

...
p 2(t)dt (4)

Trajectory generation creates a trajectory by computing
the coefficients of two quintic polynomials, S(t) for the
longitudinal dimension as p(t), and D(t) for the lateral
direction as p(t), to fit the boundary conditions: the ini-
tial state VehicleStateFrénet(t0) and each of the target states
VehicleStateFrénet(t0 + T ) from the target-finding step. This
results in a candidate set that respects the target constraints.

3) Optimal Trajectory Selection: This step selects a feasible
and optimal trajectory from the candidate set, based on fea-
sibility constraints and cost functions. Feasibility constraints
reject trajectories with any collision, direction inversion, lane
departure, and exceedance of maximum lateral/longitudinal
jerk and acceleration. These are checked by sampling points
over the planned and predicted trajectories (e.g., Ego), as
illustrated in Figure 6.

The remaining candidate set is ranked using a weighted sum
of cost functions:

• Time cost: Penalizes trajectories longer or shorter than
the target time T .

• Efficiency cost: Penalizes low average velocity.
• Lane-offset cost: Penalizes distance from lane center

during the entire trajectory.
• Jerk cost: Penalizes high longitudinal and lateral jerk over

the entire trajectory (JS,T and JD,T ).
• Acceleration cost: Penalizes high longitudinal and lateral

acceleration over the entire trajectory.
• Proximity cost: Penalizes proximity to obstacles (vehi-

cles, pedestrians, or other objects).

The best trajectory is the lowest-cost feasible one. Weights
can be adjusted per BT node according to scenario goals.
For example, if a given scenario requires the vehicle to drive
too close to Ego, the proximity cost weight for Ego must
be lowered. The resulting trajectory respects realistic vehicle
motion, balances conflicting qualities such as progress and
comfort, while implementing the scenario goals.

E. Execution Layer

The selected trajectory is executed as a function of time. At
each new planning cycle, the BTs either continue the trajectory
or switch between maneuvers if a new condition is triggered.
Figure 7 shows an example of trajectory planning for a cut-in
maneuver to the right lane. The grey lines are the candidate
trajectories eliminated by feasibility constraints or higher cost.
The blue line is the best cut-in trajectory based on scenario
goals (target and weight values) and motion constraints. The
green line is the target vehicle (Ego) trajectory.
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Fig. 5. SDV general maneuver model

Fig. 6. Checking for collisions with static objects and dynamic obstacles

Fig. 7. Trajectory planning by the SDV during a cut-in maneuver

IV. MODEL IMPLEMENTATION

A reference implementation for the SDV model and tools
for running scenarios in simulation are available as part
of the open-source project GeoScenario Server. The server
parses scenario definitions expressed using Lanelet2 map [38]
and GeoScenario language [5] extended with the SDV BT
definition format and creates a traffic simulation with the
SDV model instances running concurrently. Vehicles that do
not require complex reactive behaviors can use predefined
trajectories rather than the SDV model, which improves per-
formance. The server is implemented in Python and operates
as a co-simulator to be interfaced with the simulation of
the Ego vehicle, its sensors, and the ADS under test. The
implementation also provides a sample integration with an
existing simulator, WISE Sim, and an ADS software stack,
WISE ADS (see Figure 8). The GSClient component provides
a shared memory interface between the GeoScenario Server
and WISE Sim, which runs within the Unreal game engine
and provides lidar and camera simulation. The high-fidelity

dynamics model of the Ego vehicle, a Lincoln MKZ, runs
as a Robot Operating System (ROS) [44] module along with
the WISE ADS. The GeoScenario Server can be integrated
into any other simulation environment, simply by customiz-
ing GSClient for the new environment (shown in the cut-
in example in Figure 1). We also provide an experimental
integration to run scenarios in co-simulation with Carla [29].
The implementation provides a collection of sample scenarios,
BTs, and maps covering different traffic situations. All tools
are available to the research community and can run scenarios
out-of-the-box. More technical details are available in the
online documentation.

V. EVALUATION

We evaluate the SDV model in terms of design effectiveness,
realistic vehicle motion, practical applicability for scenario-
based ADS testing, and finally scalability. The following
research questions guide our evaluation:

• RQ1: Can realistic and interactive scenarios for ADS
testing be effectively modeled and executed via SDV
models?

• RQ2: Can SDV models generate realistic vehicle motion?
• RQ3: Can using SDV models improve the effectiveness

of scenario-based testing of a real ADS?
• RQ4: How does the model performance scale with traffic

density?

A. Effective Scenario Development (RQ1)

We evaluate the effectiveness of scenario development using
the SDV model by analyzing how the model improves GeoSce-
nario as the baseline DSL to design and execute test scenarios
from a catalog using three metrics:

• (i) expressiveness: the breadth of scenarios that can be
represented with the model. Given a set of scenarios,
we classify each scenario according to whether the re-
quired behaviors for all vehicles in the scenario could
be modeled. We assign success (S) when all behaviors
are successfully expressed with no limitations, partial
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Fig. 8. SDV Model integration with the co-simulation environment (GeoScenario Server + WISE Sim) and the subject system under test (WISE ADS).

(P) when the behaviors for at least one variation of
the scenario can be expressed, or failure (F) when the
minimum behavior required for a scenario cannot be
expressed.

• (ii) execution accuracy: accuracy of the scenario and ve-
hicle behavior during simulation with respect to scenario
objective. Even when a scenario can be represented with
the language, the intent in design may not always translate
to correct execution. After running a simulation, we clas-
sify the degree to witch scenarios are correctly executed:
success (S) when all vehicles behave as expected and the
scenario objective is achieved; partial (P) when at least
one variation of the scenario succeeds; and failure (F)
when vehicles deviate from the design intent and thus
the scenario execution fails.

• (iii) reuse: the ability to reuse behavior across scenar-
ios to reduce design effort. Behavior is defined using
BTs, which can be reused by importing from a shared
library, composing using sub-tree references, and con-
figuring using parameter values. We quantify reuse in a
scenario based on the internal reuse level from Frakes
and Terry [45]. When applying this metrics, BTs are
considered as higher-level items, which consist of nodes
as lower-level items. Given a scenario containing a set of
BTs (higher-level items), the metric is defined as M/L,
where M is the number of nodes (lower-level items) that
are used more than once (i.e., used also in BTs of other
scenarios) and L is the total number of nodes in the set
of BTs. This metric assumes values between 0 and 1 and
represents the percentage of internal reuse. The remaining
percentage represents custom BT code, such as custom
sub-trees, required to implement behavior that is specific
to the particular scenario. Note that each BT in the library
is used by at least two scenarios. Since a scenario may not
use all the nodes of the BTs it imports from the library, we
also compute the internal reuse level for a given scenario
accounting for only the nodes that are actually executed
in a successful simulation.

Since the SDV model extends the capabilities of GeoSce-
nario, we use the latter as the baseline. In the original
language, the vehicle behavior is composed of predefined

trajectories (PDT) with speed profiles and triggers to change
them at run-time [5]. This common approach is also supported
by other simulation tools, including PreScan [46] and VTD [7].

SDV models can be used in a wide variety of scenario
designs and test cases requiring Ego-to-HV interactions, which
naturally leads to a large design space to explore. In order
to make the evaluation feasible, we focus on safety-critical
scenarios that account for the majority of crashes in traffic.
We use the Pre-Crash Scenario Typology from NHTSA [2]
to compose this evaluation set. This scenario catalog provides
interactive and realistic scenarios that can challenge the ADS
capabilities in crash avoidance and are commonly used as
a reference for ADS validation in other projects [47], [29].
We filter the original set for scenarios with vehicle-to-vehicle
interactions, resulting in 18 scenarios (Table I).

We design each scenario using a combination of the original
GeoScenario and multiple instances of SDV models. Each
instance is based on a collection of BTs and maneuver con-
figurations representing the behavior of one or more vehicles
interacting with Ego. The original NHTSA set is based on
reported events between HVs, but we assume that one of
the HVs is Ego, operated the ADS (similar to how Waymo
adapts NHTSA scenarios as tests [47]). A test scenario must
also have goals and a clear success/fail criteria. Ego’s goal is
to drive through the scenario (from start to goal point) and
avoid a collision. The goal of an SDV is to interact with Ego
using target parameters defined by the tester, e.g., achieving a
certain time gap before braking. The overall scenario goal is to
replicate the pre-crash events as described by NHTSA, leading
to a crash or a near-crash. If execution differs by either a safe
outcome (vehicles never interact or interact differently than
intended) or another type of crash, the scenario execution fails.
After modeling the scenarios, we execute them in simulation
using the reference implementation (Section IV).

As part of the comparison of expressiveness with the base-
line, we classify the type of SDV behavior required in each
scenario as static or dynamic with respect to three elements:
path shapes, speed profiles, and behavior triggers. Behavior
triggers are conditions triggering the required changes in paths
and speed profiles during the scenario (Table I). Scenarios that
involve static behavior for all three elements, i.e., fixed paths
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and speed profiles for each SDV and their starting triggers,
can be easily designed with PDTs from start to finish and do
not benefit significantly from a dynamic model (stat,stat,stat
in Table I). Scenarios that require dynamic behaviors, but
the behaviors can be expressed as sets of static paths and
velocity profiles with dynamic triggers to select among them
(stat,stat,dyn in Table I), can still be modeled using PDTs
with reasonable effort. Finally, scenarios that require dynamic
path or velocity profile or both (dyn,stat,*; stat,dyn,*; and
dyn,dyn,* in Table I) are impractical to be modeled using
PDTs, but are enabled by the proposed SDV model. For ex-
ample, the cut-in scenario has a continuous space of paths and
speed profiles, and a dynamic trajectory needs to be planned
based on the Ego behavior, which may vary from execution
to execution. We note that using the NHTSA descriptions of
the scenarios as a source, many scenario variants are possible.
Our classification is based on the minimal behavior required to
reproduce the critical event occurring immediately prior to a
crash as described by NHTSA; however, added elements, such
as additional vehicles, might change the static classification to
a dynamic one, but not the other way.

Results: Due to limited space, we focus on the main findings
here and provide the full list of scenarios and observations in
the companion website.

Expressiveness: All 18 scenarios except for one variant of
#17 are successfully expressed using the SDV model. We
identify 14 scenarios (78%) that depend on dynamic path
or velocity profile or both and are thus impractical for the
baseline. For instance, a vehicle leaving a parking position
in scenario #17 must start this maneuver only when Ego is
approaching and adjust its trajectory, in one of the variants, to
merge ahead of Ego. While the vehicle must challenge the
ADS, an unavoidable lateral crash into Ego would not be
useful as a test scenario. To achieve the scenario goal, the
vehicle must be able to generate a trajectory relative to Ego’s
motion at run time. The same requirement applies to all lane-
change scenarios (#16-#19). For crossing-path scenarios #30
and #31, the velocity profile must be dynamically planned. The
SDV models enable us to successfully express these dynamic
behaviors, which are infeasible with the baseline, resulting in
a higher expressiveness. One variant of Scenario #17 “Parked
Vehicle SD” requires the parked vehicle to join traffic by
making a U-turn, and this maneuver is currently not supported
by the implementation of trajectory generation.

A total of four scenarios (22%) require only static tra-
jectories (stat,stat,* in Table I) and thus can be designed
with the baseline. For instance, in the rear-end scenario #25
both path shape and speed profile can be generated offline
and expressed as PDTs with only a trigger to activate the
deceleration as Ego approaches. In such examples, the SDV
model does not increase expressiveness. However, it adds
two advantages: (i) conciseness, by defining the scenario at
a higher level of abstraction using target parameters instead
of detailed trajectories, and (ii) flexibility, by allowing the
scenario to be replicated in different road geometries without
changing the behavior definition.

Execution: In 17 scenarios, vehicles perform as expected,
and the scenario ends with a crash or near-crash as described in

the NHTSA report. The performance deviates from the design
in the scenario #16 “Vehicle(s) Turning – Same Direction”.
The assigned behavior requires that vehicles perform a maneu-
ver that violates the legal road-network connectivity. Since the
current implementation relies on the Lanelet map to constrain
the driving space, the map required an adaptation to execute
the scenario correctly.

Reuse: The composable nature of BTs allows us to reuse
most of them, i.e., use each BT in two or more scenarios,
since there is significant commonality in the driving task
for the different scenarios. In most scenarios, vehicles start
by performing normal lane maintenance or vehicle following
until an unexpected event occurs, such as a risky behavior of
another vehicle. The differences among scenarios emerge in
such events and are usually modeled at the highest levels of the
main BT for the given scenario. We call them the “scenario-
trees”. The remaining tasks are reusable and performed using
“sub-trees” (e.g., performing a lane-change). This reuse pattern
is not part of the original BT concept, but it has emerged
during this experiment when trying to maximize reuse. In some
instances, a simple overriding of parameters for conditions
or maneuvers during the sub-tree composition is sufficient to
adapt the behavior from one scenario to another and achieve
the scenario objective with 100% reuse (see Internal Reuse
Level in Table I). Overall, the average internal reuse level
(weighted by the size of behavior trees in each scenario) is
0.93. Considering only the nodes executed during a simulation,
the average is 0.81.

The experience modelling and running NHTSA scenarios
reveals how effective the SDV model can be in ADS scenario
development. The model enables expressing highly-dynamic
behaviors, fosters reuse and can successfully execute most
scenarios in simulation. Vehicle interactions involving lane
changing, merging, and crossing paths are severely limited
or impractical using the PDT baseline. Thus, such interactive
scenarios benefit most from the SDV model. The limitations
we identify are due to missing underlying maneuvers (such as
a U-turn) or the map constraints that prevent certain vehicle
movements. We will address them in future work. Based on
the NHTSA statistics, the scenarios expressed and executed
successfully with the SDV model represent about 49% of all
light-vehicle crashes in traffic.

B. Vehicle Motion (RQ2)

As the primary goal is to simulate human controlled vehicles, a
good model must reflect the human-driving behavior and how
vehicles move in naturalistic traffic conditions. To evaluate
the motion realism, we use SDV models to replicate scenarios
collected from urban traffic and compare their behavior with
real vehicles. It is unreasonable to expect SDV models to
drive exactly like the empirical vehicle, since not even humans
drive equally. However, our model is designed to be highly
configurable and adapt to different driving styles. With the
proper configuration in the calibration process, we expect that
SDV models can approximate the behavior of the empirical
vehicles to a high degree given the same environment condi-
tions. We use data from a busy signalized intersection during
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TABLE I
SCENARIOS AND PERFORMANCE
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4 CP Running Red Light stat dyn stat S S 0.83 0.60
5 CP Running Stop Sign stat dyn dyn S S 1.00 1.00
15 B Backing Up

Into Another Vehicle
stat stat dyn S S 0.91 0.60

16 LC Turning SD dyn dyn dyn S S* 0.87 0.63
17 LC Parking SD dyn dyn dyn P P 0.84 0.71
18 LC Changing Lanes SD dyn dyn dyn S S 0.89 0.79
19 LC Drifting SD dyn dyn dyn S S 0.79 0.71
20 OD Making Maneuver OD dyn dyn dyn S S 0.90 0.84
21 OD Not Making Maneuver OD dyn dyn dyn S S 0.76 0.50
22 RE Following Vehicle

Making Maneuver
dyn dyn dyn S S 1.00 1.00

23 RE Lead Vehicle Accelerating stat stat dyn S S 0.90 0.75
24 RE Lead Vehicle at Lower Speed stat stat stat S S 1.00 1.00
25 RE Lead Vehicle Decelerating stat stat dyn S S 0.90 0.75
27 CP Left-Turn Across Path/OD

at SJ
stat dyn dyn S S 0.90 0.75

28 CP Vehicle Turning Right at SJ stat dyn dyn S S 0.99 0.94
29 CP Left-Turn Across Path/OD

at NSJ
stat dyn dyn S S 0.98 0.93

30 CP Straight Crossing Paths at NSJ stat dyn dyn S S 0.94 0.81
31 CP Vehicle Turning at NSJ stat dyn dyn S S 0.94 0.81

Acronyms: B: Backing up, CP = Crossing Paths, LC = Lane Change, OD =
Opposite Direction, RE = Rear-end, SD = Same Direction, SJ = Signalized
Junction, NSJ = Non-Signalized Junction. Path Shape, Speed Profile, and
Behavior Trigger are requirements for vehicle behavior that can be static

(stat) or dynamic (dyn). Expressiveness and Execution show the degree in
which a scenario is modeled and correctly executed, respectively

(S=successfully, P=partially, F=Failed). The internal reuse level is computed
with all Behavior tree nodes (IRL), and only for nodes that are executed in

the simulation (IRL exec). *Scenario #16 required a map adaptation to
perform correctly.

mid-day traffic in Waterloo, Canada, which is part of the
Waterloo Multi-Agent Traffic Dataset [48]. The “birds-eye”
image was collected using a drone and processed to label and
track pedestrians and vehicles (Figure 9).
This experiment follows four steps:

1) Data preparation: We classify the vehicle trajectories
in the dataset into five scenario types based on the
main maneuver they represent: (i) vehicle crossing
intersection unconstrained (free), (ii) vehicle stopping
(red light), (iii) vehicle resuming driving (green light),
(iv) vehicle following a lead through the intersection
(follow), and (v) vehicle partly following a lead when
the lead merges or leaves mid-scenario (free/follow). In
cases where a vehicle stops at a signal light, we split
the trajectory into two scenarios, namely (ii) and (iii),
in order to eliminate the waiting state where a simulated
trajectory can trivially match the empirical vehicle. Each
such classified vehicle trajectory represents an individual
experimental trial.

2) Test generation: For each classified vehicle trajectory,
we identify the traffic conditions that may affect how the
vehicle is driving, e.g., signal light states and all other
vehicles and pedestrians that may affect it, to be repro-

Fig. 9. A snapshot of the signalized intersection used for experiments and
its corresponding simulation on the right.

duced in simulation. Each classified vehicle trajectory is
used as a reference vehicle for a single test. We generate
a new GeoScenario test replacing the reference vehicle
with an SDV model instance with a standard driver BT
and using the same start state (velocity and position in
the intersection), and replicate the traffic conditions to
ensure the driving task is influenced by the same factors.
The standard driver BT is capable of performing each of
the five maneuvers. We also assign a route goal to the
model based on the last known position of the empirical
reference vehicle to ensure the simulated vehicle will
navigate the intersection towards the same exit lane.
All other relevant empirical vehicles and pedestrians are
included in the test as agents with PDTs, and the signal
light phases are also replicated. We generate 100 test
scenarios and manually review the correctness of the
identified traffic conditions.

3) Calibration: While each simulated reference uses the
same standard-driver BT, it needs a BT configuration to
replicate the driving style of its empirical counterpart.
We use a set of rules to automatically analyze each
empirical reference trajectory and generate a configura-
tion for it by extracting a set of high-level driving-style
parameter values and value ranges, including maximum
and average velocities, lateral displacement on the lane,
stopping distance to target, reaction times, and time gap
to other vehicles. We adjust the SDV parameter ranges
to target similar values.

4) Simulation: We run two simulations per scenario using
the SDV model, one with a default configuration before
the calibration and another one after the calibration, and
export the resulting trajectories as a discrete set of the
vehicle states in the simulation frequency at 30 Hz. The
default configuration uses nominal naturalistic driving
parameters, such as zero offset from the lane centerline
and a time gap range of 1.8..2.2 s [49].

The SDV performance is assessed using a measure of
distance between the simulated trajectory T1 and the empirical
reference trajectory T2, which takes into account both their
spatial and temporal characteristics. The shorter the distance,
the more similar the motion behavior of the simulated and
the empirical vehicle. We use the spatio-temporal Euclidean
distance (STED) [50], which represents the average Euclidean
distance between positions of the respective vehicles, T1(t)
and T2(t), along their respective trajectories T1 and T2, over
the interval l in which both trajectories exist:
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dSTED(T1, T2) =

∫
l
d(T1(t), T2(t)) dt

|l|
(5)

Results: Figure 10 shows the distribution of STED before
and after calibration per scenario type. The majority of sim-
ulated trajectories are already fairly similar to their empirical
reference even before the calibration with an average STED
of 4.27 m. A review of the simulated trajectories shows a
similar decision making patterns, such as reacting to traffic
lights and vehicles ahead, to the empirical ones. However, the
main differences are observed in the speed profiles, lateral
placement on the lane, time gaps, and various delays and
reaction times, all indicative of different driving styles. The
calibration brings the simulated trajectories significantly closer
to their empirical counterparts: average STED for all 100
scenarios reduces from 4.27 m to 1.24 m. At an individual
level, calibration improves the performance in 82 scenarios.
Although the performance is worse for 18 scenarios, it is only
slightly worse for 16 of them, with less than 1 m deterioration.
Only two scenarios deteriorated more significantly, by 1.4 m
and 1.9 m. The latter deviation is due to an erratic driving
style of the empirical reference vehicle, which accelerates hard
when resuming driving on green and then decelerates for no
apparent reason. Such erratic behavior could be replicated by
a dedicated maneuver. Further note that the improvement from
calibration is most pronounced for (i) free driving by matching
the average speed of the empirical vehicle, and (ii) signal light
handling by matching the delay to resume driving on green.

Fig. 10. Performance for all scenarios and per type, before (a) and after (b)
calibration, measured using STED in meters. Orange lines represent medians,
and green triangles represent averages.

Figure 11 shows the paths and speed profiles of sample
individual scenarios. Plot (a) shows the reference vehicle 5
reacting to a red light. The path before calibration shows the
simulated vehicle stop at the stop line, but the empirical vehi-
cle stops about 2.5 m before the line. After calibration, both the
simulated and empirical paths match up almost perfectly, with
an STED of 17 cm, and a maximum distance of 31 cm. The
calibrated speed profile also closely matches the empirical one.
Plot (b) shows vehicle 97 crossing the intersection southwards,
while already following a lead vehicle. The black dashed line
shows the lead vehicle’s speed profile, which is fairly constant
throughout the scenario. The initially slower reference vehicle
accelerates to match the lead’s speed. The calibration improves

the default configuration to match the more aggressive time-
gap of the empirical vehicle, resulting in closely matched
speed profile and reducing the STED from 2.37 m to 17 cm.
In rare cases, the calibration does not improve performance,
as shown in plot (c). A vehicle approaches the intersection
with a red light and an already stopped vehicle ahead. After
waiting for the green light, the reference vehicle can resume
driving but needs to keep a following distance from the lead
vehicle. The simulated vehicles resume with a smaller delay
compared to the empirical one.

In summary, SDV models can closely reproduce the behav-
ior of human-driven vehicles under the same traffic conditions.
Overall, the model calibration can address varying driving
styles and significantly increase the similarities in the trajecto-
ries. In some scenarios, such as in Figure 11 (a), the simulated
trajectory after calibration is in essence indistinguishable from
the empirical one, with maximum difference of 31 cm. In some
scenarios the human behaves unexpectedly, however, and the
current automatic calibration process cannot replicate such
behaviors, but they could be modeled in the BTs as additional
maneuvers. All results, trajectory logs, speed and trajectory
plots are available in the project website.

C. Application (RQ3)

We run an in-depth case study to evaluate how the model
performs in a real ADS testing environment and answer RQ3.
We choose the cut-in lane change NHTSA scenario (#18 in
Table I) to test an actual ADS software as the subject system.
In this scenario, a vehicle changes lanes at a non-junction and
merges closely in front of the Ego traveling in a adjacent lane
in the same direction. After the maneuver, the lane-changing
vehicle becomes the lead of the Ego. Cut-in maneuvers from
other drivers pose challenges to the ADS, and if not handled
properly can lead to crashes. In fact, this scenario accounts
for 338 000 crashes or 6.69% of all the light-vehicle crashes
in the NHTSA report [2]. Avoiding or mitigating them is an
important goal for any ADS development program.

The goal of this test is to evaluate the ADS capabilities to
handle cut-ins from other vehicles. Testers want to evaluate the
impact of key vehicle interaction parameters, such as relative
velocity and gap, on the likelihood and crash severity. The non-
deterministic behavior of the subject ADS makes simulating
this type of scenario challenging, however. Reaching the
desired test parameter values while performing realistic vehicle
interactions requires a reactive model, capable of adapting and
re-planning trajectories as the scenario unfolds.

The case study has an explorative nature, with the objective
to generate practical insights of applying the SDV model to
test a real ADS, including identifying potential limitations.

1) System under test: We test WISE ADS, developed at
the University of Waterloo [51]. The ADS software consists
of a set of ROS modules implementing object-detection and
tracking, occupancy and high-definition mapping, localization
and state estimation, maneuver and trajectory planning, and
control. The software can operate a Lincoln MKZ Hybrid,
equipped with a drive-by-wire interface and a suite of lidar,
camera, GPS, and inertial sensors (Figure 12), in automated
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Fig. 11. Paths and speed profiles for five sample scenarios. Empirical vehicles in red; SDV models in dashed blue (before calibration) and solid blue (after
calibration).

Fig. 12. The research platform

mode at SAE level 3. We focus on testing the ADS software
in simulation, using WISE Sim with the GeoScenario Server
implementing the SDV model (see Figure 8). GeoScenario
server simulates the SDV model instances and injects them
into WISE Sim, with both environments operating in co-
simulation. Then WISE Sim uses the ROS publish-subscribe
mechanism to publish simulated sensor data from (GPS, IMU,
cameras, and lidar) for the ADS and receives the Ego pose
from the high-fidelity dynamics model of the Ego.

2) Test scenario: The cut-in behavior is expressed as a
BT, such as the one in Fig. 13, and assigned to an SDV
model instance. According to this BT, the vehicle must reach
a certain acceptance (rear) gap before performing the cut-in
maneuver and then achieve a certain target (rear) gap to Ego.
The BT calls the standard drive BT (line 8) to maintain its
current lane, parameterized with a target speed of 14 m/s (+-
10%), which is slightly higher than the road speed limit. The
simulation plans candidate trajectories by sampling 6 target
velocities from this target range (uniformly, by default). After
a delay to allow the vehicle to pick up pace (line 4), it starts
checking for the acceptance distance gap (range) of 5 m (+-
10%) for a lane change to the right (target_lane_id=-1),
on which Ego drives at a speed matching the road speed
limit (line 6). Once the acceptance gap is satisfied, the lane
change is triggered (line 7), with a target distance gap of 5 m
and a relative velocity of -3 m/s (delta_s=(5,-3)). The
experiment repeats the scenario with different combinations
of parameters to evaluate how Ego handles a variety of cut-in

trajectories and find configurations that are more likely to lead
to a crash.

Fig. 13. Cut-in Behavior Tree using our DSL

Results: As expected, more aggressive cut-ins are more
likely to cause collisions, but the response of the ADS to
different parameter combinations of the cut-in maneuver is
non-obvious (see Table II). Scenarios #7 and #8 are parame-
terized with the same short acceptance gap ∆da = 2m and
the same target relative velocity ∆vt = −5m/s, but #8 has
a smaller target distance gap, ∆dt = −5m, compared to
∆dt = −2m for #7. As a result, #8 ends in a collision.
Note that ∆dt and ∆vt are planned relative to the predicted
Ego location at the end of the cut-in maneuver, assuming Ego
continues at a constant velocity. Thus, although a negative ∆dt
would guarantee a collision if Ego maintained its velocity,
Ego is likely to brake and thus a negative ∆dt does not
necessarily result in a collision. Scenarios #9-11 use a larger
acceptance gap, with ∆da = 5m. As a result, although #9
has the same target parameters as #8, a collision is avoided,
since the larger acceptance gap gives Ego more time to
react. Increasing the target aggressiveness in #11 results in
a collision, however. Figure 14 shows scenario #8 with the
SDV’s trajectory generation (a-b), its ground-truth perspective
(c), and the ADS’s perception of the scenario (d). The ADS
detects the SDV (yellow bounding box), and the ADS’s tracker
predicts the SDV’s future trajectory (bold green line) as in
conflict with the Ego’s lane. Although the Ego initiates an
emergency stop, the rear-end collision is not avoided.

This experiment demonstrates how the the SDV model can
be used with a real ADS to search for scenarios and parameters
where the system may not be able avoid a collision. We
found that using another SDV instance as placeholder for Ego
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Fig. 14. One of the simulation scenarios that results in a crash; in (a) and (b),
the SDV trajectory generation in Frénet Frame targeting Ego at two different
moments (optimal trajectory in blue and infeasible ones in red); in (c) the
SDV simulation view in Cartesian coordinates; and in (d) the ADS perception
(circles represent the lidar simulation, with the Ego located at their center)

enables a rapid iterative development of test scenarios. The
iterations are needed to ensure the correct behavior of the
cutting-in vehicle and select reasonable ranges of test parame-
ters, before running the more time-consuming simulation with
Ego controlled by the ADS. Finally, the experiment results
also highlight the importance of being able to plan the SDV
maneuver trajectories dynamically and influence their shape
via parameters.

D. Scalability (RQ4)

We evaluate the SDV model scalability to see if it can support
scenarios with heavy traffic. Although most scenarios rely
on a small set of vehicles interacting with Ego, such as
between one and three in the NHTSA pre-crash scenarios,
complex scenarios may require simulating heavy traffic. For
example, we observed that a single vehicle in our intersection
dataset may interact with up to six other vehicles. In order to
support such scenarios, the model must be able to scale traffic
density without any significant degradation of the simulation
performance or the quality of the planned trajectories.

1) Reference implementation and performance require-
ments: The experiment uses the reference implementation
(Section IV). To provide a sufficient simulation update rate, the

TABLE II
SIMULATION PARAMETERS FOR SDV BEHAVIOR AND RESULTS

SDV Config Observed

# ∆da ∆dt ∆vt ∆da Coll. vSDV vEgo maneuver

7 2 -2 -5 2.07 n - - -
8 2 -5 -5 2.05 y 10.89 13.16 emergency stop
9 5 -5 -5 5.49 n - - -
10 5 -5 -10 5.50 n - - stop
11 5 -10 -10 5.60 y 7.60 12.15 -

Behavior and Maneuver Layers target a planning rate of 3 Hz,
and the Execution Layer targets updating the position of all
vehicles at 30 Hz. Planning is a highly time-critical task, which
needs to be executed within its target period of 333 ms (3 Hz).
If a vehicle misses the target time to generate its plan, it likely
affects the quality of its trajectory and the resulting motion.
Furthermore, a long overrun can affect the SDV model’s ability
to predict the traffic state, resulting in sub-optimal trajectories
and even unintended collisions. The Execution Layer executes
the trajectory of each vehicle from the previous planning cycle
by (i) transforming the current target state in the planned
trajectory from the Frénet frame to the Cartesian frame and (ii)
updating the vehicle’s position, velocity, acceleration, and yaw.
The state transformation and update must be completed for all
vehicles within 33 ms. A small exceedance, if consistent, may
be acceptable, as it would slightly reduce the update frequency
below 30 Hz without destroying the actual vehicle motion. The
experiment is executed on an Intel Core i7-6800K at 3.40 GHz,
with 32 GB RAM and Ubuntu 18.04.5.

2) Scenarios: We use two long-running scenarios, each
with a two-minute duration, and vary the number of vehicles,
up to 20. In each scenario, the vehicles travel in one lane and
form a virtual platoon, simulating heavy traffic. In scenario A,
the vehicles travel without any disturbance, and in scenario
B, they need to steer to avoid a static obstacle in their lane.
When running scenario A, collision checking is inactive; and it
is activated when running scenario B. The purpose of scenario
B is to show the impact of collision checking on scalability,
since it is computationally expensive. Each vehicle travelling
behind another one is expected to observe a safe following
distance.

3) Metrics: We evaluate the adherence to the target rates
using the following metrics: Target Rate Compliance (TRC),
defined as the % of simulation (execution) ticks from all
vehicles that adhere to the target tick time of 33 ms (30 Hz);
the maximum tick time; the Target Planning Rate Compliance
(TPRC), defined as the % of planning cycles from all vehicles
that adhere to the target time of 333 ms (3 Hz); and the
maximum planning time.

Results: Both scenarios with up to 20 vehicles execute
successfully, without any collisions or lane boundary viola-
tions. The planning adheres to the target rate with almost
100%, with 99.8% being the worst case (Table III). On the
other hand, execution deteriorates significantly between 10
and 15 vehicles, especially when the collision checking is
active, plunging from 98.49% to 78.58%. Such a deterioration
of the target rate to update the state of all vehicles may
introduce inconsistencies and confuse the ADS under test, such
as inducing significant errors in its object tracking system.
However, reducing the update rate from 30 Hz to 20 Hz results
in near perfect adherence for up to 20 vehicles when no
collision checking is used and up to 15 vehicles with the
collision checking active (Figure 15). Thus, scenarios with
up to 10 SDV instances are easily handled by the reference
implementation, and scaling to 20 instances requires reducing
the update rate. For scenarios requiring even more vehicles,
the traffic can consist of a mix of vehicles, with the more
expensive SDV instances used for interactions with Ego,
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Fig. 15. Performance with increasing number of vehicles. (A) is without
obstacle avoidance, and (B) is with obstacle avoidance. The grey area
represents the performance range between 20 Hz to 30 Hz.

TABLE III
PERFORMANCE WITH MULTIPLE SCENARIO CONFIGURATIONS

id vehicles obstacle coll. TRC max tick TPRC max plan

3 10 inactive 0 98.44% 0.042s 100.00% 0.333s
4 15 inactive 0 92.28% 0.055s 99.94% 0.338s
5 20 inactive 0 61.90% 0.052s 100.00% 0.333s
8 10 active 0 98.49% 0.041s 99.94% 0.338s
9 15 active 0 78.58% 0.052s 99.80% 0.340s
10 20 active 0 55.65% 0.065s 99.91% 0.343s

and the remaining vehicles following PDTs, which have a
negligible computing cost.

VI. CONCLUSION

Scenario-based testing is one of the primary methods to
verify and validate the behavioral safety of automated ve-
hicles, as mandated by industry standards (e.g., ISO26262
and ISO21448) and safety frameworks (e.g., Waymo’s [47]).
Supporting such testing requires tooling to express and execute
focused tests, such as the NHTSA pre-crash scenarios, which
is in contrast to broad, exploratory test runs, such as roaming
in dense urban traffic. To be effective, such tooling must allow
for sufficient behavior controllability, realistic movements, and
interactive planning of the participating road users to achieve
the test objectives. Further, the scenario representation should
aid understandability and reuse, and the execution should scale
to at least a dozen interacting vehicles.

The proposed SDV model addresses these needs through
a combination of BTs and dynamic trajectory planning. The
model encapsulates driver and vehicle as a single entity with a
layered architecture that provides a user-oriented language to
coordinate the vehicle behavior, and vehicle motion planning
that optimizes for realism and achieving the scenario test
objective. In particular, BTs provide a high-level description
of discrete decisions, with a high-level of abstraction and
parameterization to support controllability and reuse. Further,
dynamic trajectory planning allows for flexible adaptation
of the SDV trajectories to different road geometries and
achieving the test objective despite varying and unpredictable
Ego behaviors.

The evaluation shows that the proposed approach supports
effective test scenario development and execution. All eighteen
NHTSA vehicle-to-vehicle pre-crash scenarios are success-
fully expressed and executed using the SDV model, except
for one variant due to unsupported U-turns. The scenario

analysis also shows that their majority (78%) require dynamic
trajectory planning, and thus cannot be effectively handled
using the predefined-trajectory agent baseline. The dynamic
trajectory planning also allows for easy adaptation of the tests
to different road geometries. The ability to reuse sub-trees
and override parameters support high levels of internal reuse,
achieving over 80% on average for the NHTSA scenarios. In
other words, on average, over 80% of a scenario’s content is
also used in other scenarios.

The evaluation also shows the ability of the SDV model to
reproduce real-world vehicle behavior and scale sufficiently.
In one of the experiments, the average STED between the
simulation and the real trajectories for 100 traversals through
a busy urban intersection is 4.27 m before calibration, and it
improves to 1.24 m after calibration. In particular, the simula-
tion faithfully reproduces different driving styles by adjusting
parameters and can accommodate custom behaviors, including
misbehaviors, as additional conditions and maneuvers. The
reference implementation demonstrates that the SDV model
scales to execute scenarios with 10-20 highly interactive
vehicles, and additional optimizations, such as reducing the
number of sampled trajectories for vehicles farther away from
Ego, allow for further scaling.

The application of the SDV model to test WISE ADS in
the cut-in scenario confirms the usefulness of the model and
offers practical insights. Among others, the ability to control
the shape of the cut-in trajectories uncovers the varied response
of the ADS to different trajectories, showing that not only the
target gap and velocity, but also the acceptance gap impact the
likelihood of a collision. Further, using an SDV model instance
in place of Ego helps accelerate the development of the test
scenario and parameter selection to tune the trajectories of the
agent that challenges Ego.

In future work, we plan several model extensions and new
capabilities that exploit the model. First, we plan to expand the
model with new maneuvers and configuration options based
on additional scenarios, harvested from a wider range of nat-
uralistic data, such as the additional locations in the Waterloo
dataset [48] and the multi-country INTERACTION dataset
[52]. We plan to improve the auto-calibration process and
further automate creation of BTs and their parameterization
to approximate the naturalistic traffic. We will also expand
the BTs and maneuvers for interaction with pedestrians [53].
Finally, we plan to exploit the model in generating new
scenarios by injecting road-user misbehaviors into BTs, such
as simulating distraction [54] and ignoring occlusions [55].
The SDV model implementation and toolset to design and run
scenarios is publicly available and can be integrated with any
simulation environment via co-simulation.
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