
Detecting Semantic Conflicts with Unit Tests

Léuson Da Silvaa, Paulo Borbaa, Toni Maciela, Wardah Mahmoodb,c,
Thorsten Bergerb,d, João Moisakisa, Aldiberg Gomesa, Vińıcius Leitea

aInformatics Center, Federal University of Pernambuco, Pernambuco, Brazil
bChalmers University, Gothenburg, Sweden

cUniversity of Gothenburg, Gothenburg, Sweden
dRuhr University Bochum, Bochum, Germany

Abstract

Branching and merging are common practices in collaborative software de-
velopment. They increase developer productivity, allowing developers to
independently contribute to a software project. Despite such benefits, these
practices come at a cost— the need to merge software and resolve merge
conflicts, which often occur in practice. While modern merge techniques, such
as 3-way and structured merge, can resolve textual conflicts automatically,
they fail when the conflict arises not at the syntactic but at the semantic
level. Detecting such semantic conflicts requires understanding the behavior
of the software, which is beyond the capabilities of most existing merge tools.
Although semantic merge tools have been proposed, they are usually based
on heavyweight static analyses, or need explicit specifications of program
behavior. In this work, we take a different route and propose SAM (SemAntic
Merge), a semantic merge tool based on the automated generation of unit
tests that are used as partial specifications of the changes to be merged, and
drive the detection of unwanted behavior changes (conflicts) when merging
software. To evaluate SAM’s feasibility for detecting conflicts, we perform
an empirical study relying on a dataset of more than 80 pairs of changes
integrated to common class elements (constructors, methods, and fields) from
51 merge scenarios. We also assess how the four unit-test generation tools
used by SAM individually contribute to conflict identification: EvoSuite (the
standard and the differential version), Randoop, and Randoop Clean, an
extended version of Randoop proposed here. Additionally, we propose and
assess the adoption of Testability Transformations, which are changes directly
applied to the code under analysis aiming to increase its testability during
test suite generation, and Serialization, which aims to support unit-test tools

Preprint submitted to Elsevier October 5, 2023

ar
X

iv
:2

31
0.

02
39

5v
1

 [
cs

.S
E

]
 3

 O
ct

 2
02

3

to generate tests that manipulate complex objects. Our results show that
SAM best performs when combining only the tests generated by Differential
EvoSuite and EvoSuite, and using the proposed Testability Transformations
(nine detected conflicts out of 28). These results reinforce previous findings
about the potential of using test-case generation to detect test conflicts as
a method that is versatile and requires only limited deployment effort in
practice.

Keywords: Semantic Conflicts, Differential Testing, Behavior Change

1. Introduction

Branching and merging are common practices in collaborative software de-
velopment. They facilitate effective teamwork, allowing developers to in-
dependently contribute to the same project. Still, branching and merging
come with costs, including the need to resolve conflicts that are detected by
merge tools when integrating code changes. Depending on project character-
istics (Owhadi-Kareshk et al., 2019; Dias et al., 2020), such merge conflicts
often occur (Perry et al., 2001; Mens, 2002; Zimmermann, 2007; Bird and
Zimmermann, 2012; Kasi and Sarma, 2013; Brun et al., 2013; Mahmood
et al., 2020), even when using more advanced merge tools (Apel et al., 2011,
2012; Cavalcanti et al., 2017; Accioly et al., 2018; Cavalcanti et al., 2019;
Tavares et al., 2019; Shen et al., 2019) that explore language syntax and static
semantics to avoid spurious conflicts.

While many merge conflicts are easy to fix, some of them can only be
fixed with significant effort and knowledge of the code changes to be merged.
This can negatively affect development productivity, and even compromise
software quality in case developers incorrectly fix conflicts (Sarma et al., 2012;
Bird and Zimmermann, 2012; McKee et al., 2017). To avoid dealing with
merge conflicts, developers sometimes even adopt risky practices, such as
rushing to finish changes first (Grinter, 1996; Sarma et al., 2012) and partial
check-ins (de Souza et al., 2003). Similarly, partially motivated by the need
to reduce merge conflicts, development teams have been adopting techniques
such as trunk-based development (Adams and McIntosh, 2016; Potvin and
Levenberg, 2016; Henderson) and feature toggles (Bass et al., 2016; Adams
and McIntosh, 2016; Fowler; Hodgson).

Although these practices might reduce the occurrence of merge conflicts,
there is no evidence that they are effective in resolving or even detecting

2

test (Brun et al., 2013) and production conflicts, which are only observed
when running project tests and using the system. As such, they are more
serious than merge conflicts, because they give rise to software failures. In
fact, some of the practices mentioned before might even aggravate the costs
of test and production conflicts, which are special kinds of what we hereafter
call semantic conflicts.1 To make matters worse, we expect semantic conflicts
to cost more than merge conflicts, as they are often harder to detect and
resolve, and might end up negatively affecting users.

Resolving merge conflicts is often simpler, because it mostly involves
reconciling incompatible independent textual changes in the same area of a
file. Semantic conflicts are harder to detect and fix, especially when resolution
occurs long after conflict introduction, because resolving them requires han-
dling behavioral semantic incompatibilities— as when the changes made by
one developer affect a state element that is accessed by code contributed by
another developer, who assumed a state invariant that no longer holds after
merging. In such cases, textual integration is automatically performed gener-
ating a merged program, a build is created with success for this program, but
its execution leads to unexpected behavior caused by unplanned interference
between the developers’ changes— the behavior of the integrated changes
does not preserve the intended behavior of the individual changes. Horwitz
et al.(1989) put this more formally: two contributions (sets of changes) to
a base program semantically conflict— that is, interfere in an unplanned
way— when the specifications they are individually supposed to satisfy are
not jointly satisfied by the program that integrates them.

To help reduce the costs associated with semantic conflicts, we need merge
tools that are able to detect them, going beyond textual line-based merge
tools currently used in practice (Khanna et al., 2007). Previous work (Hor-
witz et al., 1989; Sousa et al., 2018) proposes semantic merge tools that rely
on static analysis and model checking for detecting conflicts. Our previ-
ous study (Da Silva et al., 2020) proposes and assesses the use of unit test
generation to reveal interference. The initial results bring evidence of the

1This relates two conflict terminologies: one based on the development phase in which a
conflict is detected, and the other based on the language aspect that causes a conflict. We
use merge conflict and textual conflict as synonyms. Build conflict refers to syntactic and
static semantic conflicts. Test and production conflicts (and undetected ones) are referred
as behavioral semantic conflicts. For brevity, hereafter we omit the “behavioral” term in
spite of focusing only on behavioral semantic conflicts in the paper.

3

potential of using tests to detect semantic conflicts, but also show a number
of limitations, including a significant false-negative rate.

To address these limitations, we extend our previous work by proposing
and evaluating new techniques (testability and serialization transformations)
and integrating them into SAM (SemAntic Merge), a semantic merge tool
for Java that automatically generates unit tests and use them as partial
specifications of the changes to be merged, with the aim of detecting semantic
conflicts. SAM first applies a textual merge tool to integrate the changes. In
case no textual conflicts are reported, SAM builds the four program versions
associated with a merge scenario— a quadruple (Base,Left,Right,Merge)
formed by a merge commit (Merge), its parents (Left and Right), and a Base
commit— optionally applying source code transformations that might increase
program testability and feed the test generation tools with objects serialized
during the execution of existing project tests. Then, SAM applies four test
generation tools: EvoSuite and Differential Evosuite (Almasi et al., 2017;
Fraser, 2018), Randoop (Pacheco et al., 2007), and Randoop Clean, an adapted
version of Randoop we propose here. SAM then runs the generated tests
against the four program builds, collects test failure information, interprets
that with our interference criteria heuristics, and finally reports detected
conflicts.

To evaluate our tool, we perform an empirical study with a dataset of 85
changes’ pairs from 51 software merge scenarios that integrate changes to the
same method, constructor, or field declaration. These scenarios come from
open-source Java projects, and are either mined by our scripts or used in
previous studies (Cavalcanti et al., 2019; Sousa et al., 2018; Barros Filho, 2017;
Da Silva et al., 2020). For each merge scenario, we invoke the mentioned unit
test generation tools and check their effectiveness in detecting interference
following our test-based criteria; strictly checking for semantic conflicts would
require access to the specifications of the changes or knowledge about develop-
ers’ intentions. Since SAM invokes the unit test tools on different versions of
executables (original, transformed, and serialized), we are able to measure the
effect of adopting the testability transformations and serialization techniques.
For the scenarios that SAM fails to detect an existing interference, we man-
ually analyze the causes of the failure. This sheds light on how SAM and the
underlying unit test generation tools could be improved. Besides that, since
some conflicts might be challenging to detect, we assess whether the generated
test suites can detect general behavior changes and related metrics. This way,
we may evaluate how close the tools are to detect interference considering some

4

behavior changes might involve conflicting contributions from merge scenarios.
Our results show that SAM best performs when combining only the tests

generated by Differential EvoSuite and EvoSuite, and using the proposed
Testability Transformations (nine detected conflicts out of 28). These results
reinforce our previous findings of the potential of using test-case generation
to detect semantic conflicts as a method that is versatile and requires only
limited deployment effort in practice, with no need for explicit behavior
specifications. Despite the low rate of true positives, the generated tests lead
to only a few cases of false positives. This suggests that semantic merge tools
based on unit test generation, as we propose here, can help developers detect
semantic conflicts early, avoiding them to otherwise reach end users as failures.
However, with the current capacity of the test generation tools, developers
cannot rely solely on such semantic merge tools for detecting conflicts.

Our manual analysis of generated test suites lead to the identification
of shortcomings of the existing tools. In line with those shortcomings, we
suggest three potential improvements, that involve creating relevant objects
required for the declarations holding the conflict, and relevant assertions
exploring the propagated interference. For some false-negative cases, we
identify and categorize improvements that could benefit unit test generation
tools. Regarding the detection of behavior changes between commit pairs,
though EvoSuite is the most successful tool detecting 53% of all reported
changes, there is no combination of tools that detects all reported behavior
changes. As a final contribution, we provide our study sample as a dataset of
merge scenarios with source code, working executables (which are necessary
for running tests), and interference ground truth. This can be used to run
new studies with less effort and to replicate ours.

This study is an extension of our previous work (Da Silva et al., 2020).
After our initial results regarding the detection of semantic conflicts using
unit test tools, we focus on evaluating the effectiveness of our technique
combined with different improvements, like the generation of complex objects
and the test generation process based on a target method. First, we propose
and evaluate SAM, our semantic conflict tool based on unit test generation.
Second, we consider a larger sample of 85 changes. Third, we propose and
evaluate the use of serialization regarding the generation and use of required
complex objects. Fourth, we present new criteria for detecting semantic
conflicts, jointly comparing the unit test outputs of the four program versions
in a merge scenario, instead of considering only three as in previous criteria.
Fifth, we use additional metrics to assess how close our tool is to detect

5

conflicts when false negatives are reported, while we also propose and evaluate
Randoop Clean, a modified version of Randoop based on the limitations
reported by our first work. Finally, we provide the dataset and scripts used
to run this study (Online Appendix, 2022), supporting replications and new
experiments.

2. Motivating Example

To illustrate the notion of behavioral semantic conflict we explore in this
paper, consider the example in Figure 1. Each change in this merge scenario
independently aims to eliminate a redundancy in the cleanText() method,
namely the two calls to normalizeWhitespace() whenever cleanText() is
executed. The illustrated class Text results from a merge that integrates the
deletion change in green (Line 8, say from a revision Left) with the deletion
change in red (Line 13, say from a revision Right). This example is inspired
by a Merge commit from the project Jsoup.2 The other code lines originate
from a Base revision, that is, the most recent common ancestor of Left and
Right.3 As the source code in the range of lines 9 and 12 separates the two
changes to be integrated, there is no textual merge conflict in this case, and
we cleanly obtain the syntactically valid class in the figure. We can then
compile, build, and execute it.

The primary purpose of the cleanText() method is to apply some string
cleaning. For that, it calls additional methods to remove duplicated words
(Line 6), comments (Line 7), and normalize whitespace (Line 8). These
calls were added in previous changes when developers independently added
calls to normalizeWhitespace() causing the redundancy we just discussed.
Someone may argue that these redundant calls could have been avoided by
establishing a good communication channel between the involved developers,
but that is often not in place.

Aiming to eliminate the redundancy, developers decide to eliminate one
of the calls, but they unluckily do not pick the same call. While Left removes
the method call in Line 8, Right removes the call in Line 13 (see fig. 1). As
a result, after integrating these revisions, there is no call left to normalize-

Whitespace(), characterizing an undesired interference between the Left and

2https://github.com/jhy/jsoup/commit/a44e18a
3For simplicity, we assume a single most recent common ancestor. With so-called

criss-cross merge situations in git, there could be more than one.

6

https://github.com/jhy/jsoup/commit/a44e18aa3c1fcd25a68a5965f9490d8f7d026509

1 class Text {
2
3 public St r ing text ;
4
5 void c leanText () {
6 this . removeDuplicatedWords () ;
7 this . removeComments () ;
8 − this.normalizeWhitespace();
9 }

10
11 void removeDuplicatedWords () {
12 . . .
13 − this.normalizeWhitespace();
14 }
15
16 void normal izeWhitespace () {
17 . . .
18 }
19
20 }

Figure 1: A merge of two changes (each parent removed one of the highlighted lines) that
are semantically conflicting

Right revisions. This way, we might assume the occurrence of an infection, as
the state of the target program is incorrect (Fraser and Ammann, 2008).

To detect the just discussed conflict, different approaches can be adopted,
like careful code review practices and strong test suites. However, most
semantic conflicts might escape to end users. In our example, we would
have to investigate whether the defect is in the individual implementations of
Left and Right, or in how one of them interferes with the other. This would
require a non-superficial investigation that breaks the abstraction boundaries
established by the declarations of the methods called in cleanText().

To reduce this discussed difficulty and the costs associated with semantic
conflict detection and resolution, it is important to investigate to what extent
unit test generation tools could help to reveal the kind of interference we
illustrate here. The core idea we propose and assess in this paper is the use of

7

1 class TextTestSuite {
2
3 public void t e s t 1 () throws Throwable {
4 Text t = new Text () ;
5 t . t ex t = ” the the dog” ;
6 t . c leanText () ;
7 as se r tTrue (t . noDuplicateWhiteSpace ()) ;
8 }
9 }

Figure 2: A test case that reveals the interference in Figure 1

generated tests as partial specifications of the code revisions to be integrated—
tests then partially capture the effect of the changes in the revisions. This
is the basis of SAM, the semantic merge tool that we propose.

In our motivating example, SAM could detect the interference with a
test that explores the contents of the text field. For instance, suppose a
regression test generation tool (such as Randoop (Pacheco et al., 2007) or
EvoSuite (Almasi et al., 2017; Fraser, 2018), which are invoked by SAM)
generates the test in Figure 2 when given the revision Left as input. That
test passes when executed against revision Left, which leads to a single
call to normalizeWhitespace() when executing removeDuplicatedWords()

(Line 6 in Text class). With the input illustrated in test1, when reaching
Line 7, t.text stores a string similar to the test input string in Line 5 but not
having the extra space character right before dog. Consequently, the assert
successfully evaluates. Executing this test case against revision Right, the
test also passes as there is a single call to normalizeWhitespace() (Line 8).
Finally, the same test case also passes when executed against revision Base
since it has two calls to normalizeWhitespace() (Lines 8 and 13). For this
reason, passing in Base and in both parent revisions Right and Left, we
say that test1 partially reveals a behavior that should be preserved by both
revisions.

However note that test1 fails when executed against revision Merge in
Figure 1. The normalizeWhitespace() method ends up not being called
when executing cleanText(), as explained before. This way, test1, an
original behavior expected to be preserved by both developers, is not satisfied
in the merged version, revealing that the changes in Right and Left interfere

8

(with respect to Base) (Binkley et al., 1995; Da Silva et al., 2020). This is
essentially one of the criteria that SAM applies for automatically detecting
interference by generating and executing tests, as detailed in the rest of the
paper. Making sure that interference actually leads to a semantic conflict
cannot be automatically checked in general because it involves understanding
developers’ intentions or proving that implementations satisfy specifications
(in this case, specifications of the changes, which are hardly available in
public repositories). However, for simplicity, hereafter we use both terms
interchangeably and distinguish only where necessary for extra clarity.

3. Detecting Semantic Conflicts

This section presents the solutions and techniques we propose to detect
semantic conflicts. Initially, we motivate and introduce SAM, our semantic
merge tool based on unit-test generation. Next, we present different techniques,
like the use of Testability Transformations and Serialization, that we explore
aiming to enhance the potential of detecting conflicts. Finally, we present
Randoop Clean, our extended version of Randoop.

3.1. SAM: SemAntic Merge tool based on Unit Test Generation

Detecting semantic conflicts, as motivated in Section 2 is a complex task,
not supported by current merge tools. Aiming to support developers in
actively detecting these conflicts, we present SAM, our semantic merge tool
based on unit test generation (Da Silva et al., 2020). The essence of SAM is
to generate and execute tests for a given merge scenario (quadruple of Base,
Left, Right, and Merge commits). These tests are executed over the different
commits of a merge scenario, and after interpreting their results, the tool
reports if a semantic conflict is detected.

SAM can be called right after a successful textual merge is performed.
With the resulting merge scenario, SAM invokes unit test generation tools
to generate test suites exploring the changes that have just been textually
integrated. Next, SAM executes the generated suites in the different commits
of a scenario, and analyzes the test results based on a number of heuristics,
reporting conflicts accordingly. We explain in detail our heuristics later in
Section 3.1.5. If a conflict is detected, the tool warns developers about its
occurrence, informing the class and methods involved in the conflict. Next, we
present in detail how the Java-Maven version of SAM works and its different
steps (see the SAM’s workflow area in Figure 3).

9

3.1.1. Starting Point

SAM is called when a merge is in progress in a local git client.4 If no merge
(textual) conflict occurs, SAM is invoked to verify the occurrence of semantic
conflicts involving the parent commits’ contributions. On the other hand, if
merge conflicts are reported, SAM is not called since these conflicts would
require manual fixes by the integrator, eventually leading to new changes
not related to the original parent commits. For merge scenarios classified as
fast-forwards, SAM does not take any action, leaving the default merge tool
to lead the integration process. Once SAM is called, the first action is to
collect the commits involved in the merge scenario. For that, the tool gets
the Merge commit hash from the head of the current branch, while the Left,
Right and Base commit hashes are taken by calling further git commands.
After collecting these merge scenario information, the tool advances to the
next step, when the parent commits’ contributions are explored and mined.

3.1.2. Selecting Mutual Changes on Same Class Elements

In this step, the tool explores the changes performed by the parent commits,
aiming to collect mutually changed elements (methods, constructors, or field
declarations). We assume that the chances one developer’s contributions
unexpectedly affect others might be higher under such situations, as these
changes might modify, for example, the same variables, changing a method
behavior in undesired ways. For that, using DiffJ5, SAM collects the set of
Java class elements changed by each parent commit. If at least one element
is changed in both parents, the tool moves to the next step. Otherwise, the
textual merge operation continues without applying any further steps in its
usual workflow.

3.1.3. Generating Executable Files

Since SAM invokes unit test generation tools that rely on test execution
as part of the generation process, it must feed such tools with executable
versions of the target code we want to assess.6 For that, SAM generates one

4Currently, the tool is invoked when the post-merge hook is actived; that is a Git
feature to execute custom scripts. This hook is responsible for performing additional and
specific checks after a successful merge commit is created.

5https://github.com/jpace/diffj
6A JAR file with all compiled classes of the system and the required external dependen-

cies.

10

https://github.com/jpace/diffj

executable version of the system for each commit of the merge scenario (Base,
Left, Right, and Merge commits). Executables of all versions of the system
are required because SAM detects conflicts by comparing the results of the
tests when executed against the different versions.

SAM performs a sequence of checkouts for each commit hash to generate
the associated executables. This way, for each target commit, SAM calls the
build manager to compile the code, resulting in a JAR file created and released
on the target directory of the project. Aiming to increase the testability of the
target code under analysis, SAM adopts extra techniques like the adoption of
Testability and Serialization Transformations, which refine the just described
build process. But we only explain these two techniques in Sections 3.2
and 3.3, respectively.

3.1.4. Generating and Executing Test Suites

After collecting the mutually changed elements and the associated executa-
bles as explained in the two previous sections, SAM generates and executes
test suites.

The generation is driven by the classes that contain the mutually changed
elements. This way, SAM invokes each unit test generation tool once for
each parent commit (Left and Right), as these commits are responsible for
introducing the changes that could be conflicting in the Merge commit. If
methods or constructors are mutually changed, SAM might further drive the
generation of test suites based on these elements, aiming to directly explore
the code where conflicts likely take place. SAM can be configured to work
with different unit test tools, and invoke a number of them as needed. In our
experiments, we use two versions of Evosuite and two versions of Randoop,
as detailed later. One of the versions of Randoop, called Randoop Clean,
we designed with the aim of generating tests more focused on our goal of
detecting conflicts; Section 3.4 presents our tool highlighting its changes
compared to vanila Randoop.

Finally, after the test suites are generated, SAM executes each one against
each of the four executables associated with a merge scenario, and collects
the test results for further analysis.

3.1.5. Conflict Detection Based on Test Results Heuristics

This step is responsible for reporting conflicts based on the results of
executing the generated tests against the four executable versions of a merge
scenario. SAM basically checks whether any test case satisfies one of our

11

conflict criteria, which we present next, with their motivation. They all rely
on the notion of partial specification, that is, a specification that constrains
behavior only for a subset of the possible inputs. As such, each test case is
seen as a partial behavior specification, and we can then refer to the definition
of interference that relies on preserving parent specifications in the merged
version of the code, as discussed in Section 1.

To detect conflicts, we rely on specific conflict criteria implemented by
SAM. We believe these criteria cover common situations of semantic conflicts.
The first two criteria (one for each parent, i.e., Left and Right) seek for
test cases that present the same outputs in the Base and Merge executable
versions, but a different one in the associated parent version. For example,
consider a test case test1 that passes when executed against the Left version,
but fails against the Base version. So we might say that test1 partially
captures the intention of the Left change; we can then see test1 as a partial
specification of the changes of Left. Now if test1 fails when executed against
the Merge version, we conclude that test1, the partial specification of Left,
is not satisfied in the merged version, revealing that the changes carried on by
Right interfere with the changes of Left (with respect to the Base commit).
So when SAM finds a test that satisfies the just mentioned criteria, it reports
a (test) conflict.

Now, consider a different scenario (similar to the one in Section 2) and
criteria, where a test case test2 passes in the Base, Left, and Right versions.
We can then consider that test2 partially captures a behavior that is preserved
by both Left and Right changes, and therefore we expect such behavior to
be preserved in the merge too. So if test2 fails in the Merge version, we
conclude that a behavior that was expected to be preserved is actually not
preserved, revealing that the changes in the parent commits interfere with
each other (with respect to Base). So when SAM finds a test that passes
in the Base, Left, and Right versions, but fails in Merge, it reports a (test)
conflict.

Since our conflict criteria rely on the final statuses of test cases executed
in different executable versions, we must further comment about test statuses
different than passed and fail. For test cases that present error statuses, we opt
to not consider them when reporting conflicts. We believe that considering
these cases might introduce false positives in our results as we could not
correctly verify the test case statuses. As a final remark, it is important to
discuss that our conflict criteria are valid to detect conflicts if the associated
test cases explore the conflicting changes integrated during a merge scenario.

12

Otherwise, false positives might be reported as well.

3.1.6. Report of Semantic Conflict Occurrence

Once a test case satisfies one of our conflict criteria, our tool warns the
developer about a potential conflict occurrence by informing the element
where the conflict takes place, as also the test that reveals the conflict. Then,
the developer might evaluate whether the reported conflict represents an
actual conflict or not. If so, she may apply changes in order to fix the conflict
and change the current Merge commit; otherwise, she skips the warning
leaving the Merge commit without applying any change.

3.2. Testability Transformations

Previous studies (Silva et al., 2017) report that, due to a number of
characteristics of the code under analysis, unit test generation tools might have
a hard time generating tests that detect bugs. In our previous study (Da Silva
et al., 2020), we observe similar limitations for detecting conflicts. For
example, it might be harder to generate conflict revealing tests for classes
with many private members, as these cannot be directly exercised by the tests.
Nevertheless, directly invoking such members could reveal conflicts that would
be hard to reveal by tests that only invoke public members (that indirectly
invoke the private ones). To improve testability and increase the chances
of detecting conflicts, we propose here three Testability Transformations
that adapt the source code of the parent commits before creating the builds
and feeding the generation tools with executables. These transformations
are motivated by preliminary experiments we performed using the unit test
generation tools with toy examples and a small subsample of the scenarios
we consider in our evaluation.

As just motivated, the first proposed transformation replaces non-public
access modifiers with public ones; it is applied to classes, methods, construc-
tors, and fields declarations. By making all elements public, more elements
can be called and accessed by the generated tests, possibly increasing the
chances of detecting conflicts. This, however, brings the risk of reporting
false positives, as could happen when a generated test acesses an originally
private member in a way that is not equivalent to the indirect acesses from the
available public members. There is also the risk of the tools using a significant
part of the generation budget for directly calling elements not involved in the
conflict, as we apply the transformation to all classes; the motivation is that
calling non-related elements involved in the conflict might lead to indirect

13

object state change that contribute to conflict detection. These aspects are
evaluated in the experiments we describe later.

Our second transformation adds an empty constructor to classes lacking
one, as this might help to generate tests that create and exercise objects of
such classes. We observed that this could be especially useful for classes having
only constructors that require complex object structures as arguments. Again,
this transformation brings the risk of false positives, as reported conflicts
might be revealed with object states that would not be reachable with the
original class. For simplicity, in case a class doesn’t directly extend Object

no empty constructor is added, as this would potentially require adding a
chain of constructors to the class hierarchy.

Finally, our third transformation handles scenarios in which the mutually
changed declarations occur inside inner classes. As the generation tools
cannot directly exercise inner classes, we extract them to the outer level. For
simplicity, we manually apply this transformation, as it is not often required.
The other two have been implemented and are automatically applied.

3.3. Serialization Transformation

As previously discussed, unit test generation tools might not be able to
generate tests that exercise complex object structures in useful ways (Da Silva
et al., 2020). Such structures, however, might be required to reveal conflicts.
Aiming to address this limitation, we feed unit test generation tools with
concrete object graphs (Elbaum et al., 2006), which can then be used in the
generated tests, increasing the chances of detecting conflicts. We collect and
serialize these object graphs by monitoring the execution of existing, manually
created, project tests. The effectiveness of this technique is then directly
dependent on the availability of project tests that manipulate complex objects.
For projects with no tests, we do not use this technique.

To serialize objects, we implement OSean.EX.7 First, our tool instruments
the target method— the method under analysis— by adding a call for an
auxiliary method that is responsible for receiving and serializing the object
currently executing the target method, and the arguments passed to this
method. OSean.EX also adds the auxiliary class to the original target project.
With this first instrumented version of the project under analysis, the tool
runs the manually created project test suite for a specific amount of time,

7https://github.com/spgroup/OSean.EX

14

https://github.com/spgroup/OSean.EX

creating new unique serialized objects each time the target method is reached;
eventually, duplicated objects are discarded.

When the project test suite execution is finished, our tool discards the
instrumented version of the project and creates a new class that declares a
number of methods, one for each previously serialized object. Each method
simply deserializes an associated object and returns it. OSean.EX then adds
this class to the original version of the target project, creating a second
instrumented version of the project, and building it. This version’s executable
can then be fed to the unit test generation tools, which are able to create tests
that call the deserialization methods and use the returned complex objects.

Considering that a merge scenario has related commits, and that object
serialization might be expensive, OSean.EX performs all the steps for a single
commit, say Left, depending on how it is invoked. In this case, for the Right
our tool would simply perform the last steps of adding the created class and
building the extended version of Right. The cost of using this technique
depends on the amount of time allocated to execute the project test suites.

3.4. Randoop Clean

To increase the chances of detecting conflicts, we propose here Randoop
Clean, which adapts Randoop with the aim of creating tests that more
often invoke the method under analysis, and increasing the diversity of
objects manipulated by the generated tests (see our online Appendix for more
details (Online Appendix, 2022)). As we preserve most behavior of original
Randoop, we highlight here only the changes implemented by our tool. First,
before Randoop starts to generate tests, it selects all public methods and
constructors from a list of classes given as input and puts them in a pool.
Next, Randoop creates test prefixes by randomly selecting elements from the
pool and generating sequences of statements that invoke such elements. If a
particular method is expected to be covered by the generated test cases, it
can be given as input to the tool. However, in our context, we want to go
beyond that and increase in these sequences the number of calls to the method
under analysis, that is, the method changed by both parents commits (target
method). In principle, this could increase the chances of conflict detection.

To explore that, Randoop Clean increases the number of calls to the target
method by reducing randomness. After Randoop Clean generates a particular
number of method calls in a test prefix sequence, it does not randomly select
the next method to be called. Instead, it adds to the sequence a call to
the target method. In between forced calls to the target method we rely on

15

randomness, As Randoop, as we expect that calls to other methods play an
important role in modifying object states that might lead to a conflict. In
this way, we ensure that more diverse objects states and configurations reach
the target method calls.

To generate objects that are used as arguments or targets of method calls,
Randoop follows the process presented earlier. Hence, the number of calls
to the target class constructor and of generated objects is random. However,
this might lead to reduced diversity of the object pool, and consequently less
chances of detecting conflicts. To address this Randoop Clean tries to increase
the number of calls to object creation operations (methods and constructors).
After Randoop Clean generates a particular number of statements in a test
prefix sequence, the tool adds calls to the object creation operations of the
target class. If the target method requires different object types, Randoop
Clean selects one type each time and then randomly picks a method or
constructor from the pool that returns this specific object type.

Figure 3: Study setup. Starting with the selection of Java merge scenarios, we create our
dataset, call the unit test generation tools, and execute the generated test suites to detect
semantic conflicts. Besides that, we perform a manual analysis to explain the false positives
and negatives in our sample. Inside the dashed area, we show the steps covered by SAM,
our semantic merge tool.

4. Evaluation Method

Our evaluation method comprises five main steps to assess the potential
of SAM and unit test generation to detect interference (Figure 3). First,
we extract and select merge scenarios from Java projects hosted on GitHub,
including a number of scenarios that appear in previous code integration
conflict studies (Sousa et al., 2018; Cavalcanti et al., 2019; Barros Filho,
2017). Second, we create executable JAR files of the program versions in each

16

Figure 4: The generation process of executables for merge scenario commits. For each
merge scenario, we create a number of JAR files, which are given as inputs for the unit
test tools. For the 85 cases of our sample we create JARs based on both the original code
and the code resulting from applying the Testability Transformations. For a subsample of
20 cases, we create JARs based on the code resulting from applying the Testability and
Serialization Transformations.

selected scenario. Initially, we create JAR files using the original source code
of the four software versions corresponding to the Base, Left, Right, and Merge
commits (see Figure 4). Next, we generate additional four JAR files (one for
each commit version) but this time applying our Testability Transformations
(see Section 3.2). For some cases of our sample,8 we generate a third set
of JAR files, now applying in sequence the Testability and Serialization
Transformations (see Section 3.3). Third, we apply four test generation tools
to create tests for the parent commits of a merge scenario based on each
kind of JAR file available (Left and Right from original, transformed, and
serialized JAR files). Next, we run our scripts to execute the tests and discard
invalid tests avoiding flakiness issues (Luo et al., 2014).9 Fourth, as a last
automated step, we run our scripts to check the test-based interference criteria
and additional related metrics regarding the quality of the generated tests.
Fifth, we manually analyze each merge scenario and the obtained results to
ensure that the reported interference is correct. Furthermore, we investigate
the reasons behind the generated tests not detecting interference in some of
the scenarios that suffer from interference.

8Since we rely on the quality of original project test suites to generate serialized objects,
we consider only a subsample.

9We consider tests invalid if they present different results on different executions.

17

Table 1: Distribution of mutual changed class elements

Original Sample
Selected Changed Mutual Elements

with interference without interference
Da Silva et al.(2020) 4 2
Cavalcanti et al.(2019) 2 6
De Sousa et al.(2018) 3 18
Barros Filho(2017) 12 16
Current study 7 15
Total 28 57

4.1. Mining and Selecting Merge Scenarios

Our dataset consists of 85 mutually integrated changes’ pairs from 51
merge scenarios mined from 31 GitHub Java projects. Since we analyze class
elements mutually changed by both parents in a merge scenario, one single
merge scenario might hold more than one case of mutually changed element.
As a result, for some merge scenarios, multiple cases of changed elements are
considered in our evaluation. We focus only on Java projects because the
unit test generation tools we use are language-dependent, and some of our
scripts are also test tool-dependent; the tools we use in our study primarily
generate test cases for Java. Most related studies also focus on Java projects.
We also limit our study to GitHub projects as it is one of the most popular
sources of open-source projects, and most related studies also use GitHub.

From the 85 cases we consider in our dataset, 63 first appeared in previous
studies (Da Silva et al., 2020; Cavalcanti et al., 2019; Sousa et al., 2018;
Barros Filho, 2017) that rely on datasets that share some scenarios and cases
of mutually integrated changes’ pairs. Six cases from five merge scenarios
come originally from (Da Silva et al., 2020); four cases with and two without
interference. From (Cavalcanti et al., 2019), we select eight original cases (from
eight merge scenarios), two with and six without interference. From (Sousa
et al., 2018), we select 21 original cases (from 16 merge scenarios), three with
and 18 without interference. Finally, from (Barros Filho, 2017), we include 28
original cases (from 22 merge scenarios), 12 with and 16 without interference.

The remaining 22 cases in our sample first appear in this paper; seven
with interference and 15 without. All these cases come from seven scenarios
that first appeared in previous work (Cavalcanti et al., 2019; Sousa et al.,
2018; Barros Filho, 2017) that considered only a subset of the cases in
these scenarios. With extra mining effort, we found out the remaining 22

18

cases we consider here. In our online Appendix (Online Appendix, 2022),
we provide further information and summarize all selected cases discussed
here. Although we have not systematically targeted representativeness or
even diversity (Nagappan et al., 2013), we believe that our sample has a
considerable degree of diversity concerning different dimensions such as project
domain, size, and number of collaborators.

4.2. Building the Projects

As mentioned at the beginning of this section, for each case in our sample
we must create JAR files that are used to generate and execute test suites.
Considering we need to create build files with all project dependencies, for
simplicity we initially try to use Travis (see Figure 4) to create such executables.
The main advantage of this approach is to reduce the chances of broken build
processes due to local environment and configuration issues. As we use the
Travis infrastructure, in case of merge scenarios requiring different environment
options, we would not have to deal with each one directly. Instead, we just
set up a Travis configuration file and reuse it when applicable. If Travis
fails to create the builds due to no longer having access to old dependencies,
no support for older Java versions, or by detecting problems when running
additional analysis (like style checking) adopted by projects pipelines, we try
to manually fix the problem on Travis by updating its configuration files; if
that doesn’t work, we locally create the builds.

The automated process involving Travis is only used for creating the
builds for the original source code and the code resulting from the Testability
Transformations. The builds for the code resulting from the Serialization
Transformation are created manually, as our serialization tool requires extra
configuration for each project. We have serialization builds only for a sub-
sample of cases because that requires project test suites that exercise the
method under analysis. We opt for running the project test suites for 60
seconds as most project test suites in our sample are finished by this time; so
allocating more time would not significantly improve the pool of serialized
objects. Once OSean.Ex accepts a list of commits, we invoke the tool giving
as input the four commits in a merge scenario. This way, the serialized objects
are generated based on the first commit of this list; in our study, the Merge
commit is always first. The remaining commits of that list reuse the serialized
objects by deserializing them based on their versions. So for Base and parent
commits (Left and Right), OSean.Ex only performs the last step generating
the executable files.

19

Figure 5: Generation and execution of test suites. For each case of our sample, we generate
test suites based on both merge scenario parent’s commits. Next, we execute three times
each generated test suite against all merge scenario commits in order to calculate our
metrics.

We also adopt the manual build creation process for Ant projects (one
single case), as our automated infrastructure supports only Maven and Gradle
projects. The process and infrastructure we use to create the builds appear
in our online Appendix (Online Appendix, 2022).

At this point, if we failed to create one of the builds for a case, we simply
discarded the case in our experiment; five scenarios were discarded. At the
end of this step, we have a sample composed of 51 merge scenarios and 85
potential interference cases, knowing that some merge scenarios contain more
than one independent change on the same declaration. For all 85 cases, we
have executables (eight, two for each commit version in a case) with the
original source code and Testability Transformations. Finally, for 20 out of
these 85 cases, we have additional executable files (four, one for each commit
version in a case) with serialized objects.

4.3. Generating and Executing Tests

Each merge scenario and case resulting from the previous step has a
number of proper executable files that tests can execute and exercise. These
files are required by unit test generation tools that generate tests and run
them against the system to be tested, discarding tests that fail or do not
increase code coverage (see Figure 5). This observation is valid here for the
test generation tools we evaluate: EvoSuite (Almasi et al., 2017), Differential
EvoSuite (Shamshiri, 2015), Randoop (Pacheco et al., 2007) and Randoop
Clean, our extended version of Randoop. We chose the first three tools due
to their robustness and popularity.

20

In this step, we readily apply the unit test generation tools to create tests
for four of the executable versions (Left, Right, and their transformed versions,
as explained above) associated with each merge scenario. For a subsample
of the cases, we additionally invoke the unit test generation tools for two
executable versions with serialization (serialized Left and Right). For each
executable version, our scripts call EvoSuite, Randoop, and Randoop Clean
passing the corresponding parent commit JAR file as input. For Differential
EvoSuite, which tries to generate tests that reveal behavior differences between
two program versions, we additionally give as input the JAR file of the Base
commit, which is used as the regression version. So, the tool will try to
generate a test that passes in the parent commit and fails in the Base commit.

For each tool, we use a budget of 5 minutes and their default configura-
tion.10 We decide to adopt 5 minutes considering that related work opt for
different budget configurations (1, 2, or even 10 minutes); in our previous
study (Da Silva et al., 2020), we opt for 2 minutes. This time, we give more
time for the tools and assess whether the budget affects the detection of
conflicts.

Our scripts invoke each of the four tools for the two parents in a merge
scenario, considering the three kinds of executables we create (original, testa-
bility and serialization), generating then 24 (4 × 2 × 3) test suites. For the
scenarios with no serialization executable, we generate 16 test suites.11 The
number of tests in each suite varies a lot.

For each resulting test suite, our scripts execute each test case three times
for each of the different versions: Base, both parents, and Merge (see Figure 5),
resulting in 12 executions. We execute the tests in both parents because
two of our conflict criteria assess the test results against all executable files
associated with the merge scenario commits. Finally, for each merge scenario
without serialization executables, the 16 generated test suites are executed 12
times resulting in 192 executions; in the case of a scenario with serialization
executables, the other eight test suites are also executed 12 times resulting in

10The versions of the tools used by SAM and in our study are mentioned in our online
appendix.

11In two cases of our sample, no test suites were generated due to environment issues
(one case with and another without interference). Furthermore, for some specific versions,
the tools presented errors and the generation process was interrupted, resulting in no test
suite. In these cases, we do not discard the cases and simply consider that the tool does
not report interference.

21

additional 96 executions.
We execute each test case three times aiming to detect test flakiness. If a

test case does not yield the same result (pass or break) in the three repeated
runs, we filter it out, as they would not help in conflict detection due to their
flakinesses. The test suite execution results associated with each case of our
sample are grouped into three sets: tests with failed status, tests with passed
status, and tests that could not be executed because they do not even compile
with the version under test. Such validity issues with tests might occur
because the test is generated for a given revision, say Left, but is executed
in other revisions as well: Base, Right, and Merge. If the Left revision, for
example, adds a method declaration that is called in the generated test, this
test will not even compile with the Base and Right version. In the same way,
tests with error statuses are not considered as failed tests. An errored status
signals an unexpected situation during test execution, which does not involve
the program behavior under test. Such invalid tests are discarded as the last
action in this step, and are not used for interference detection in the next
step.

4.4. Detecting Interference

We group test suite executions into sets for each case of our sample based
on the executable versions used to generate the tests. Each set contains the
executions associated with the Base, parents (Left and Right), and Merge
commits for the original, transformed, and serialized versions. Next, for each
execution result set, our scripts compute the test cases that satisfy one of our
conflict criteria (see Section 3.1.5 and our online Appendix (Online Appendix,
2022) for further information about our criteria). Finally, our scripts collect
the results for further analysis and report interference if at least one test case
satisfies at least one of our criteria.

4.5. Assessing other Metrics

The steps so far are the essence for assessing the potential of SAM and unit
test generation to detect interference. However, to better understand such
potential and how it is limited by the unit test generation tools we use, we go
further and assess other metrics. In particular, in the following, we consider
metrics that may help us to better evaluate the effect and limitation of each
technique we rely on: conflict detection criteria, testability and serialization
transformations, and unit test tools.

22

4.5.1. Behavior Change Detection

Besides assessing whether the tests generated by the tools can detect
interference, we assess whether they can establish a weaker property: behavior
change between the commits in a merge scenario. Note that detecting
interference requires detecting two behavior changes, for instance, one from
Base to Left and another from Left to Merge. So when SAM fails to detect
interference we want to assess whether the generated tests could detect one
or none of the behavior changes as a measure of how far the tool was to
detecting interference. To detect those behavior changes, we use the test suites
previously generated and look for test cases that report different outcomes
when running them against two commits. As we want to detect the behavior
changes introduced by each parent in a merge scenario, we look for behavior
involving the related parent and Base or Merge commits. So for each case
in our sample, there are at most four possible behavior changes. We then
compute and compare the number of behavior changes detected by each unit
test generation tool.

4.5.2. Object Diversity and Target Code Reachability

To compare whether Randoop Clean is closer to detect interference than
Randoop, we compute two metrics that are used to compare the test suites
generated by both tools: the number of calls performed to a target method,
and the number of different handled objects. To compute these metrics, we
instrumented both tools to collect such information and report it after the
generation of each test suite. So when we refer to Randoop in our study we
actually mean a version of Randoop instrumented with this metric collection
functionality. This way, our scripts have access to, for each tool, (i) the
number of calls made for all possible methods of the target classes, and (ii)
the number of different objects handled by the test suite.

4.5.3. Source Code Coverage

To further evaluate the improvements of Randoop Clean over Randoop,
we compute the source code coverage (line, branch and instruction) of the
test suites generated by each tool. This might help understanding which
tool is closer to detecting interference. For that, we collect only the coverage
achieved by each tool against the Merge commit. As the Merge commits
contain the potentially interfering changes, if these are covered by a test
suite on the Merge commit, they are likely covered on the parents and Base
commits. As Randoop does not provide source code coverage information,

23

we implement additional scripts to compute this using Jacoco (Jacoco, 2022).
For each generated test suite, our scripts call Jacoco to instrument the JAR
file previously used to generate the test suite. Next, the test suite is executed
against that new instrumented JAR file resulting in a file with the coverage
results. Since we want to explore the coverage of a target method, our scripts
compare the percentage achieved by each suite.

4.6. Manual Analyses

In our study, we carry on two main manual analyses. First, we manually
analyze each scenario in our dataset to establish interference ground truth.
Second, after executing the experiment and detecting false positives and false
negatives, we manually analyze each case and the generated tests and metrics
to understand what caused the false result.

4.6.1. Ground Truth Analysis

Six researchers manually analyzed all cases of our sample; in pairs, the
researchers individually analyzed each case to check for interference and later
compared the analysis with his partner. If both researchers agree with the
same decision, they present the scenario and its evaluation to the remaining
four researchers. However, in case of a conflicting decision, the whole group
discusses the case and reaches a verdict.

To reduce the chances of human error and misjudgment in this process,
for each interference verdict, we manually designed a test case that reveals
the interference. Similarly, each non-interference verdict has an explanation
of why we could not design such a test case; for example, one of the changes
is a structural refactoring, not affecting the behavior of the other integrated
changes.

Our manual analysis is local, in the sense that it involves only the mutually
changed program element and its dependencies (methods and fields it calls
and accesses, for example). As we ignore the global context that depends on
the analyzed program element, the changes could in fact globally interfere but
we would not detect it. For example, say two developers, in the same method
declaration, add assignments to disjoint fields of the same object. So, locally,
the changes do not interfere with each other as they affect disjoint state
elements that are unrelated in the local computations. But, if we consider the
global context, say a method computeRate() that calls the changed method
and compares the two fields in specific ways, we could have interference. Unit
tests that exercise the context classes could still detect this interference by

24

invoking computeRate(), but not by focusing only on the class that declares
the changed method, as we do here. We opt for checking local interference
only for two main reasons. First, it has the potential to detect a relevant part
of interference cases. Second, the global context can be significantly large or
hard to capture, especially when the changes occur in widely reusable classes
that are either part of an API or are invoked from multiple program entry
points (as in microservices systems); manual analysis and test execution in
such cases could be challenging.

Instructions and guidelines used during this process are organized as a
document, which is available in our online Appendix (Online Appendix, 2022).
For many cases (57), the ground truth is available in previous work, but we
nevertheless follow the process above and compare verdicts. For all cases,
we summarize the integrated changes to help reach verdicts and aid others
interested in using our dataset for replications and further studies.

4.6.2. False Positives and False Negatives Analysis

Comparing the results of our experiment with our ground truth, we collect
information on false positives (our interference criteria are satisfied, but there
is actually no interference in the scenario) and false negatives (our interference
criteria do not hold, but the scenario actually suffers from interference).

Aiming to understand the limitations that unit test generation tools face—
in our context of exploiting the generated test cases to detect interference—
we analyze the test suites of the identified false negatives. Based on the test
descriptions we wrote during our ground truth analysis, we try to manually
change the unsuccessful generated test cases and check if they could then
detect interference. As a result, we identify improvements that could be
applied to the tools, as well as to better understand and help assess how close
the tools are to generating a test case that would reveal interference.

At the end of this step, we obtain a dataset composed of merge scenarios
associated with their build files (original, transformed, and serialized binary
files), generated test suites, interference ground truth, and further information
on the quality of each test generation tool.

For the merge scenarios reported with interference, we analyze the asso-
ciated test suites to ensure that the tests explore the conflict that we find
during our manual analysis. This analysis is essential since the testability
transformations could introduce false positives to our results, as some seman-
tically change the program behavior. For that, we check whether the failed
test case assertions explore the side effects of the elements involved in each

25

Figure 6: Conflict detection results for our dataset of changes’ pairs, using the four unit test
generation tools with the three kinds of executables (original, testability and serialization).
Distribution of changes (on same class element declaration), their classification, and whether
a conflict is detected or not.

conflict.

5. Results

We now present the results of our analysis of the 85 cases of changes’ pairs
in the 51 merge scenarios mined from 31 GitHub Java projects (see Section 4.1),
including how semantic conflicts are detected by SAM’s interference criteria
and test generation process. We also discuss how the test generation tools used
by SAM could be improved to increase conflict detection accuracy. Our focus
is first on the cases with conflicts. Later we discuss the cases with no conflicts,
as defined by our ground truth, concluding with suggestions for improvement.

5.1. Cases With Conflicts

Figure 6 summarizes our results. The right branch focuses on the changes
with semantic conflicts, while the left branch focuses on the changes without
conflicts, according to our ground truth. Our tool could automatically detect
nine out of 28 conflicts (32%); these nine conflicts appear in five merge
scenarios. This reinforces our previous finding that unit test tools are useful

26

to detect semantic conflicts (Da Silva et al., 2020). Although our tool misses a
significant number of conflicts, it reports only three false positives, as depicted
in the left branch. So, based on these results, a developer using our tool
should plan to use additional techniques to detect the conflicts that SAM
misses, but should not worry about wasting significant time investigating
false positives.

To illustrate one of the conflicts detected by our tool, consider the pair
of changes integrated in the code of Figure 8, which shows a Merge commit
from the HikariCP project.12 In this merge scenario, the Left commit adds
a new condition to the if statement using the local variable retries (Line
6 in Figure 8), restricting the call to incrementAndGet, which increments
the number of total connections to a pool. Independently, the Right commit
changes how retries is initialized (Line 3), which is referred by the changes
performed by the Left commit. So the Left and Right commits individually
change the program behavior (creating and adding single connections to a
pool) based on their needs. These changes can be textually integrated with
success. No merge conflict is reported since lines 4 and 5 separate the changes
made by the two developers.

The change from Right, however, interferes with the change from Left,
breaking the intention of Left ’s change. Fortunately, this is reported by
our tool through the EvoSuite unit test case in Figure 7. This test case
was generated when our tool invoked Evosuite with the Right serialization
executable. As highlighted in the test case (Line 6 in Figure 7), the expected
number of totalConnections is 10. Running this test case on the Right
commit, the test passes. For the Base commit, the test fails as the returned
number of connections is 12; as in this commit retries is initialized with
0, some calls to decrementAndGet are bypassed (Line 16 in Figure 8), not
decrementing the total number of connections. Note that on the Right commit,
the variable retries is initialized based on the number of acquired retries
from the object config, which is later used in another if statement condition
(Line 14 in Figure 8). For the Merge commit, the test case also fails as the
returned number of connections is -30; this time, no call to incrementAndGet

is executed (Line 7) due to the interaction between Left and Right changes,
which the if statement condition evaluate to false. On the other hand,
multiple decrementAndGet() calls (line 16) are executed. The multiple calls

12HikariCP - merge commit: 1bca94a

27

https://github.com/brettwooldridge/HikariCP/commit/1bca94af9ec625f21d1b58ff10efb5be71ab87a6

for decrementAndGet() (line 16), in all evaluated commits, are motivated by
an exception thrown due to mal-formed objects; however, the initialization of
these objects is not impacted by the testability or serialization transformations
presented in this study.

1 @Test
2 public void t e s t 1 (){
3 . . .
4 Hikar iPoo l h i ka r iPoo l = new Hikar iPoo l (h i ka r iCon f i g0) ;
5 . . .
6 a s s e r tEqua l s (10 , hikariPool.getTotalConnections()) ;
7 }

Figure 7: Evosuite test case that detects semantic conflict.

1 private void addConnection (){
2 − int retries = 0;
3 + int retries = config.getAcquireRetries();
4 . . .
5 try{
6 + i f (retries == 0 &&
7 tota lConnec t i ons . incrementAndGet () >
8 c o n f i g . getMaximumPoolSize ()){
9 to ta lConnec t i ons . decrementAndGet () ;

10 }
11 . . .
12 } catch (Exception e){
13 . . .
14 i f (r e t r i e s++ > c o n f i g . g e tAcqu i r eRet r i e s ()){
15 to ta lConnec t i ons . decrementAndGet () ;
16 }
17 }
18 }

Figure 8: Test conflict caused by changes that update the same variable.

The other eight detected conflicts have common aspects with the previous

28

example. First, the conflicts occur because the parent commits changes
impact the values stored in the same variables or object fields. So, to detect
the conflict, the test revealing conflict might exercise a single specific object.
Second, the test has to directly access the object involved in the conflict (side
effects of the changes), having at least one assertion that explores the changed
object fields.

5.1.1. Conflicts by Tools and Executables

Besides understanding the potential of SAM for detecting conflicts, as
reflected in Figure 6, it is important to assess how each unit test generation
tool invoked by SAM contributes to the overall result. Table 2 illustrates
that, each column showing the number of conflicts detected by each tool when
invoked with a specific kind of executable.

We observe that EvoSuite and Differential EvoSuite are the most success-
ful tools, detecting six conflicts each, while Randoop and Randoop Clean
detect two conflicts each. Most tools perform better when applied to the
testability executables; only Evosuite performs better when applied to the
original executables. Differential EvoSuite and Randoop are the only tools
not reporting false positives (presented in square brackets in the first line of
some cells). EvoSuite and Randoop Clean present one and two false positives,
respectively.

None of the tools is able to detect all conflicts. Although EvoSuite and
Differential EvoSuite detect the same number of conflicts, together they detect
all nine conflicts detected by SAM. All conflicts detected by Randoop and
Randoop Clean are also detected by the other tools. So to catch all detected
conflicts of our sample (32%), combining Differential EvoSuite and EvoSuite
would be enough. A version of SAM that uses only these two tools would
be computationally more efficient and detect the same conflicts as the full
fledged version of SAM that invokes the four unit test generation tools.

The results mostly show that the Testability Transformations help detect-
ing conflicts (first column in Table 2), but not when applied together with
the Serialization Transformation (third column). For example, after applying
testability transformations the tools could directly access objects fields and,
consequently, explore them in assertions. So the use of such transformations
leads to the detection of three additional conflicts not detected by the same
tools when applied to the original executables; while Differential EvoSuite de-
tects all three new conflicts, the remaining tools detect one conflict each. This
observation reinforces our previous results that testability transformations

29

Table 2: Distribution of detected conflicts by unit test tools and executables.

Unit Test
Tools

Executable Program Versions
Testability Original Serialization

Differential
EvoSuite

6 (↓3, →3)
pr. 1

re. 0.21
ac. 0.74

3 (→3)
pr. 1

re. 0.1
ac. 0.70

0

EvoSuite

5 (↑2, ↓4) [1]
pr. 0.83
re. 0.17
ac. 0.71

6 (↑3, ↓5, ←1, →6)
pr. 1

re. 0.21
ac. 0.74

1 (↑1, ↓1)
pr. 1

re. 0.03
ac. 0.68

Randoop

2 (↑1, →1)
pr. 1

re. 0.07
ac. 0.69

1 (→1)
pr. 1

re. 0.03
ac. 0.68

0

Randoop
Clean

2 (→1) [1]
pr. 0.66
re. 0.07
ac. 0.68

1 (→1) [1]
pr. 0.66
re. 0.03
ac. 0.67

0

Downward arrows (↓) stand for conflicts detected by the associated unit test
tool, but not detected by the next tool below. Upward arrows (↑) stand
for conflicts detected by the associated unit test tool, but not detected by
the next tool above. Left arrows (←) stand for conflicts detected by the
associated unit test tool, but not detected by the next left tool. Right arrows
(→) stand for conflicts detected by the associated unit test tool, but not
detected by the next right tool. Numbers between brackets represent false
positives reported by the tools. pr., re., and ac. stands for precision, recall,
and accuracy, respectively.

30

help detect more conflicts (Da Silva et al., 2020). Note, however, that one
conflict is not detected by EvoSuite when applied to testability executable. In
this particular case, the target method is public so that the transformations
would have no effect. Regarding the addition of empty constructors, detecting
some conflicts was possible after applying this transformation; in these cases,
the tools focus on calling the target element instead of dealing with problems
when instantiating objects. We believe Evosuite misses this conflict in this
case by chance, due to its randomness, not because of the chosen executable.

Regarding the use of Serialization (third column in Table 2), eight out
of the 20 cases in our subsample have conflicts. Although the serialization
numbers are quite low, remember that these numbers derive from a much
smaller sample than the original and testability numbers. From the nine
detected conflict cases with original and testability executables, only one
case is in the serialization subsample. Moreover, this conflicting case is also
detected with the serialization executable. Nevertheless, the detection is not
due to the extra serialization information available in the executable, as the
EvoSuite test case that detects the conflict (third column, second row in
Table 2) does not explore serialized objects. So we have no evidence that the
serialization technique can help improve conflict detection, but we also have
no evidence that it can hinder conflict detection, as might be suggested by the
illustrated number if one does not know that they are based on a subsample.
We should, though, run new studies with a bigger sample in order to better
assess this issue.

Comparing our results with previous work (Da Silva et al., 2020) shows
that our initial results are replicable; all four conflicts previously detected
are also reported in the study reported here. We adopt the same Testability
Transformations in both works, but a larger budget (5 minutes) for the test
generation process. Like our previous study, all nine conflicts detected here are
detected through the same conflict criterion (see our online Appendix (Online
Appendix, 2022)); a test case that passes on the parent commit and fails on
the Base and Merge commits. Although no conflict is detected using our new
two criteria, they are still valid as they explore scenarios not supported by
our previous criteria (see Section 2). We believe our approach for generating
the test suites do not favor the new criteria. As we currently generate tests
based on parent commits, these tests are expected to pass on these commits,
partially limiting our new two conflict criteria. To better evaluate the new
criteria, we should run a new study generating tests against the Base and
Merge commits instead of only parent ones.

31

As a final remark, based on our sample, Differential EvoSuite together with
EvoSuite is the best configuration of tools to be adopted by SAM. Similarly, we
should configure SAM to use only testability executables. Finally, regarding
our proposed conflict criteria, the first criterion is the best option detecting
all conflicts reported in this study.

5.1.2. False Negatives

Moving to the 19 cases of false negatives in the right branch of Figure 6,
we try to understand the limitations behind the missed conflicts. To this end,
we manually analyze the generated test suites and check whether the conflicts
could be detected after applying a few changes to the test cases. Our main
goal is to evaluate how close the generated tests are to detecting conflicts. To
guide us during this adaptation process, we consider the test descriptions that
we created when establishing ground truth (see Section 4.6). The manually
adapted test cases could detect conflicts in 13 out of 19 false negatives cases
in our sample. This suggests that improving SAM’s test generation process,
or allocating more resources for generation, could maybe significantly reduce
the chances of false negatives. However, detecting the other six false negatives
would likely require radical changes on how SAM works.

To understand how close SAM gets to detecting conflicts, we illustrate
one of the 13 false negatives in Figure 9. Both parent commits add calls
to methods that update the same object stored in the field logger, as they
write different values on the log output.13 While the Left commit updated the
message using the method info (Line), the Right commit updates using the
method debug (Line 9). Although the parents use different writing methods
to update the object, they are writing on the same character stream. To
detect such interference, SAM would have to generate at least one test case
with an assertion that explores the fields of the object changed by the target
method, the object stored in logger in this case. However, by manually
inspecting the generated test cases, we only find one such assertion, which
simply checks whether the object is null. Regardless of the particularities
of this scenario, a conflict revealing assertion would have to compare the
contents of the object stored in logger, not simply that it is different from null.
This case shows that a generated test case reaches the interference location,
the object state is infected, the interference is propagated Voas (1992), but

13Spring Boot - merge commit: fdd3f12

32

https://github.com/spring-projects/spring-boot/commit/fdd3f12ee0f92ac18844c08bf71df39feebb6673

the test case assertions fail to explore that. As such, we consider that SAM
is close to detecting interference in this case, but misses it.

1 void logAutoConf igurat ionReport (boolean i sCrashReport) {
2 . . .
3 i f (. . .) {
4 + this.logger.info (” Error s t a r t i n g . . . ”) ;
5 }
6 i f (. . .) {
7 + this.logger.debug(getLogMessage(this.report));
8 }
9 }

Figure 9: False-negative involving updates to the same object.

In other cases, SAM is not even close to detect a conflict. The methods
holding the conflict are called by the generated test cases, but with arguments
that are unable to lead test execution to reach the interference location; for
example, a null argument makes the method raise an exception before even
reaching the interference location. The same happens when infection depends
on more complex object graphs that not easily created by the test generation
tools. In these cases, with no infection and propagation, the assertions are
often far from the ones that could detect the interference, making it harder
to manually adapt the generated test cases.

Another major SAM limitation we observe is when infection or even
reachability would only occur if the generated test cases were able to set
dependencies to external resources such as database sessions. As this is highly
project dependent, SAM would need to have access to project specific setup
information, and feed them to the unit test generation tools, in order to avoid
missing conflicts. The current version of SAM has no such support, reducing
the chances of detecting conflicts in projects that demand external resources.
In one scenario, for example, the interfering changes are made inside a block
that is only executed if a valid database session is available. As no such
session is set up by the generated test cases, the interference location is never
reached. By adapting the test cases with Junit annotations like Before or
BeforeEach, or using mocks, could overcome this limitation.

33

5.2. Cases Without Conflicts

Focusing now on the left branch in Figure 6, we discuss the 57 cases that
have no conflict. We first discuss the three false positives in our sample. Later
we discuss and classify the true negatives, as this sheds light on how SAM’s
dynamic analysis solution could compare to static analysis based solutions,
which might conservatively err on such cases.

5.2.1. False Positives

SAM might report false positives for a number of reasons. First the
generated test cases are not guaranteed to be free from flakiness. So, for
instance, we can have a test case that fails in the Base in some executions and
passes in others. SAM could then consider one of our interference criteria to
hold when relying on an incorrect test result, and consequently wrongly report
a conflict. To reduce this problem, we run each test suite three times in each
commit, aiming to detect and discard flaky tests by comparing the results
of the three test executions; if the three results are not identical, we discard
the test case and do not consider it for detecting interference. However, this
is not enough to eliminate flakiness in general. In fact, in our study we still
observe two (out of three) false positives due to flakiness.

The remaining case of false positive observed in this study actually corre-
sponds to an interference, but not one caused by the changes in the analyzed
method. As our manual analysis is local, focusing only on the analyzed
method and its dependencies, we conservatively classify this case as a false
positive. The parent commits change a common target method,14, each set-
ting the values of disjoint sets of object fields. Additionally, the Left commit
updates the version of an external dependency. The generated test case based
on the Right commit passes in that commit as expected (see Figure 10), as
its changes lead to an exception during execution (IlegalStateException).
When running the same test on the Base commit, the expected exception is
not thrown and the test fails. Finally, the test fails again when run against
the Merge commit, but this time due to the new external dependency version
integrated by Right, which leads to a different unexpected exception. This
way, we have a test case that satisfies one of our conflict criteria, but only
part of the failed states are caused by the parent changes on the common
target method.

14Spring Boot - merge commit: 958a0a4

34

https://github.com/spring-projects/spring-boot/commit/958a0a45f164601d01cb706c19f22ed3e25eff56

1 @Test
2 public void t e s t1108 (){
3 . . .
4 MongoClientOptions mongoClient = bu i ld e r13 . bu i ld () ;
5 try{
6 MongoClient mClient = mProp . createMongoClient () ;
7 Assert . f a i l (”Expected except ion o f type ” +
8 +” java . lang . I l l e g a l S t a t e E x c e p t i o n ; . . . ”) ;
9 } catch (IllegalStateException e) {

10 . . .
11 }
12 . . .
13 }

Figure 10: Test case associated with false positive caused by unrelated parent conflicting
contributions.

Another reason for false positives is that our interference criteria are
simply approximations, as interference is not computable in general. SAM
uses them regardless of the characteristics of the generated tests, but the
criteria is guaranteed to be valid only if the test assertions solely explore the
state elements affected by the changes of the parent commit that was used
to generate the corresponding test. For example, consider a merge scenario
with Left and Right commits that simply change how a disjoint set of state
elements is updated. Say Left adds the assignment left=1 and Right adds
right=1, whereas both variables were initialized with 0 in Base. If SAM
generates a test for Left asserting left==1 & right==0, this test breaks in
Base (as left evaluates to 0), passes in Left, and breaks in Merge (as right
evaluates to 1). As this test satisfies our criteria, SAM wrongly reports
interference even though the integrated changes do not affect each other. The
false positive is caused by the test assertion that unnecessarily constrains
the value of the right variable, which is not affected by Left ’s change. We,
however, observed no such cases in our sample.

5.2.2. True Negatives

Moving now to the 54 cases of true negatives, six are classified as not
supported because the potentially conflicting changes occur in test cases and
test classes, not in the code that implements system functionality. So even

35

if the changes were conflicting, SAM would not be able to detect that as its
current version does not support test classes; the unit test generation tools
are not configured to generate test cases for test classes, as the associated
testing framework and project environment are not fed to the tools, which
would need to be adapted for such purpose.

For 34 of the 48 changes supported by SAM, the parent commits indi-
vidually change program behavior, but when integrated the changes do not
locally interfere with each other. Static analysis tools that rely on more
conservative analysis could maybe err on that, but the chances of SAM erring
on those cases are reduced. The same applies for the 11 cases in which one
of the integrated branches only applies whitespace changes and structural
refactorings such as renamings and extractions of variables and methods. In
such circumstances, even if one parent commit changes program behavior, we
have no interference and semantic conflict. This way, even if the generated
tests present different results between the Base and one parent, let us say Left,
the Merge commit behaves exactly like the Left, as Right does not change
program behavior.

Finally, for the remaining three cases, the parent commit changes cause
other kinds of conflicts during the integration (textual or build conflicts).
When merge or build conflicts occur, human intervention is necessary to fix
these conflicts, and their resolution often involves discarding some of the
changes. This in turn likely reduces the chances of a residual semantic conflict.
That is what we observed in these three cases: significant parts of the changes
were discarded during the textual and build conflicts resolutions, and so no
conflict was wrongly detected by our tool.

5.3. Further Evaluation of Tools and Related Test Suites

Although our main focus here is the detection of semantic conflicts, we
are also interested in evaluating other metrics regarding the quality of the
generated test suites. This way, in this section, we explore metrics that allow
us to better understand the strengths and weaknesses of our approach and
the evaluated unit test generation tools.

5.3.1. Behavior Change Detection

Regarding the detection of Behavior Changes, we are looking for test
cases that present different outputs when executed against a pair of commits.
This way, we might evaluate how close the tools are of detecting conflicts, in

36

case the reported behavior change is associated with the same changed class
element.

Overall, 89 behavior changes are detected by the generated test cases
when using all kinds of executable we consider in our experiment. These
changes involve either a parent and the Base, or a parent and the Merge
commit. EvoSuite is the most successful tool detecting 47 out of 89 behavior
changes. Next, we have Randoop Clean, Randoop, and Differential EvoSuite
with 38, 37, and 28 detections, respectively. Even combining the last three
tools, they would not achieve the rate detection of EvoSuite, as their outputs
overlap. Different from the results of conflict detection, Differential EvoSuite
does not rank first this time. As each tool could detect at least one exclusive
behavior change, no combination of tools could capture all reported behavior
changes. However, the highest detection rate not including all tools could be
obtained by combining EvoSuite, Randoop Clean, and Differential EvoSuite,
as they report together 85 out of 89 behavior changes.

We observe that the adoption of Testability Transformations help the tools
to detect behavior changes. In the same direction as for semantic conflict
detection, 20 additional changes are detected with testability executables,
when compared to the original executables (only 69 changes detected). From
the 19 false-negative cases observed in the experiment, we could detect
behavior changes in 11 of them. However, the reported behavior changes are
not caused by the changes involved in the semantic conflicts. So we can’t say
that the tools were close in these cases.

We also observe that the serialization executables help detect 15 changes
not covered when using the original and testability executables. In these
cases, as the tools have access to realistic objects, the generated test cases
may further and deeply explore the instructions and branches of the target
code under analysis.

5.3.2. Randoop Clean Evaluation

We evaluate Randoop and Randoop Clean with respect to the following
metrics: Target Code Reachability, Object Diversity, and Source Code Coverage.
Compared to Randoop, Randoop Clean generates more tests that directly
call target methods. Regarding the diversity of objects, no matter the kind
of executable used in the experiment, Randoop Clean often generates more
diverse objects than Randoop when the time budgets are not inferior to 5
minutes; the larger the budget the greater the difference in favour of Randoop
Clean. Finally, overall, the tools present similar coverage in most cases. Likely

37

due to our sample size and the reduced effects of the Randoop Clean changes—
its benefits cannot be observed in cases where the tools fail to reach the
target method— we observed no statistically significant difference between
the tools. Similar results are observed when using original and Testability
Transformations executables. However, using executables with serialized
objects lead to higher coverage. Thus we may conclude that the quality of
serialized objects allows both tools to more deeply explore instructions of the
target code under analysis.

6. Discussion

Semantic merge tools based on regression testing, as we evaluate here, can
help developers detect semantic conflicts. Due to the observed low number
of false positives, the benefits can be obtained by avoiding major costs on
wasted developer effort. However, due to the significant number of observed
false negatives, developers should not exclusively rely on our semantic merge
tool to detect semantic conflicts. They should still try to catch such conflicts
by reviewing the code and executing project tests.

Although we evaluate the use of SAM with four unit test tools, our results
show that combining EvoSuite and Differential EvoSuite would be the best
option to detect all conflicts in our sample. Configuring SAM that way we
might spend less time generating tests and detecting conflicts. Although we
present four conflict criteria, not all of them detected conflicts in our study.
However, we would not suggest a version of SAM that only applies a subset
of the criteria, as checking them is not expensive.

Although the proposed testability transformations are not sound, in our
sample we observe that the transformations contribute to increasing the
testability of the code under analysis without drawbacks, allowing the tools
to directly access and call all elements of a target class.

We believe the adoption of serialization may support the detection of
conflicts, though we provide no such evidence in our study, likely due to the
restricted subsample we consider for evaluating the serialization transforma-
tions. As the quality and coverage of project test suites play an essential
role in providing diverse serialized objects, projects with weak test suites
won’t benefit from serialization. In our evaluation, only nine conflicting merge
scenarios were associated with project test suites covering the target methods
where the conflicts takes place. For the sample of nine scenarios with conflicts,
we observe strong test suites associated with eight cases, covering the target

38

method and providing more than 100 serialized objects for each case. However,
these objects were not diverse enough to reach the infection state.

A special benefit of our regression testing approach to detect conflicts is
that one ends up with a test case that reveals a conflict, when the tool reports
one. This decreases the effort to understand how a conflict occurs. The test
case limits the amount of source code that should be analyzed and changed
to fix the conflict, and can be used for debugging and understanding the
mechanics of the conflict. Finally, the test case could also help making sure
the conflict is fixed. This contrasts with static analysis approaches, which
report a conflict and maybe the statements involved in the conflict mechanics,
but provide no test case.

Although our study and results are restricted to Java, we could use a
similar approach for other languages with support for unit test generation
tools like those we use here.

As a final remark, although SAM focuses on detecting semantic conflicts, it
does not support fixing the conflicts due to the particularities of this conflict
type. Different from build conflicts (Da Silva et al., 2022), test conflicts
are harder to fix as developers must take into account the semantics of the
integrated changes that cause the conflict. This way, applying straightforward
changes, like those adopted for build conflict fixes, is often not enough in this
context. As a result, to fix test conflicts, developers must be aware of the
program specifications or intents, and then, they might apply the required
changes aiming to meet that.

6.1. Improving SAM

Our evaluation of SAM reveals improvements that might be implemented
in future versions of our tool. We also discuss a number of usage scenarios
for SAM, and different contexts in which our tool might be adopted.

Using SAM in a Reactive Way to Detect Conflicts

Knowing that SAM requires significant computing resources to generate
the test suites and execute them on each commit of a merge scenario, SAM’s
usage by individual developers might require support from a server that runs
the analysis without blocking local repository activities. So a developer would
merge locally and move on while the analysis is performed on the server. The
developer is later notified.

Alternatively, SAM can also be integrated to continuous integration
pipelines, in such a way that contributions to be integrated into a main

39

remote project repository are first analyzed by SAM before integration actu-
ally takes place. These are just two contrasting usage scenarios, but the tool
could fit other scenarios as well.

Reusing Original Project Test Suites as Input for SAM

For projects with solid and robust test suites, we could use a configurable
version of SAM that extends the current version in such a way that the
detection of conflicts relies not only on generated tests, but also on existing
and manually created project test suites. This combination of generated and
existing project tests could increase the potential to detect conflicts.

We also envision a version of SAM that generates test suites not only for
the parent commits in a merge scenario, but also for the Base and Merge
commits. If the interference criteria applies for these test suites, we could
similarly report conflict. This could also increase the potential of detecting
conflicts, but further studies are necessary to assess that.

6.2. Improving Unit Test Generation

We observed a few limitations and weaknesses of generated unit tests in
our specific context. For instance, in a few cases the generated tests are not
able to create complex objects with internal or external dependencies. As
presented in Section 4, we try to address some of these limitations by applying
testability transformations in the code under analysis. Although this helps, a
number of limitations persist. By manually analyzing generated test suites of
false-negative cases, we were able to better understand the limitations. We
discuss the main ones in the following.

Reaching Interference Location through Relevant Object Creation

The unit test generation tools have a hard time creating tests that ma-
nipulate objects that need to be directly or indirectly exercised in order to
detect a conflict. Many test cases prematurely finish their executions due
to failed attempts to access fields or call methods on objects that are not
properly initialized or configured.15 The attempt to access fields through a
variable textNode0 throws a NullPointerException, since this variable is
not properly instantiated with a valid object. Giving relevant objects for test
cases like this is necessary to at least reach the interference location. This

15This case refers to merge commit a44e18a in project Jsoup.

40

https://github.com/jhy/jsoup/commit/a44e18aa3c1fcd25a68a5965f9490d8f7d026509

topic is also related to cases in which the methods holding the conflict are
not adequately called. In these cases, besides the proper creation of relevant
objects, a sequence of method calls must be invoked with the aim of properly
instantiating an object in such a way that the interference location can be
reached.

Relevant Assertions exploring the Propagated Interference

In a few cases, the generated tests even reach the interference location,
infection occurs, but the test assertions do not properly explore the propagated
interference. For example, consider a conflict in the project CloudSlang,16

where the parent commits change the same array. The test case generated
for this scenario correctly creates the object, calls the method in which the
conflict occurs, and saves the method return object into a local variable.
However, the generated assertion checks whether the local variable is null

instead of exploring the object size. So, depending on the type of a method
return object, the unit test generation tools could explore defined aspects
that could detect the conflict. This way, tools could provide a list of handlers
based on the types of objects under analysis. For example, for array objects,
these handlers would force the assertions to explore their size and contents.
For strings, assertions might explore comparisons between different strings,
as also whether substrings are part of others, and so on.

Relevant Assertions relying on Interference Propagation

Test case assertions often explore the object returned by a method, but
not objects that are passed as parameters. For example, again analyzing the
changes performed of previous mentioned merge scenario of project Jsoup,
the method outerHtmlHead requires three parameters as input, not returning
any object (void method), as previously mentioned in this section. However,
a semantic conflict occurs, and the first parameter holds the propagated
interference. The test case generated by EvoSuite focusses on verifying
whether an exception is thrown during its execution. The assertions should
not be restricted to explore objects returned by a method, but also other
objects that are used by a method or any other way of communication.

16This case refers to merge commit 20bac30 in project CloudSlang.

41

https://github.com/CloudSlang/cloud-slang/commit/20bac30d9bd76569aa6a4fa1e8261c1a9b5e6f76

7. Threats to Validity

Construct Validity As explained in Section 2, we cannot assess semantic
conflict occurrence without having access to the developers’ intentions or
specification of the changes they make. So our study focuses on interference
occurrence. As manually assessing global interference, and generating and
running tests for the whole system, would demand considerable effort, our
study is restricted to local interference occurrence. So the number of false
negatives and false positives with respect to a global notion of interference
could be different than what our results report. Nonetheless, regression tests
could detect global interference if the interference is propagated, and if we
generate tests for other classes in addition to the one that integrates the
parallel changes made by two developers.

Aiming to increase the testability of the source code under analysis for
the unit test generation tools, we apply testability transformations before
performing our analysis. For example, we change access modifiers to public.
Although this transformation breaks program encapsulation, it does not
semantically change a program. If a semantic conflict can be observed
accessing a class field, but this field is private, the unit test generation tools
would face many problems trying to indirectly access this attribute without
the transformation. Some may argue that, without this transformation, such
conflict could never be observed. That might be true if indirect access, for
instance with accessor methods, is not available, but we are aware of this
and take it into consideration in our false positive analysis. Furthermore, the
transformed program is only accessed by our semantic merge tool.

Internal Validity When creating the interference ground truth, we rely on
manual analysis of unfamiliar source code. To reduce this threat, we involve
a group of six researchers, which are split in pairs during the analysis, and
demand they provide an explanation of why there is no interference; this often
requires understanding the changes in detail to detect refactorings, changed
state elements, and how they impact each other. The risk is significantly
reduced for the cases in which the tools are successful, as the threat can be
minimized by analyzing the interference revealing test case, running it, and
manually checking whether the test case assertions focus on the changed state
elements.

External Validity Our results are limited to the context of open-source
GitHub Java projects. In the same way, the diversity of real projects we
analyze here might have an impact on the detection of potential conflicts by

42

our semantic tool. The testability transformations, as we discuss, positively
impact our results and contribute to increasing the source code testability; in
some cases, also detecting the conflict. Applying our proposal of semantic
merge tool to other programming languages would require test generation
tools for the desired language and also the testability transformations, if
applicable.

8. Related work

Regression testing has been used for detecting behavior changes in the past.
Evans and Savoia (2007) combine regression and progressing testing (dif-
ferential testing) to detect preserved, altered, and eliminated behavior of a
program. Jin et al. (2010) present a test generator based on a list of changed
classes between two versions of a program. Shamshiri et al. (2013) present
EvosuiteR, a test generation tool for differential testing that uses search-based
algorithms to find regression faults on different versions of a program. While
the previous studies evaluate the detection of regression faults between two
different versions of a program using regression tests, in this work, we evaluate
the potential of regression tests to detect semantic conflicts on merge scenarios
(three different versions of a program). Campos et al. (2014) propose an
approach (CTG) to more efficiently generate unit tests considering the whole
project, instead of a single method or class as we do here. They focus on a
Continuous Integration context, and their approach can help detect behavior
changes and regressions, as tests generated in a previous commit might yield
a different result when executed in the next commit. But this is not enough
for detecting interference as we do here, as our interference heuristic goes
beyond behavior change detection; a test that was generated and passes in a
parent commit, and that breaks in the following (say merge) commit, might
indicate interference only if it breaks in the corresponding base commit. It
would, however, be important to use CTG, instead of raw Evosuite focused
on a target method as we do here, to assess whether it could improve SAM.
Hejderup and Gousios (2022) investigate the effectiveness of project test suites
on detecting semantic changes motivated by updates to external dependencies
instead of conflicting contributions applied to the project itself, as we do
here. Although we do not investigate the occurrence of conflicts caused by
conflicting changes involving external dependencies, the mentioned related
work approach might be applied to detect these new conflicts.

Researchers also present techniques to detect and prevent conflicts early.

43

Palantir (Sarma et al., 2012) is a workspace awareness tool that notifies devel-
opers of parallel changes in the same artifact. Brun et al. (2013) propose in-
corporating speculative analysis for early detection and prevention of conflicts.
This way, they present Cristal, an assistive tool that compares remote and lo-
cal individual collaborators’ repositories in order to warn about possible code
integration conflicts. To detect test conflicts, they evaluate their technique by
analyzing three Java projects and rely on project tests, which are often not
enough for detecting interference as we explore here. The authors do not miti-
gate possible flaky tests in both studies, as we do in our study by executing the
test suites multiple times. The failed tests are not executed on the parent and
base commits of the merge scenario, as we do here, which may result in false
positives, as the failed test may occur due to the changes exclusively performed
by one parent. These studies have also investigated ways in which conflicts
can be prevented early, thereby minimizing their impact on productivity.

Cavalcanti et al. (2017; 2019; 2019) conduct empirical studies that analyze
merge scenarios and compare the accuracy of different merge resolution
techniques: unstructured, semi-structured, and structured merge. They
also propose a new semi-structured tool with significant advantages over
unstructured merge tools by reducing the false-positive and false-negative
rates of earlier semi-structured tools. Overall, they find that exploring more
structure does not necessarily improve merge accuracy. Contrasting with
our investigation here, their proposed tools are not able to detect behavioral
semantic conflicts, only syntactic and static semantics conflicts.

Nguyen et al. (2015) present Semex, a tool for detecting which combination
of merged changes causes a test conflict based on a technique called variability-
aware execution (Nguyen et al., 2014). First, the tool separates the changes
done by each parent commit in the merge scenario and encodes each one
using conditionals around them (if statements) to integrate all these changes
in a single program. Semex then uses variability-aware execution to detect
semantic conflicts by running existing project tests, if available, on this
single program, exploring all possible combinations of the encoded changes.
Reporting a conflict exclusively based on the failure of a test in the merged
code does not always imply a conflict or interference. If the test fails in
one of the parent commits too, failure in the merge might simply indicate
inheritance of a defect. That is why we propose different criteria, based on
the idea of tests as partial specifications of the changes to be integrated. We
also rely on and assess the use of test generation tools to detect conflicts,
instead of relying on existing project tests, which are often missing or have

44

limitations, as described above.
Due to restricted sample sizes, related work on semantic merge tools does

not discuss precision and recall measures. Wuensche et al. (2020) suggest
an approach based on static analysis and a tool to detect and predict the
occurrence of test conflicts, as they formally call higher-order merge conflicts.
Based on the changes performed during a merge scenario, they (re)build
a call graph and detect potential dependencies among merge scenario code
fragments that lead to a conflict. To detect test conflicts, the authors manually
analyze build records of merge scenarios and extract change patterns that lead
to test conflicts based on the authors’ observation. As a result, 22 potential
conflicts out of 1489 merge scenarios are reported by the tool. To validate
the potential conflicts, the authors search for bugs reported after each merge
scenario occurrence. However, they do not confirm conflict occurrences as no
bug is reported.

Sousa et al. (2018) propose SafeMerge, a tool that leverages compositional
verification to check semantic conflict freedom in merge scenarios. In principle,
this kind of static analysis should lead to more false positives and fewer false
negatives, when compared to the use of tests as we propose here. An evaluation
with 52 merge scenarios indicates that SafeMerge reports 75% of the scenarios
without conflicts, with a false positive rate of 15%. However, analyzing the
merge scenarios reported with conflicts, we conclude that some of them do
not represent conflicts according to our criteria. In these cases, the changes
involved do not interfere with each other or are only refactorings, leading to no
behavior change and consequently no interference. Due to the experimental de-
sign and dataset characteristics, the authors do not present false negative rates.
However, concerning false positives, the authors disclose a rate of 3.8% (2 out
of 52 cases), whereas our study demonstrates a rate of 3.5% (3 out of 85 cases).

Arcuri and Galeotti (2021) adopt a related approach by presenting a set
of testability transformations; unlike our transformations, they do not focus
on changing code element access modifiers or semantic changes but support
and guide the search algorithm when generating tests. Their core idea is
based on Method Replacements, which replace specific method calls at the
bytecode level with their customized methods. To evaluate their technique,
they implement it as an extension of the EvoMaster tool and perform an
empirical study analyzing ten Rest web service projects (open-source and
industrial ones). The results show that the techniques effectively improve
code coverage and fault detection.

Tiwari et al. (2021) present PANKITI, a related approach regarding

45

the use of serialization to support unit test tools. Unlike our approach to
serializing objects based on a target method during merge scenarios, PANKITI
monitors an application in production serializing objects when target methods
are called. While we serialize the current objects holding the target method
and its required parameters, the authors also serialize the returning target
method objects. For our context, we are not interested in returning objects
as we focus on objects that might let us reach infection states of conflicting
contributions. Furthermore, infections are not always propagated through
returning target method objects; in our sample, we observe infections being
propagated through parameters, for example.

Regarding the issues we observe by the tools when generating test suites,
previous studies also bring evidence about the hardness of dealing with
complex objects (Fraser and Arcuri, 2015; Silva et al., 2017; Da Silva et al.,
2020). These related studies discuss the difficulty of generating complex
objects, which are required when calling specific methods under analysis. By
complex objects, we consider objects with multiple other objects from internal
as also external dependencies. In order to address these issues, we propose
feeding the tools with serialized objects leading them to reuse previous objects
originally created by the original project test suite.

9. Conclusion

In this work, we present and evaluate a semantic merge conflict detection
technique using automated test-case generation. As opposed to prior attempts
in the literature, our strategy does not require explicitly defined behavior
specifications or substantial setup effort. We define interference criteria and
systematically investigate their effectiveness by detecting conflicts upon a
manually curated ground-truth dataset originating from 85 changes’ pairs
from 51 software merge scenarios that integrate changes to the same method,
constructor, or field declaration mined from GitHub.

In order to detect conflicts, we combine unit test generation tools and
adopt improvements, like testability and serialization transformations. As
a result, we show the feasibility of a semantic merge tool, SAM (SemAntic
Merge tool). While SAM is able to detect nine conflicts out of 28 conflicts
from 85 changes’ pairs, we report only three false positives according to our
interference criteria. This suggests that semantic merge tools based on unit
test generation would help developers detect semantic conflicts early, other-
wise reaching end-users as failures. Regarding the unit test tools, our results

46

show that SAM best performs when combining only the tests generated by
Differential EvoSuite and EvoSuite. The Testability Transformations improve
the testability of target code under analysis in three of the nine detected inter-
ference cases, suggesting that they might be useful for interference detection.
We discuss necessary improvements to test generation and make our manually
curated dataset available in a replication package (Online Appendix, 2022),
also to help building future semantic merge tool.

We also explore and measure the impact of different improvements in our
semantic merge-conflict detection technique due to the limitations of unit
test tools and the complexity of the target code under analysis. First, we
propose and evaluate the use of serialized objects as input for the tools during
the generation process. Although we do not observe new semantic conflicts
detected after applying this technique, new general behavior changes are
detected involving pairs of commits. Second, we also extend Randoop aiming
to maximize the number of tests exploring the target method, if applicable.
Although our tool Randoop Clean reports better results regarding test suites
dealing with more diverse objects, we do not observe the detection of new
conflicts. As future work, we plan to extend SAM to consider original project
test suites to detect conflicts based on our conflict criteria, improve the use
of serialization transformations and extend unit test tools.

CRediT authorship contribution statement

Leuson Da Silva: Conceptualization, Methodology, Investigation, Data
curation, Writing – original draft. Paulo Borba: Conceptualization, Method-
ology, Supervision, Writing – original draft. Toni Maciel: Investigation,
Data curation. Wardah Mahmood: Investigation, Writing – review &
editing. Thorsten Berger: Supervision, Writing – review & editing. João
Moisakis, Aldiberge Gomes, Vinicius Leite: Investigation.

Declaration of competing interest

The authors declare that they have no known competing financial interests
or personal relationships that could have appeared to influence the work
reported in this paper.

47

Acknowledgements

We thank Marcelo d’Amorim, Rohit Gheyi, Leonardo Fernandes, Breno Mi-
randa, Leonardo Murta, and the anonymous reviewers for valuable comments
to improve an earlier version of this paper. We thank Rafael Alves, Galileu
Santos, Matheus Barbosa, and Tháıs Burity for their support when creating
our dataset. We also thank INES (National Software Engineering Institute),
the Brazilian research funding agencies CNPq (309741/2013-0), FACEPE
(IBPG-0692-1.03/17 and APQ/0388-1.03/14), and CAPES, as well as the
Swedish Research Council (257822902), Vinnova Sweden (2016-02804) and
the Wallenberg Academy.

References

Accioly, P., Borba, P., Cavalcanti, G., 2018. Understanding semi-structured
merge conflict characteristics in open-source Java projects. Empirical
Software Engineering 23, 2051–2085.

Adams, B., McIntosh, S., 2016. Modern release engineering in a nutshell–why
researchers should care, in: International Conference on Software Analysis,
Evolution, and Reengineering, IEEE.

Almasi, M.M., Hemmati, H., Fraser, G., Arcuri, A., 2017. An industrial eval-
uation of unit test generation: Finding real faults in a financial application,
in: International Conference on Software Engineering, IEEE.

Apel, S., Leßenich, O., Lengauer, C., 2012. Structured merge with auto-
tuning: balancing precision and performance, in: International Conference
on Automated Software Engineering, ACM.

Apel, S., Liebig, J., Brandl, B., Lengauer, C., Kästner, C., 2011. Semistruc-
tured merge: rethinking merge in revision control systems, in: European
software engineering conference and Symposium on the Foundations of
Software Engineering, ACM.

Arcuri, A., Galeotti, J.P., 2021. Enhancing search-based testing with testa-
bility transformations for existing apis. ACM Transactions on Software
Engineering and Methodology (TOSEM) 31, 1–34.

48

Barros Filho, R.S., 2017. Using information flow to estimate interference be-
tween developers same-method contributions. Master’s thesis. Universidade
Federal de Pernambuco.

Bass, L., Weber, I., Zhu, L., 2016. DevOps: A Software Architect’s Perspective.
Addison-Wesley Professional.

Binkley, D., Horwitz, S., Reps, T., 1995. Program integration for languages
with procedure calls. ACM Transactions on Software Engineering and
Methodology (TOSEM) 4, 3–35.

Bird, C., Zimmermann, T., 2012. Assessing the value of branches with what-if
analysis, in: Symposium on the Foundations of Software Engineering, ACM.

Brun, Y., Holmes, R., Ernst, M.D., Notkin, D., 2013. Early detection of col-
laboration conflicts and risks. IEEE Transactions on Software Engineering
39, 1358–1375.

Campos, J., Arcuri, A., Fraser, G., Abreu, R., 2014. Continuous test genera-
tion: Enhancing continuous integration with automated test generation, in:
Proceedings of the 29th ACM/IEEE international conference on Automated
software engineering, pp. 55–66.

Cavalcanti, G., Borba, P., Accioly, P., 2017. Evaluating and improving
semistructured merge. ACM Transactions on Programming Languages and
Systems 1, 59:1–59:27.

Cavalcanti, G., Borba, P., Seibt, G., Apel, S., 2019. The impact of structure on
software merging: semistructured versus structured merge, in: International
Conference on Automated Software Engineering, IEEE.

Da Silva, L., Borba, P., Mahmood, W., Berger, T., Moisakis, J., 2020.
Detecting semantic conflicts via automated behavior change detection,
IEEE. pp. 174–184. doi:10.1109/ICSME46990.2020.00026.

Da Silva, L., Borba, P., Pires, A., 2022. Build conflicts in the wild. Journal
of Software: Evolution and Process 34, e2441.

Dias, K., Borba, P., Barreto, M., 2020. Understanding predictive factors for
merge conflicts. Information and Software Technology 121, 106256.

49

http://dx.doi.org/10.1109/ICSME46990.2020.00026

Elbaum, S., Chin, H.N., Dwyer, M.B., Dokulil, J., 2006. Carving differential
unit test cases from system test cases, in: Proceedings of the 14th ACM
SIGSOFT international symposium on Foundations of software engineering,
pp. 253–264.

Evans, R.B., Savoia, A., 2007. Differential testing: a new approach to change
detection, in: European software engineering conference and Symposium
on the Foundations of Software Engineering, ACM.

Fowler, M., . Feature toggle. URL: https://goo.gl/QfJ6mM. accessed:
December 2017.

Fraser, G., 2018. A tutorial on using and extending the evosuite search-based
test generator, in: Search-Based Software Engineering. Springer.

Fraser, G., Ammann, P., 2008. Reachability and propagation for ltl require-
ments testing, in: 2008 The Eighth International Conference on Quality
Software, IEEE. pp. 189–198.

Fraser, G., Arcuri, A., 2015. 1600 faults in 100 projects: automatically finding
faults while achieving high coverage with evosuite. Empirical software
engineering 20, 611–639.

Grinter, R.E., 1996. Supporting articulation work using software configuration
management systems. Computer Supported Cooperative Work 5, 447–465.

Hejderup, J., Gousios, G., 2022. Can we trust tests to automate dependency
updates? a case study of java projects. Journal of Systems and Software
183, 111097.

Henderson, F., . Software engineering at Google. URL: https://arxiv.org/
abs/1702.01715. accessed: December 2017.

Hodgson, P., . Feature branching vs. feature flags: What’s the right tool for
the job? URL: https://goo.gl/4D2AMv. accessed: December 2017.

Horwitz, S., Prins, J., Reps, T., 1989. Integrating noninterfering versions of
programs. ACM Transactions on Programming Languages and Systems 11,
345–387.

Jacoco, 2022. Available at: https://www.eclemma.org/jacoco/.

50

https://goo.gl/QfJ6mM
https://arxiv.org/abs/1702.01715
https://arxiv.org/abs/1702.01715
https://goo.gl/4D2AMv

Jin, W., Orso, A., Xie, T., 2010. Automated behavioral regression testing, in:
International Conference on Software Testing, Verification and Validation,
IEEE.

Kasi, B.K., Sarma, A., 2013. Cassandra: proactive conflict minimization
through optimized task scheduling, in: International Conference on Software
Engineering, IEEE.

Khanna, S., Kunal, K., Pierce, B.C., 2007. A formal investigation of diff3,
in: International Conference on Foundations of Software Technology and
Theoretical Computer Science, Springer-Verlag.

Luo, Q., Hariri, F., Eloussi, L., Marinov, D., 2014. An empirical analysis
of flaky tests, in: Proceedings of the 22nd ACM SIGSOFT international
symposium on foundations of software engineering, pp. 643–653.

Mahmood, W., Chagama, M., Berger, T., Hebig, R., 2020. Causes of merge
conflicts: A case study of elasticsearch, in: International Working Confer-
ence on Variability Modelling of Software-intensive Systems, ACM.

McKee, S., Nelson, N., Sarma, A., Dig, D., 2017. Software practitioner
perspectives on merge conflicts and resolutions, in: International Conference
on Software Maintenance and Evolution, IEEE.

Mens, T., 2002. A state-of-the-art survey on software merging. IEEE transac-
tions on software engineering 28, 449–462.

Nagappan, M., Zimmermann, T., Bird, C., 2013. Diversity in software
engineering research, ACM. pp. 466–476. doi:10.1145/2491411.2491415.

Nguyen, H.V., Kästner, C., Nguyen, T.N., 2014. Exploring variability-
aware execution for testing plugin-based web applications, in: International
Conference on Software Engineering, IEEE.

Nguyen, H.V., Nguyen, M.H., Dang, S.C., Kästner, C., Nguyen, T.N., 2015.
Detecting semantic merge conflicts with variability-aware execution, in:
Symposium on the Foundations of Software Engineering, ACM.

Online Appendix, 2022. Available at: https://spgroup.github.io/papers/sam-
semantic-merge-tool.html.

51

http://dx.doi.org/10.1145/2491411.2491415

Owhadi-Kareshk, M., Nadi, S., Rubin, J., 2019. Predicting merge conflicts in
collaborative software development. International Symposium on Empirical
Software Engineering and Measurement .

Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T., 2007. Feedback-directed ran-
dom test generation, in: International Conference on Software Engineering,
IEEE.

Perry, D.E., Siy, H.P., Votta, L.G., 2001. Parallel changes in large-scale
software development: an observational case stud. ACM Transactions on
Software Engineering and Methodology 10, 308–337.

Potvin, R., Levenberg, J., 2016. Why Google stores billions of lines of code
in a single repository. Communications of ACM 59, 78–87.

Sarma, A., Redmiles, D.F., Van Der Hoek, A., 2012. Palantir: Early detec-
tion of development conflicts arising from parallel code changes. IEEE
Transactions on Software Engineering 38, 889–908.

Shamshiri, S., 2015. Automated unit test generation for evolving software,
in: Proceedings of Foundations of Software Engineering, p. 1038–1041.
doi:10.1145/2786805.2803196.

Shamshiri, S., Fraser, G., Mcminn, P., Orso, A., 2013. Search-based propaga-
tion of regression faults in automated regression testing, in: International
Conference on Software Testing, Verification and Validation, IEEE.

Shen, B., Zhang, W., Zhao, H., Liang, G., Jin, Z., Wang, Q., 2019. Intellimerge:
A refactoring-aware software merging technique. ACM Transactions on
Programming Languages and Systems 3.

Silva, I.P., Alves, E.L., Andrade, W.L., 2017. Analyzing automatic test
generation tools for refactoring validation, in: 2017 IEEE/ACM 12th
International Workshop on Automation of Software Testing (AST), IEEE.
pp. 38–44.

Sousa, M., Dillig, I., Lahiri, S.K., 2018. Verified three-way program merge.
ACM Transactions on Programming Languages and Systems 2, 1–29.

de Souza, C.R.B., Redmiles, D., Dourish, P., 2003. Breaking the code, moving
between private and public work in collaborative software development, in:

52

http://dx.doi.org/10.1145/2786805.2803196

International ACM SIGGROUP Conference on Supporting Group Work,
ACM.

Tavares, A.T., Borba, P., Cavalcanti, G., Soares, S., 2019. Semistructured
merge in JavaScript systems, in: International Conference on Automated
Software Engineering, IEEE.

Tiwari, D., Zhang, L., Monperrus, M., Baudry, B., 2021. Production moni-
toring to improve test suites. IEEE Transactions on Reliability .

Voas, J.M., 1992. Pie: A dynamic failure-based technique. IEEE Transactions
on software Engineering 18, 717.

Wuensche, T., Andrzejak, A., Schwedes, S., 2020. Detecting higher-order
merge conflicts in large software projects, in: International Conference on
Software Testing, Validation and Verification, IEEE.

Zimmermann, T., 2007. Mining workspace updates in cvs, in: International
Conference on Mining Software Repositories, IEEE.

53

	Introduction
	Motivating Example
	Detecting Semantic Conflicts
	SAM: SemAntic Merge tool based on Unit Test Generation
	Starting Point
	Selecting Mutual Changes on Same Class Elements
	Generating Executable Files
	Generating and Executing Test Suites
	Conflict Detection Based on Test Results Heuristics
	Report of Semantic Conflict Occurrence

	Testability Transformations
	Serialization Transformation
	Randoop Clean

	Evaluation Method
	Mining and Selecting Merge Scenarios
	Building the Projects
	Generating and Executing Tests
	Detecting Interference
	Assessing other Metrics
	Behavior Change Detection
	Object Diversity and Target Code Reachability
	Source Code Coverage

	Manual Analyses
	Ground Truth Analysis
	False Positives and False Negatives Analysis

	Results
	Cases With Conflicts
	Conflicts by Tools and Executables
	False Negatives

	Cases Without Conflicts
	False Positives
	True Negatives

	Further Evaluation of Tools and Related Test Suites
	Behavior Change Detection
	Randoop Clean Evaluation

	Discussion
	Improving SAM
	Improving Unit Test Generation

	Threats to Validity
	Related work
	Conclusion

