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Abstract—Autonomous robots combine skills to form increasingly complex behaviors, called missions. While skills are often programmed
at a relatively low abstraction level, their coordination is architecturally separated and often expressed in higher-level languages or
frameworks. State machines have been the go-to language to model behavior for decades, but recently, behavior trees have gained
attention among roboticists. Originally designed to model autonomous actors in computer games, behavior trees offer an extensible
tree-based representation of missions and are claimed to support modular design and code reuse. Although several implementations of
behavior trees are in use, little is known about their usage and scope in the real world. How do concepts offered by behavior trees relate
to traditional languages, such as state machines? How are concepts in behavior trees and state machines used in actual applications?

This paper is a study of the key language concepts in behavior trees as realized in domain-specific languages (DSLs), internal and
external DSLs offered as libraries, and their use in open-source robotic applications supported by the Robot Operating System (ROS).
We analyze behavior-tree DSLs and compare them to the standard language for behavior models in robotics: state machines. We identify
DSLs for both behavior-modeling languages, and we analyze five in-depth. We mine open-source repositories for robotic applications that
use the analyzed DSLs and analyze their usage. We identify similarities between behavior trees and state machines in terms of language
design and the concepts offered to accommodate the needs of the robotics domain. We observed that the usage of behavior-tree DSLs in
open-source projects is increasing rapidly. We observed similar usage patterns at model structure and at code reuse in the behavior-tree
and state-machine models within the mined open-source projects. We contribute all extracted models as a dataset, hoping to inspire the

community to use and further develop behavior trees, associated tools, and analysis techniques.

Index Terms—behavior trees, state machines, robotics applications, usage patterns, exploratory empirical study

1 INTRODUCTION

The robots are coming! They can perform tasks in environ-
ments that defy human presence, such as fire fighting in
dangerous areas or disinfection in contaminated hospitals.
Robots can handle increasingly difficult tasks, ranging from
pick-and-place operations to complex services performed
while navigating in dynamic environments. Robots combine
skills to form complex behaviors, known as missions [1],
[2], [3]. While skills are typically programmed at a relatively
low level of abstraction (such as controllers for sensors and
actuators), the coordination of skills to form missions is
either programmed at a low level, intimately tied to the
implementation of skills, or with higher-level representations
using behavior models. With the increasing complexity of
robot systems, higher-level representations of missions have
become increasingly important to improve software quality
and maintainability [4], [5], [6].

State machines are among the most common notations
for describing behavior models in robotic missions [1], [7],
[8]. Recently, behavior trees are attracting the attention of
roboticists to express such high-level coordination. Both
models describe pre-defined missions with limited decision
making. Behavior trees were invented to model the behavior
of autonomous non-player characters in computer games.
Similar to autonomous robots, these are reactive and make
decisions in complex environments [9], [10], [11].

Many researchers have observed that behavior trees can
offer ease of reuse, modularity, and flexibility when modeling
reactive behavior [7], [12], [13], [14], [15], [16], [17], [18], [19],

[20], [21], [22]. These works mainly focus on theoretical and
proof-of-concept aspects of behavior-tree models. There is a
trend in the robotics community to create domain-specific
languages (DSLs) [23] and model-driven tools to engineer
software for robotics systems [24], [25], [26], but we need to
better understand and improve these solutions to make them
usable in practice [25]. Multiple DSLs have been created
to support the implementation of behavior-tree and state-
machine models, but we lack studies to understand these
implementations from a software-engineering perspective
and their use in real-world projects.

Our study bridges this knowledge gap by studying the
actual concepts offered in real implementations of behavior-
model DSLs and their usage in practice. We compare DSLs
for behavior trees, the emerging language in robotics, to state
machines, the traditional choice of roboticists. In this paper,
we explore the concepts offered by behavior trees and state
machines as realized in five DSLs (internal and external DSLs
offered as libraries) and compare them. The scope of our
comparison is behavior-tree DSLs and their offered concepts.
We further study how the language concepts are exploited
by the users of the analyzed libraries, based on an analysis
of their usage in open-source ROS projects. Our goal is to
obtain empirical data on the use of these behavior-modeling
languages in practice.

Goal and Research Questions

We present an exploratory study of behavior-tree and state-
machine languages and their use in open-source robotic
applications. While mostly qualitative, we provide quanti-



tative data about the models we mined, and indicate the
frequency of different concepts and phenomena we observe
in practice. We formulated the following research questions:

RQ1. What modeling concepts from behavior trees and state
machines are available in language implementations (libraries)?

We identified five DSLs (libraries) for behavior trees and
state machines that support ROS [27]—a middleware and
framework for developing robotics applications, surrounded
by the largest currently existing ecosystem of robotics
libraries (ROS packages)—and are actively maintained and
documented. Then, we identified and analyzed the concepts
offered by these DSLs. Our goal was to understand the avail-
able behavior-tree and state-machine concepts in practice,
and the similarities and differences between these.

RQ2. How are these languages (libraries) engineered in practice?

For the identified behavior-tree and state-machine DSLs,
we studied the key design principles and language imple-
mentations. By studying the language implementations, we
capture the techniques and practices that are used in the
robotics community. By analyzing languages that originate
from the practice of roboticists, we can understand the design
concepts needed in robotics better and discuss potential
improvements.

RQ3. How are behavior-tree and state-machine models used in
robotics projects?

We mined GitHub for open-source repositories that use
the identified behavior-tree and state-machine DSLs, and we
analyzed their usage in robotics applications. We checked
the usage trends of the languages, which can indicate their
popularity. We extracted a sample of the mined projects
and analyzed the usage of behavior-tree and state-machine
concepts and the structure of the models in these projects.
Finally, we investigated reuse mechanisms in the projects
by a combination of visual and code-level inspections. In
summary, we report on empirical results regarding the use
of behavior trees and state machines in open-source ROS
robotics projects in terms of the popularity of the DSLs, the
structure of the models, the usage frequency of identified
concepts, and the state-of-practice of reuse in behavior-tree
and state-machine DSLs.

Journal Extension

This paper extends a study of behavior trees, presented at
SLE 2020 [28]. Compared to that paper, we here broaden
the scope of our study to include state machines. We extract
state-machine modeling concepts and compare them to
behavior-tree concepts extracted in the former work. We
update the collection of open-source behavior-tree models
and additionally mine open-source robotics projects that
uses state-machine DSLs. We improve the selection process
of included projects (filtration) and automate the process
using scripts. The new filtration process is applied to all the
mined projects. Finally, we qualitatively and quantitatively
analyze a random sample of the mined state-machine
models that matches the number of previously analyzed
behavior-tree models, to understand the usage of the studied
behavior-modeling languages in open-source projects. Thus,
compared to the former paper, our focus is shifted from
only behavior trees to also include a comparison with state
machines in terms of concepts and robotics applications.

Results

Our analysis of the modeling concepts offered in behavior-
tree and state-machine DSLs (RQ1) shows similarities in
terms of language design and offered concepts. The lan-
guages are open and support domain-specific patterns, which
reflect common needs in robotics. Openness is a common
feature in the studied DSLs, which do not enforce a fixed
model, but allow, even expect, concrete projects to extend the
DSLs by-need. Another observation is that all studied DSLs
offer constructs for frequent control-flow patterns. Although
the range of support differs between behavior-tree and state-
machine DSLs, accommodating the needs of the users of a
specific domain is good language design practice.

We have observed in our analysis of the DSL design
(RQ2) that having a visualization tool for model construction
and monitoring could provide a better understanding of
the models and improved code reuse. In the DSLs that
feature a graphical notation with a GUI-based editor, projects
were more often using built-in language constructs, such as
Decorators in behavior trees and Concurrency containers in
state machines (introduced in Section 4). Projects using DSLs
without GUIs leaked these constructs to the code instead
of the model. This is closely related to the fact that DSLs
with no GUI are considered internal while DSLs with GUIs
are external. External DSLs enforce the use of the DSL con-
structs (like decorators), while it is easy in internal DSLs to
deviate and use ordinary programming-language constructs.
Although it is a pragmatic practice, internal DSLs will hinder
maintainability and analyzability of the behavior model in
the long term. Another observation is that all the DSLs follow
the models-at-runtime paradigm [29], [30]: models coordinate
skills, actions, and tasks, which are implemented by lower-
level means, such as ROS components.

Our analysis of the sampled models of robotics projects
using behavior-tree and state-machine DSLs (RQ3) has
provided insights into the usage of these languages in
practice. First, the usage of behavior trees is rapidly in-
creasing within open-source robotics projects. Second, the
DSL usage among developers was similar from a structural
perspective. Developers kept the structure of the models
fairly simple; shallow and moderately sized models were
observed in the majority of the sampled projects both for
behavior trees and state machines. From our experience in
analyzing the sampled models, keeping the behavior model
simple, regardless of the type, helps in its understandability.
Finally, we observed three code-reuse patterns in the sampled
models, with similarities in how these code-reuse patterns
were used. To reuse a skill (action), the main reuse pattern
was inter-model referencing; to reuse a task (multiple actions
combined in a sub-tree or state machine), the main reuse
pattern was clone-and-own.

Perspectives

With this paper, we hope to raise the interest of two research
communities—software language engineering and software
modeling—in languages for robotics behavior. We hope that
observing the current state-of-practice can help to improve
on it. We also hope that this analysis can inspire designers
of behavior-tree and state-machine languages to revisit, or
at least justify, some design choices. In addition, it seems



beneficial to take improvement points from each other,
since some of these tools are built with model-based design
concepts, and other good language design principles in mind.

Finally, we contribute a dataset of open-source behavior
models, to inspire the community to use and further develop
these languages, associated tools, and analysis techniques.
An accompanying online appendix [31] contains these
models, our mining and analysis scripts, and further details.

2 BACKGROUND

In the robotics community, different control structures are
used to coordinate agent behavior, including behavior trees,
state machines, teleo-reactive architecture, subsumption
architecture, sequential behavior composition, flowcharts,
and decision trees [7], [8], [32]. Each of these structures has
its own advantages and disadvantages [7], [32].

Many of these control structures are offered as DSLs
(domain-specific languages) [23] to developers. For mobile
robots, many of these DSLs are even end-user-oriented,
offering a visual syntax, see our previous study [33]. There,
we observed that most of these DSLs are still imperative at a
relatively low level of abstraction, similar to programming
languages. Interestingly, we observed that many of these
DSLs are realized by cutting down a real programming
language and implementing a visual syntax for the remaining
language concepts: expressions, declarations, and statements
(including robot-specific library method calls). The visual
syntax is often realized using Scratch or Blockly, offering a
simple, block-based programming interface. These end-user-
oriented DSLs target technically skilled users, while the other
DSLs, especially the behavior-tree and state-machine DSLs
we study in the sequel, clearly target developers.

2.1

In recent years, behavior trees have become a popular
behavior-modeling language to specify missions and coor-
dinate their control flow. Behavior trees have been shown
to generalize multiple control architectures [16], [34]. State
machines have been the traditional go-to model in robotics
for their simplicity and their easy-to-understand control-
switching mechanism, but they become hard to maintain
when missions grow in complexity [8], [15]. Behavior trees
are claimed to overcome this obstacle, due to their modularity
and flexibility [7], [15], [16]. Missions specified using behavior
trees can be mapped into state machines and vice versa [16],
[18]. In contrast, in this paper we study their use in real
robotics projects, which has not been done before.

Behavior Trees

Applications of Behavior Trees

Behavior trees are well-suited to express the runtime behav-
ior of agents, which has fueled applications in computer
games and robotics. High-profile games, such as Halo
[10], use behavior trees. However, the implementations of
behavior trees in gaming differ from their implementations
in robotics. For example, the Unreal Engine 4 (UE4) Behavior
Tree, probably the world’s most used behavior-tree DSL,
emphasizes event-driven programming rather than time-
triggered control, which is a major concern in robotics.

In the robotics community, the interest in behavior
trees is currently growing. Hierarchical state machines
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Fig. 1: A behavior tree of a health and safety robot
inspector from a GitHub project kmi-robots/hans-
-ros-supervisor, shown in the Groot editing and ani-
mation tool from BehaviorTree.CPP.

were the main task-orchestrating mechanism in the ROS
navigation system supported by different languages
[35]. With the upgrade to the newer version of ROS,
ROS 2, the main customization mechanism navigation
was changed to behavior trees [36]. ROS 2 still supports
hierarchical state-machine languages [37], but they do
not use them as the main customization mechanism.
Further witnessing the increasing popularity of behavior
trees, IROS’19, one of the key research conferences in
robotics, hosted a dedicated workshop on behavior trees
in robotics (behavior-trees-iros-workshop.github.io). In
addition, multiple projects in RobMoSys (robmosys.eu),
one of the leading model-driven communities in robotics,
have been launched to create a set of best practices
and tools for behavior trees, such as CARVE (carve-
robmosys.github.io) and MOOD2Be (robmosys.eu/mood2be).
The EU project Co4Robots (co4robots.eu) developed a
mission-specification DSL for multiple robots based on
behavior-tree concepts [21], [38]. Finally, behavior trees
are used for autonomous-driving systems. Autoware
[39], a leading open-source platform for self-driving
vehicles, adopted behavior trees for the coordination
between the supported pre-defined driving scenarios
(autowarefoundation.github.io/autoware.universe/main/pla-
nning/behavior_path_planner/#behavior-tree). CARLA [40],
a high profile open-source simulator for autonomous driving
research, uses a behavior-tree DSL, PyTrees, which is
among the DSLs we study in the paper, to define non-ego
vehicle behavior [41].

Behavior-Tree Example

Figure 1 presents an example of a behavior-tree model of a
health and safety inspector robot from the Knowledge Media
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Fig. 2: Node types in behavior trees (visual syntax)

Institute (kmi.open.ac.uk). The robot performs an exploration
sequence for an area. The main operation is placed at the
bottom, in the sub-tree under ExplorationSeq: it consists
of obtaining the next waypoint, moving the mobile base to
the waypoint, and exploring the area. If obtaining a new
waypoint fails (empty stack), the first task fails, which is
converted into a success by an Inverter such that the se-
quence of motions has been completed. Otherwise, the robot
keeps repeating the same operation (next waypoint, move,
explore) up to ten times, as long as the stack is not empty. The
entire computation is placed in a loop that alternates between
obtaining new waypoints and performing the exploration
sequence (MainSeq) until the success of all children.

Behavior-Tree Concepts

In general, behavior trees can be seen as graphical models
that are shaped as directed trees, with a dedicated root node,
non-leaf nodes called control-flow nodes, and leaf nodes called
execution nodes. A behavior tree is executed by sending signals
called ticks from the root node, traversing the tree according
to the semantics of the control-flow nodes. Ticks are issued
with a specific frequency [7], [42]. Upon receiving a tick, a
node executes a task, which can be a control-flow task or, if
a leaf node is ticked, some specific robotic task (a.k.a. skills).
The latter classifies into actions (e.g., MoveBase in Fig. 1)
and conditions, which can test propositions (e.g., whether the
robot is at its base) used to control task execution. A ticked
node returns its status to its parent: (1) success when a task
is completed successfully, (2) failure when a task execution
failed, and (3) running when a task is still under execution.
This execution semantics is interesting and can be seen as
the main difference to other behavior-modeling languages.
As we will discuss for our concrete behavior-tree DSLs in
the sequel, the current state of execution is not explicitly
represented in behavior trees. In most other languages,
such as state machines or flowcharts, the state advances (as
prescribed by the control-flow elements, such as transitions)
by moving the current point of execution (the state) forward.
Consider, for instance, flowcharts, where one action is
executed after another, controlled by control-flow elements
between the actions. Notably, behavior trees are also actions
controlled by control-flow elements. In other words, behavior
trees are like many other imperative programs—recall also
the many end-user-oriented robot-control DSLs studied
in our previous work [33], most of which are subsets of
imperative programming languages with a visual syntax
represented in Scratch or Blockly. Now, in behavior trees,
the tree is re-executed regularly in short time intervals,
which allows to re-execute actions. Intuitively, one can
use that to put reactive control more to the upper-left of
the tree, where it gets regularly re-executed by every tick
(determined by a control loop), while more deliberative
skills (actions) are more to the bottom and right of the tree.
Adding such reactive control to other languages, including
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state machines and flowcharts, is not easily possible, not
even with hierarchical state machines. In other words, this
special execution semantics fosters modularity and allows to
unify other control architectures, such as the subsumption
architecture [16].

The benefit of using behavior trees lies in their ability
to express task coordination using a small, but extensible
set of control-flow nodes. Most behavior-tree languages
offer the following control-flow nodes: sequence, selector,
decorator, and parallel. The example in Fig. 1 illustrates two
sequence nodes (MainSeq and ExplorationSeq) and two
decorator nodes (Inverter and RetryUntilSuccesful).
Intuitively, sequence nodes tick all children and require that
they all succeed for the sequence node to succeed, while
selector nodes only require one child’s success to succeed.
Decorator nodes allow more complex control flow, including
for- and while-loops. They are also extensible; developers
can implement custom decorator nodes. Parallel nodes are a
misnomer. They are generalizations of sequence and selector
nodes, allowing custom policies, such as cardinalities
specifying the minimum or maximum number of nodes that
need to succeed. In the literature, there is no clear agreement
if parallel nodes execute child nodes simultaneously, as the
name suggests, or concurrently [7], [11], [32], [42], [43], [44].

The visual presentation of the main node types, as
illustrated in studies of behavior trees in robotics and games
[7], [42], [44], is summarized in Fig. 2. Our example in Fig. 1
shows the visual syntax used in a popular behavior-tree DSL
called BehaviorTree.CPP, which is among the DSLs we
study in the remainder of the paper. Although the shapes
of the nodes might differ between publications and actual
language implementations, the inner symbol of each node-
type is usually the same; e.g., the selector node always uses
the symbol “?”.

2.2 State Machines

State machines are probably the most popular and well-
researched language for behavior specification of systems.
They provide the basis not only for modeling, but also for
analysis (e.g., for model checking) or synthesis of software
controlling real systems. There is a wealth of literature on
state machines in non-robotics contexts. As such, we do not
discuss the applications in detail here, as opposed to behavior
trees above, but to further illustrate behavior trees in the well-
known state-machine syntax, we provide an example and
then recap the main state-machine concepts again.

State-Machine Example

Figure 3 shows the same mission as in Fig. 1 for a health
and safety inspector robot, represented as a state machine,
using the notation of the Unified Modeling Language (UML)
(see Fig. 4 for the UML syntax). Since state machine DSLs
offer a rich notation for modeling behavior, there is no single
mapping from behavior trees to state machines. We modeled
the actions and the control flow in Fig. 1 as follows.

States represent some situation that the modeled system
is in for some period of time. From the actions in our
behavior tree, we model the collection of way points and the
exploration sequence as states, where the latter consists of
the states MoveBase and Explore. These states have the
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Fig. 3: A state machine representing the same mission as in
Fig. 1, using UML syntax.

respective actions from the behavior tree, executed on state
entry or state exit. In contrast, the action PopWaypoint is
rather atomic, so we do not represent it as a state, but execute
it when the state MoveBase is entered.

The ExplorationSeqg of the behavior tree model
is placed in a nested, also called composite, state
Exploration_seq. At the entry of Exploration_seq,
a variable 1 is set to the desired number of attempts (here,
ten). For each waypoint, the MoveBase component is
activated and the model waits in the state until the sensors
and the localization component detect that a waypoint
has been reached (or a timeout occurs). The model exits
from Exploration_seq if exploration has achieved its
goals (the ten attempts are finished; the triggering event is
success and the guard’s condition is i==0). If the event
success is triggered from Explore and i>0, the counter
i is decreased at the transition from Explore back to
MoveBase (which is an alternative to having actions on
state entry or exit in UML).

Finally, transitions are triggered by events, which are
signals coming from the actions or from the environment. In
behavior trees, the control-flow is determined by the actions’
outcome, which is either success or fail. In our state machine,
we also used success or fail as the events originating
from action results for some transitions. For others, we
used more domain-specific events. For instance, t imeout
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Fig. 4: Node (state) types and transitions (visual syntax) for
state machines, according to UML.

is an external event from the system, which ends the state
MoveBase and then the whole system; alternatively, the
event waypoint reached moves the system to the state
Explore, where the exploration either continues with the
next waypoint or also ends the whole system. If no waypoint
is left (indicated in the guard on one of the state’s leaving
transitions), then popwaypoint () would fail. Since in the
behavior tree, this would be handled by the dedicated action,
and we have no specialized state for it, we utilize a method
waypointsleft () to avoid going into MoveBase again.

State-Machine Concepts

State machines and hierarchical state machines have been
used for decades in different domains with slight variations
in syntax and semantics [45], [46]. While there exist multiple
syntaxes with minor variations, the UML’s state diagram, a
graphical representation of state machines in UML, might be
the most common visual syntax, especially in the software
modeling community (see Fig. 4).

A state-machine model is a directed graph of three
primary elements: states, transitions and actions. In the UML
semantics [45], [47], [48], states represent patterns of behavior.
The behaviors executed by the robot are represented as
actions. From the perspective of computational execution
semantics, UML's state machines support both the execution
semantics of Mealy and Moore machines [49], [50]. When
an action is associated to a transition (action-on-transition),
similar to Mealy machines, the action is executed at
the transition. When the action is associated to a state
(action-on-state), similar to Moore machines [51], the action
is executed at the state entry or exit. Most state-machine
implementations are event-driven.

Hierarchical state machines, also known as statecharts
[52], are an extension of state machines that allow nesting
(hierarchy) and concurrency [52], [53]. Thus, hierarchical
state machines are similar to state machines but can ad-
ditionally separate behaviors into sub-states, or composite
states, thereby increasing the modularity of the model and
decreasing the number of transitions needed.

Just like behavior trees in robotics, state machines provide
graphical models to represent the behavior of a robotic agent.
Colledanchise and Ogren [16] have shown how behavior
trees generalize state machines in robotics. In the rest of the
paper, we focus on implementations in robotics; the robotic
implementations of state machines will differ slightly from
the UML notation.



3 METHODOLOGY

We now describe our methodology to (RQ1) identify relevant
DSLs and the concepts offered by behavior trees and state
machines, to (RQ2) analyze their implementations, and to
(RQ3) identify and analyze open-source robotics projects
using these DSLs.

3.1 Identifying DSLs and Language Concepts (RQ1)

To identify behavior-tree DSLs, we searched on GitHub for
projects with behavior trees in robotics using different search
terms, including “behavior tree robotics” and “behavior
tree robot.” The search returned projects using different
behavior-tree DSLs. We identified the imported DSLs in the
projects. We focused on DSLs in Python and C++, the most
used programming languages in robotics. We also looked
at the behavior-tree literature in robotics to identify DSLs.

A similar search for state-machine DSLs yielded
hundreds of results on GitHub. Therefore, we decided to
use the ROS wiki (wiki.ros.org) to find state-machine DSLs.
The wiki is commonly used by developers to publish their
open-source languages and tools for developing robotics
applications. By searching it instead of GitHub or Google,
we ensured that the identified languages support ROS, so
we excluded non-robotics projects in later steps.

To ensure the relevance of the identified DSLs (offered
as libraries) for real-world robotics applications for both
behavior trees and state machines, we focused on maintained
libraries and for that we applied the following exclusion
criteria: (1) lack of documentation, (2) out-dated libraries not
maintained anymore (last commit older than 2019), (3) no
ROS support (this was checked specifically for the identified
behavior tree DSLs since we collected them through GitHub)
and (4) no mined projects.

Thereafter, to understand the key characteristics and mod-
eling concepts offered by the included DSLs, we identified
their main language constructs and studied the relation
between them. For our comparison, we collected behavior-
tree concepts by an exploratory literature search [7], [32], [44]
and snowballing. For the identified libraries, we inspected
their documentation [54], [55] and wrote scripts that execute
small tests to understand better their semantics. A similar
approach was followed to collect state-machine concepts
from the literature [56], [57], [58], [59] and the documen-
tation of the identified libraries [60], [61]. In this process,
we focused on behavior-tree concepts and whether state
machines offer direct support for similar concepts or they
need to be expressed indirectly. Our analysis was iterative,
to ensure a proper reflection of the concepts in the different
DSLs. We scoped the comparison to concepts offered by the
included DSLs that met our criteria.

3.2 Analyzing DSL Implementations (RQ2)

After identifying relevant libraries that support state-machine
and behavior-tree modeling languages and analyzing their
syntax and semantics, we wanted to understand the imple-
mentation design of the libraries. We built our findings from
inspecting different sources. Specifically, we inspected the
implementations of the libraries on GitHub, documentations
[54], [55], [60], [61], [62], tutorials [63], [64], [65], [66], and
related publications [56], [57], [59], [67], [68], [69], [70].
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Fig. 5: Filtering steps to identify relevant repositories.

We focused on the language design of the libraries and the
concrete syntax offered. We went through the tutorials of the
libraries and related publications to reflect on the dynamicity
of the libraries. By dynamicity, we refer to the ability of
runtime modification of models. Finally, we examined the
models of concurrency used in the libraries by examining
their implementations on GitHub and the documentation.

3.3

To understand the usage of the identified DSLs in robotics
projects: (1) we mined GitHub for open-source repositories
using these languages in their implementation of robotics
missions, then (2) we compared the popularity of the DSLs
in open-source projects over time and analyzed a sample of
these projects in terms of the usage of the languages concepts
and the structure of the models, and finally (3) we observed
how the DSLs users have carried out code-reuse in practice.
In the sequel, we describe these steps in detail.

Identifying and Analyzing Robotics Projects (RQ3)

Mining GitHub
Open-source projects have been used in software-engineering
and robotics research communities to understand real-
world applications. Different open-source platforms, such as
GitHub, provide great opportunities for researchers to iden-
tify the state-of-practice in robotics and software engineering
[71], [72], [73]. Motivated by our previous work [28] and
other researchers who mined GitHub, we used GitHub as a
source for mining open-source robotics projects.

For the identified behavior-tree and state-machine DSLs,
we investigated how they are used in the source code
of robotics projects. In BehaviorTree.CPP, the term
main_tree_to_execute refers to the entry point tree in the
XML source code, while the term py_trees_ros, smach_ros, and
flexbe_core are used to import the languages PyTrees_ros,
SMACH and FlexBe, respectively. These terms must be used
in the source code of the targeted languages. We created a
Python script to mine GitHub repositories for those terms
with a simple text-match in source code, using GitHub’s code
search API (github.com/PyGithub/PyGithub).

Next, we wanted to filter-out projects belonging to a
course or tutorial, to better reflect on actual usage of the
libraries in robotics. Inspired by the work of Malavolta


http://wiki.ros.org/
https://github.com/PyGithub/PyGithub

et al. [71] in providing mining guidelines for robotics
software, we used a similar filtering mechanism with minor
changes to adopt it to our goal. Figure 5 shows our filtering
mechanism. After mining GitHub for open-source projects
(step 1), we excluded forked repositories using a Python
script (step 2). By filtering forked repositories, we excluded
duplicate models. After a quick inspection, we noticed
that there are duplicate repositories that were not forked,
instead they might have been cloned and re-uploaded to
the user’s GitHub account. To filter them out, we extracted
the repositories with the same project name belonging to
different GitHub users using a Python script, inspected
them manually to ensure they are duplicates, and deleted
them from our lists (step 3). In our previous inspection, we
noticed that repositories with the keyword (tool) in their
name often belonged to software tools where the targeted
libraries are requirements for their functionalities. Since our
goal is collecting the implementations of robotics projects
rather than supportive tools, we excluded repositories with
the keyword (tool) in their name using a Python script (step
4). We also excluded the following organizations as users,
since they either correspond to tutorials repositories of the
library creators, or they are known tools using the identified
languages as requirements (BehaviorTree, splintered-reality,
team-vigir, ros-planning, ros-infrastructure, carla-simulator).
Finally, we used different Python scripts to inspect the name,
readme, and description of the repositories, and exclude
those with the following keywords: (assignment, course,
tutorial, introduction) (step 5). This ensured the exclusion of
projects belonging to (1) an assignment or (2) a course. By
the end of this step, we had a list of relevant repositories that
match our criteria.

Our next step was to download the files that contain
the models from these repositories (step 6). Through
our analysis while extracting concepts in Section 4,
we identified specific terms used in each DSL when
constructing the behavior model. In BehaviorTree.CPP,
the term main_tree_to_execute refers to the entry point when
constructing the tree. In PyTrees_ros, add_child is usually
used when adding nodes to the tree. Finally, StateMachine.add
and OperatableStateMachine.add are used in SMACH and
FlexBe, respectively, to add states. Using these terms, we
matched the files in the GitHub repositories that contain
them and downloaded them. For all the previous steps, we
used Python regular expressions, Python’s Requests API,
and the code-search API from GitHub. All code can be found
in our online appendix [31].

Analyzing Models

To understand the usage of behavior trees and state machines
in open-source robotics applications (RQ3), we analyzed
the mined projects from two different perspectives: the
popularity of the DSLs over time and the structure of
models. As a start, to understand the popularity of the DSLs,
we extracted the creation and last commit dates for the
repositories to plot the number of active projects per year.
We assume a project is active in the duration between its
creation date and last commit. We used all mined projects
before filtering and only excluded those belonging to the
DSLs’ organizations/creators, which are the following: Be-
haviorTree, team-vigir, pschillinger, FlexBE, splintered-reality,
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ros, ros-visualization. The collected projects were mined until
31/12/2021 to capture activity until the end of 2021.

Moving to the analysis of the models, we were interested
in understanding the usage of behavior trees and state
machines in real robotics projects. Consequently, we used
the list of relevant repositories from the filtering step and
their downloaded models. At the time of the analysis of
the behavior-tree models, we got 75 models. Although an
updated mining at the beginning of 2022 to cover the projects
until the end of 2021 yielded new models and projects, we
decided to keep the same sample, since it covers different
sizes of models and domains. For state-machine models,
we randomly sampled 75 models to match the number of
behavior-tree models to have comparable results. The state-
machine mining yielded thousands of models; consequently,
we randomly sampled projects. We defined two project pools
according to the model size (defined as number of nodes,
see below for metric details), one for normal size [2-6] and
another for large size [7-66], then we randomly sampled
from each pool a number of projects using the sampling API
(pandas.pydata.org/docs/reference/api/pandas.DataFrame.sa-
mple.html from the Python DataFrame library. The model
size range for each pool was decided based on the data
distribution. The total sample size corresponded to the
number of models belonging to behavior-tree projects
meeting our repository inclusion criteria (75 models).

We calculated metrics that capture the core structural
aspects of the models and report on the usage of behavior-
tree and state-machine concepts. Since we are analyzing two
different types of structures, directed cyclic graphs in state
machines and directed acyclic trees in behavior trees, it is
challenging to use similar metrics. Thus, we calculated some
common metrics between the two architectures and other
metrics only for one architecture. To distinguish between
them, we are using the abbreviations SM and BT to indicate
which architecture metric belongs to. The metrics are:

o Model size (BT.size, SM.size): the total number of nodes
excluding the root node in behavior trees and the total
number of states in state machines.

e The tree depth (BT.depth): the number of edges from
the root node to the deepest node of the tree [74].
Considering the example in Fig. 1, the behavior tree
model has a BT.depth of five.

e Average branching factor (BT.ABF): the average number
of children of each node. Considering the example in
Fig. 1, the behavior-tree model has a BT.ABF of 1.6.

o Nesting level (SM.nesting): the composition or nested
hierarchy level induced by counting the number of levels
within the state-machine compositions [75], [76], [77].
We consider the main state machine as level one. In the
example in Fig. 7, this state-machine model has a nesting
level of three; where the main container Inspect_SMis
level 1, the nested container Tterator_10_attempts
is level 2 and the Exploration_seqis level 3.

o Node type percentage (N.pct): the frequency of a node
type with respect to the total number of nodes. This
metric captures the usage of the different composite
node types in behavior trees and the different container
constructs in state machines.

The extraction of these metrics relies heavily on the


https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sample.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sample.html

implementations of the DSLs, so we used different extraction
methods for each language. For behavior-tree DSLs, we
inspected the code of both the tutorials of the libraries and
a randomly sampled subset of mined models to understand
how users implement them. We noticed that users follow
different implementation styles, and that the models tend
to be deeply intertwined with the rest of the code. While
some metrics could be calculated automatically, for others,
the models needed to be manually extracted. To calculate
BT.size and N.pct, we extracted a function name for each
node type based on the documentation of the libraries, then
used a Python script to count the number of text matches.
For leaf nodes, no automatic counting was possible since the
libraries do not impose a specific implementation structure.
We counted and calculated the percentage of leaf nodes,
BT.depth and BT.ABF manually from the manually extracted
models. To extract behavior-tree models, we were able to use
a visual editor shipped with one of the identified libraries
(Groot for BehaviorTree.CPP, explained shortly), where
the behavior-tree language is realized as an external DSL. The
other identified library (PyTrees_ros, explained shortly)
constituted an internal DSL, where we needed to manually
extract the model from the source code by identifying the re-
spective library API calls used to construct the model. We con-
sidered every tree with a root node as a behavior-tree model.
Moving to state-machine DSLs, we also checked the code
of tutorials of the libraries and a random sample of mined
models. An implementation pattern was clear for each
library, hence an automatic extraction of the metrics was
possible. Using Comby (github.com/comby-tools), a parser
that detects syntax in code based on user-supplied patterns
[78], we defined a syntax pattern to match the start and end
of a state-machine container to isolate it from the rest of the
code. Then, we wrote a Python script to extract the state-
machine model from the rest of the code. After extracting
the model, another script was used to count the number of
states and composite states to calculate SM.size and N.pct.
Similar to the composite nodes count in behavior trees, a text
match for the function name was used to count the different
container types. Finally, we wrote a script for visualizing the
extracted model to facilitate model inspection using SMCat
(github.com/sverweij/state-machine-cat). We could not use
the viewers provided by FlexBe and SMACH, because the
models are intertwined with the code, and each project has
different dependency requirements to run it. It was easier
to isolate the model from the projects and visualize it using
an external viewer. We wrote a Python script to transfer the
extracted model code into the SMCat syntax and generate
SMCat files. SMCat was executed on those files to generate
SVG format files that visualize a corresponding state-
machine model. Extracting the SM.nesting required manual
work. Using the extracted visualized models, we went
through all models and counted the nesting levels. All scripts
and SVG files can be found in our online appendix [31].

Analyzing Reuse

The final aspect we analyzed is reuse, because it is one of the
major issues in robotics software engineering [1], [6], [79],
[80], [81], [82]. Reuse mechanisms are important to scale
and sustain the use of behavior trees and state machines in
practice. We analyzed the current state-of-practice for reuse
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TABLE 1: Behavior-tree and state-machine DSLs identified.
We analyzed those in bold

target last

name language ROS doc. update

BehaviorTree.CPP C++ yes [55] 2021/05
githubAcom/Beha\'iorTree/ BehaviorTree.CPP

PyTrees Python no [54] 2021/05
github.com/splintered-reality / py_trees

PyTrees_ros Python yes  [62] 2021/05
github.com/splintered-reality / py_trees_ros

BT++ C++ yes [83] 2018/10
github.com/miccol /ROS-Behavior-Tree

SkiROS2 Python yes  [84] 2020/11
github.com/RVMI/skiros2

pi_trees Python yes n/a 2017/10
github.com/pirobot/pi_trees

Beetree Python yes n/a 2016/03
github.com/futureneer/beetree

SMACH Python yes  [60] 2020/05
github.com/ros/executive_smach

FlexBe Python yes  [61] 2020/12
github.com/team-vigir/flexbe_behavior_engine

SMACC C++ yes [85] 2021/05
github.com/reelrbtx/SMACC

RSM C++ yes [86] 2020/03
github.com/MarcoStb1993 /robot_statemachine

Decision making C++ yes n/a 2016/07

github.com/cogniteam/decision_making

in the studied models. By reuse we refer to reusing the code
of a robotic skill (also known as action) instead of writing
a new skill from scratch, or reusing the code of a repeated
task (composed of different skills) in the same model or in
a different one.

We observed reuse in the sampled projects using a
mixture of visual and code-level inspection to detect any
reused skill or task. We inspected the reuse of a skill or task
in the model and across the different models of a project. A
task is usually expressed as a sub-tree in behavior trees and
as a composite state in state machines. A skill is expressed
as a leaf node in behavior trees and as an action associated
to a state in state machines. By first checking the model
visualization, we could detect task-level and/or skill-level
reuse in a model. We also relied in the task-level reuse
on similar model structure in case of a slightly different
combination of skills with a resembling structure. A deeper
inspection of the code-level implementation of models and
skills for the reused tasks and skills follows to understand
what type of reuse mechanism is used.

4 LANGUAGE CONCEPTS (RQ1)

The search we conducted yielded 12 DSLs for implementing
behavior-tree and state-machine models in robotics appli-
cations using ROS. The upper part of Table 1 lists the
identified behavior-tree DSLs. We focus on analyzing the
DSLs in the first three rows, set in bold font, for the following
reasons. Among the DSLs relevant for robotics, these three


https://github.com/comby-tools/comby
https://github.com/sverweij/state-machine-cat
https://github.com/BehaviorTree/BehaviorTree.CPP
https://github.com/splintered-reality/py_trees
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https://github.com/pirobot/pi_trees
https://github.com/futureneer/beetree
https://github.com/ros/executive_smach
https://github.com/team-vigir/flexbe_behavior_engine
https://github.com/reelrbtx/SMACC
https://github.com/MarcoStb1993/robot_statemachine
https://github.com/cogniteam/decision_making

TABLE 2: Key concepts in our behavior-tree languages compared to our state-machine languages

behavior-tree

behavior-tree languages

state-machine languages

concept/aspect PyTrees, PyTrees_ros, BehaviorTree.CPP SMACH, FlexBe
programming  Synchronized and asynchronized are supported, time- ~Asynchronous, event-triggered, reactive
model triggered, activity-based. Reactive programming can

be implemented to an extent using the tick concept
and re-ordering of sub-trees.

simple nodes

exit status

Execute actions (arbitrary commands, both instanta-
neous and long-lasting) or evaluate conditions (value
translated to Success/Failure).

Each node reports success, failure, or an in-operation
state (“running”) each time it is triggered. Status
report causes the computation (the traversal) to
advance to the next node.

Basic state with associated action/conditions

Each state reports its status (also known as outcome).
Outcomes are user defined. Execute function checks
periodically for outcome

composite Define hierarchical traversal, the control-flow for each

nodes epoch (tick). Sequentially composed. Nodes may start
concurrent code though.

root Serves as entry point for every traversal. Has exactly
one child node. Root node is re-entered at every epoch.

sequence Trigger children in a sequence until the first failure. If
no failure return success, otherwise fail.

selector Trigger children in a sequence until the first success.
If no success return failure, otherwise succeed.

parallel Generalize sequence/selector with a policy parameter.

goto (jumps)

Several polices available, e.g., meeting a minimum
number succeeding children.

No general jump construct, the computation always
traverses the tree.

Similar to container concept. Allow state nesting and
control-flow constructs.

Initial state (first state added to the container).
Supported using a predefined container.
No direct support, could use container to extend.

No direct support, could use guards to extend.

Supported.

No direct support, could use container to extend.

No direct support, could use container to extend.
Could use the Iterator container in SMACH as repeat-
until loop where the desired outcome for breaking the
loop is user-defined.

Similar to repeat concept, Iterator container can be
modified and used.

decorators

inverter Invert the Success/Failure status of the child

succeed Return success ignores the status returned by the child

repeat Trigger the child node a set number of times, then
succeed. Fail if the child fails.

retry Run the child node and retry it immediately if it fails
for a maximum number of times, otherwise succeed.

dynamicity Runtime modifications of model (node re-ordering)
possible due to the dynamic nature of the implemen-
tation.

openness New nodes and operators implemented by users as
needed.

concurrency interleaving and co-routines; declared via sequence,

selector, and parallel nodes.

Runtime modifications of model is possible (adding
and removing states, changing state instantiation, Re-
ordering states).

States and new control-flow is possible using the
container concept.

interleaving; declared via concurrency container;
states are executed sequentially but not parallel due
to using Python threading.

were actively developed when we checked (2021/06/09).
Together, they support ROS systems implemented in Python
and C++, the two most popular programming languages in
the robotics community. The latest version of ROS, ROS 2
[87], is supported by the included DSLs. PyTrees, the
main behavior-tree DSL in the Python community, does
not directly target ROS, but robotics in general. A popular
extension, PyTrees_ros, provides bindings for ROS. Since
PyTrees and PyTrees_ros are similar, with the only dif-
ference of ROS packaging, we decided to include PyTrees
in the language analysis even though it does not support
ROS directly. Although we analyzed both PyTrees and
PyTrees_ros, in the remainder of this section we only
refer to PyTrees_ros in the analysis for brevity, since our
findings apply to both of them.

We decided to discard the remaining DSLs from
our analysis. BT++ is now obsolete, superseded by
BehaviorTree.CPP after the developer of BT++ joined the

latter as a contributor. SkiROS2 is a software platform for
robotic task-level programming that uses design concepts
from MDE and behavior trees as an execution engine.
SkiROS2 is a new version of SkiROS [88], [89], which is now
obsolete. SkiROS2 does not have open-source projects, so
we needed to discard it from further analysis. Beetree and
pi_trees are inactive experiments, now abandoned.

The lower part of Table 1 lists the state-machine DSLs
we identified. We analyzed the first two (in bold font) and
discarded the other three, since they match our exclusion
criteria (cf. Sect. 3.1). SMACC is an actively maintained
DSL that supports ROS systems implemented in C++. Robot
Statemachine (RSM) is another C++ DSL with ROS support
that also offers a GUI. Due to a lack of open-source projects
on GitHub using SMACC and RSM, we needed to discard
them. Decision making supports ROS systems in C++, but is
no longer maintained. The two included DSLs are actively
maintained when we checked (2021/06/09), have good
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Fig. 6: A meta-model for BehaviorTree.CPP (reverse-
engineered from its XML format)

documentation, support ROS systems in Python, and have
multiple available projects on GitHub for mining. FlexBe
supports ROS2, while SMACH does not [37].

We now reflect on the language concepts offered by
the included behavior-tree and state-machine DSLs, both
at the syntactic and semantic levels. The language concepts
offered by our behavior-tree and state-machine DSLs are
summarized and compared in Table 2. The left-most column
names concepts that are pertinent to the behavior-tree DSLs,
either due to inclusion or a striking exclusion from the
behavior-tree DSLs. The last column comments briefly on
how the respective concepts are handled in the state-machine
DSLs. The remainder of this section discusses the details, first
for behavior trees and then for state machines.

4.1

The following discussion is based on a broad description of
behavior-tree languages extracted from the available litera-
ture and documentation of PyTrees_ros and Behavior-
Tree.CPP [54], [55]. Table 3 presents the classes of the basic
behavior-tree concepts in the analyzed DSLs.

The variant of behavior trees used in the analyzed DSLs
is predominantly a time-triggered activity-based behavioral
modeling language, unlike the implementation of behavior
trees in gaming (see Sect. 2). The computation consists of
activities that have duration and the main control loop
triggers the entire model at (typically) fixed intervals of
time like a circuit. Every tick (or epoch) triggers a traversal
of the entire tree, with diversions introduced by the various
types of nodes. The traversal can start new activities, evaluate
conditions, access state, and execute basic actions for side
effects. Reactive programming seems not to be supported
first-class, despite reappearing statements to the contrary,’!
but can be simulated by sufficiently high-frequency model
execution.

The analyzed DSLs support a global storage using the
blackboard behavioral design pattern [90], which is a key-
value store. No scopes are supported, all keys are global.
The blackboard is used for communicating, both within the
model and with the rest of the system. The model and the
system read and update the blackboard asynchronously.

Concepts and Semantics in Behavior-Tree DSLs

1. For example, the PyTrees documentation states that the language
provides a good blend of purposeful planning towards goals with enough
reactivity to shift in the presence of important events; https:/ /py-trees.
readthedocs.io/en/devel/background.html
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TABLE 3: Behavior tree concepts and corresponding lan-
guage elements in BehaviorTree.CPP PyTrees_ros
and PyTrees

concept BehaviorTree.CPP PyTrees
PyTrees_ros
Simple subclasses of behaviour.Behaviour
Node ActionNode
ConditionNode
Composite subclasses of classes in
ControlNode composites
Sequence Sequence, composites.Sequence
SequenceStar
ReactiveSequence
Selector Fallback, composites.Selector
FallbackStar composites.Chooser
ReactiveFallback
Decorator subclasses of classes in
DecoratorNode decorators
Parallel ParallelNode composites.Parallel

Both BehaviorTree.CPP and PyTrees_ros offer the
four basic categories of control-flow nodes and the two basic
execution nodes. To illustrate the abstract syntax, we provide
a meta-model that was reverse-engineered from Behavior-
Tree.CPP’s XML format in Fig. 6. These concepts are further
detailed in Table 2.

Simple Nodes

Recall that simple nodes, or leaves in the syntax tree, are
either conditions or actions. Actions realize the basic compu-
tation in the model. Users of our DSLs need to implement
custom action nodes—classes obeying the Action interface
that contain the Python or C++ code to be executed whenever
a node is ticked. Conditions calculate a value of a Boolean
predicate and convert it to a success or failure value.

BehaviorTree.CPP supports different types of syn-
chronous and asynchronous action nodes. Meanwhile
PyTrees_ros supports mainly synchronous type. The sim-
plest action nodes are synchronous, so they terminate quickly
and return success or failure immediately. Asynchronous
nodes may also return a ‘running’ status and use some form
of concurrency to continue operation. The execution engine
will attempt to trigger them at the next epoch again.

Composite Nodes

Recall that composite nodes are internal nodes of a behavior
tree. Their main function is to define the order of traversal
at every time epoch (at every trigger). Unlike the simple
nodes, which need to be implemented by the users, our DSLs
provide a range of predefined composite nodes. The root
node is the composite node that serves as an entry point for
every traversal, it contains another node as the body. This
node is re-entered to start every traversal.

The semantics of the different composite nodes in our
studied DSLs follow the literature on behavior trees, which
we described in Sect. 2. A sequence node is similar to a
forall higher-order function, which is standard in many
programming languages. A selector node is similar to exist.
We confirm that in the implementations, parallel node is
really a misnomer: It does not execute nodes concurrently,
but it generalizes sequence and selector to a range of policies,
described in each DSL’s documentation.
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Since the execution is always a traversal of the entire tree,
there is no direct support for jumps (goto). Instead, composite
nodes can affect the traversal locally, in stark contrast to state
machines. In the studied DSLs, a typical change of control
allows an arbitrary change of state, often cross-cutting the
syntax tree, depending on the returned status of a node.
After each tick of composite nodes, and by propagation also
simple nodes, explicit status is returned. Our DSLs support
the same set of statuses as in the literature on behavior trees
(see Sect. 2). These values propagate upwards during the
tree traversal according to the semantics of composite nodes.

Decorators

Decorators are implemented as unary composite nodes (only
one child) in the studied DSLs. They decorate the sub-trees
and modify their data or control-flow. BehaviorTree.CPP
and PyTrees_ros offer a wide range of constructs for
Decorators. An Inverter flips the return status of a child
between success and failure. A Succeeder always succeeds
regardless the status returned by its child node. A Repeat
node, which is stateful, acts like a for-loop: it continues to
trigger the child for a given number of ticks. It increments
an internal counter at every trigger. The node succeeds (and
resets the counter) on hitting a set bound. It fails (and resets
the counter) if the child fails. A Retry node resembles a
repeat node. Its main goal is to make a flaky node succeed.
Like Repeat it can run a node up to a set number of times,
but unlike Repeat, it only retries when a node fails and it
retries immediately without waiting for the next epoch. It
fails if the child failed in a given number of attempts.

OBSERVATION 1. The concepts offered in behavior tree
languages, and their semantics, stem from domain needs.
The studied behavior-tree DSLs gather a number of
constructs based on patterns that, according to users and
developers, are frequently found in high-level control of
autonomous systems.

Openness

The openness and indefiniteness of behavior trees are prob-
ably their most interesting aspects, after the time-triggered
coroutine-based model of computation. Others have also
noticed this in the context of variability in DSLs [91].

Unlike in Ecore [23] or UML, the languages’ meta-models
are not fixed. The DSLs provide the meta-classes for composite
nodes, while it leaves the simple nodes abstract or only gives
them bare bones functionality (cf. Fig. 6). A user of the
languages is expected to first extend the meta-model by im-
plementing the basic action nodes, then link them together in
a syntax tree, possibly using an external XML file. This prac-
tice vaguely resembles stereotyping [47]. Obviously, a user of
Ecore can extend the meta-model classes and give them new
functionality at runtime as well. However, such use of Ecore
is considered advanced and is seen rather rarely. The differ-
ence is that of degree: there is essentially no way to consider
using behavior-tree DSLs without creating custom nodes.

Prerequisites (User Demographics)

The open nature of behavior-tree DSLs means that the
experience of building and debugging models resembles
very much language-oriented programming as practiced
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in the modeling- and language-design research community.
One constantly deals with meta-classes, composing them,
traversing them, and so on. Anybody familiar with building
DSLs on top of Ecore or similar frameworks will definitely
experience a déja vu, when using either PyTrees_ros or
BehaviorTree.CPP.

Given that many robotics engineers, and many ROS
users, lack formal training in computer science and software
engineering [92], it is surprising to us that this design
seems to be well received in the community. Even within
software engineering, language implementation and meta-
programming skills are often considered advanced. Yet, using
behavior-tree DSLs requires such skills. A challenge for the
modeling community is lurking here: to design a behavior-
tree DSL that, while remaining flexible and easy to integrate
with large and complex existing code bases, is much easier
to use for a regular robotics programmer.

OBSERVATION 2. The flexibility and extensibility of the
studied behavior-tree DSLs require language-oriented pro-
gramming skills from developers. The software-language
engineering community could contribute by designing an
accessible, but still flexible, dialect of Behavior Trees.

Separation of Concerns

Behavior-tree DSLs support platform-specific models (PSMs)
built as part of a specific robotics system to control behaviors
at runtime. The models are used to simplify and concep-
tualize the description of behavior. The ability to reuse the
same models with other hardware or similar systems is not
(yet!) a primary concern. The studied behavior-tree DSLs not
only are PSMs, but tend to be very tightly integrated with
the system. Custom nodes tend to refer to system elements
directly and interact with the system API. As a result, it is
hard to use created models separately from the robot. While
Groot can visualize a standalone XML file of a model, a
working build environment of ROS is needed just to visualize
the syntax of a PyTrees_ros model. This may mean not
only an installation of suitable Python and ROS libraries, but,
for example, a working simulation of the robot, or even the
hardware environments. You need to launch the system and
inject a visualization call to inspect the model!

It is in principle possible with both DSLs to build
models that are completely decoupled from the system. It
suffices to route all communication with the system via the
blackboard. BehaviorTree.CPP provides dedicated XML
primitives for this purpose, allowing the entire behavior to
be programmed in XML, provided the rest of the system
can read from and write to the blackboard. This separation
allows models to be processed outside the system for
visualization, testing, grafting into other systems, and so
on. We definitely think this is a good architectural practice to
follow. Nevertheless, it is not what we observed in real-world
models (cf. Sect. 6). Most models mix the specification of
behavior deeply with its implementation, making separation
virtually impossible.

OBSERVATION 3. Behavior-tree models implemented with
our DSLs tend to be deeply intertwined with behavioral
glue code linking them to the underlying software system.



This makes operating on models outside the system
difficult, hampering visualization, testing, and reuse.

4.2 Concepts and Semantics in State-Machine DSLs

In the following, we reflect on the syntax and semantics that
we observed in the state-machine languages State MACHine
(sMACH) [56] and Flexible Behavior Engine (FlexBe) [58].

The implementation of state machines in both DSLs is
event-triggered, or reactive, which is similar to the traditional
implementation of state machines in different domains.
Compared to the studied behavior-tree DSLs, the state-
machine DSLs do not have an explicit notion of ticks and
of reoccurring traversals. States are only entered once at
the beginning of the model execution, revisited only if the
control-flow gets there as a result of reactions to external
events. In FlexBe, the current state could be interrupted
and a transition based on external events could be triggered,
allowing reactive programming. The interruption is possible
due to an autonomy-level threshold that is associated with a
state to allow human-in-the-loop decision incorporation. In
contrast, no reactivity is available in SMACH, and the current
active state blocks the execution until an outcome is returned.

Both DSLs resemble Moore machines (action-on-state)
[93] from the computational perspective. Users are expected
to implement a state-based interface as a Python class, State
in SMACH and EventState in FlexBe. Unlike the UML's
state-machine implementation of Moore machines, there is
no entry/exit actions associated to the state interface. There
are different sets of provided functions, with the constructor
__init__ and the execution loop execute being the most
important parts to implement the associated action to a state.
The constructors in both DSLs require listing the outcomes to
be returned by a state (triggering events). Other types of state
interface exist in both languages, like ConditionState in
SMACH and LockableState in FlexBe. More details can
be found in their documentation [60], [61].

To deal with the data flow between states and the system,
UserData, a locally scoped key-value dictionary is used.
Compared to blackboard, UserData defines local input-output
ports to access the needed data, while blackboard is more
of a global storage accessed by any node. It has been
highlighted by online discussion forums? and by researchers
[68] that the current implementation of blackboard is causing
name-clashes and unwanted overwrites when the behavior
trees grow. Interestingly, by getting inspiration from the
scoped input-output ports in state-machine languages
(github.com/BehaviorTree/BehaviorTree.CPP/issues/41),
developers of our behavior-tree DSLs added changes
to scope blackboard (behaviortree.dev/migrationguide,
py-trees.readthedocs.io/en/devel/changelog.html#x-2019-
11-15-blackboards-v2).

SMACH and FlexBe support hierarchical nesting by
means of the design-pattern container, so users can cre-
ate hierarchical state machines. A container is simply a
Python module that could be extended to support dif-
ferent execution semantics. This design pattern is also
used in the studied languages to define constructs for

2. For example, the problem is raised in BehaviorTree.CPP GitHub
issues page: #18 #41 #44
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common high-level control-flow patterns. We distinguish
between nesting container and control-flow containers ac-
cording to their functionality. StateMachine in SMACH and
OperatableStateMachine in FlexBe are for defining a
state-machine model. Both are also used for nesting and
creating hierarchical state machines.

In SMACH, Concurrence, Sequence and Iterator are
some of the offered control-flow containers. Sequence acts
similar to the behavior-tree control-flow node Sequence.
The states are executed sequentially according to a prede-
fined order. Iterator is a repeat-until loop that iterates
over states until a specified outcome is reached. Finally,
Concurrence allows multiple sub-states to be active at the
same time through threading. Similar to the behavior-tree
Parallel node, no parallelism of execution is available. An
outcome policy defines the concurrency container outcome
using a key-value dictionary (container outcomes are the
keys and the sub-states” potential outcomes are the values).
In FlexBe, only concurrency behavior is supported through
ConcurrencyContainer. An example of SMACH iterator is
provided in Fig. 7.

In addition to offering frequent control-flow patterns,
FlexBe provides meta-classes for common states through
the API flexbe_state and a separate state library
generic_flexbe_states. A documentation of the states
from flexbe_state is available in [58, app. A.1].

Providing constructs for frequent control-flow patterns
seems common in the studied behavior-tree and state-
machine DSLs. This might relate to the nature of robotic
missions that tend to have a sequence of actions or some
iterative tasks, enforcing the need for the behavior-modeling
language to accommodate this type of behaviors. Imple-
menting behavior design-patterns as language constructs
in modeling languages is sometimes a problematic design
decision, because it might increase language complexity.
However, as stated by Bosch [94], it is actually the lack of
expressive constructs that increase language complexity and
user overhead. A language should fulfill its domain needs.
In our previous study [28], we found a clear difference in the
supported constructs in our comparison between the studied
UML behavior-modeling languages (state diagram and activ-
ity diagram) and behavior-tree DSLs. A similar observation
regarding the need to customize UML modeling languages
was reported by Whittle et al. [95]. It is actually preferred
in practice to use DSLs over UML modeling languages due
to the expressiveness needed in robotics [24]. Thus, it is
surprising to observe such a design decision by language
developers, and it seems like a need for robotics applications.

OBSERVATION 4. Constructs for frequent control-flow
patterns seem to be a common need in modeling robotics
missions. Our studied state-machine and behavior-tree
DSLs accommodate these needs using containers and
composite node concepts, respectively.

Openness

Openness is a common feature in the studied languages due
to the nature of robotic missions. Similar to behavior trees, the
state-machine DSLs do not constrain users with fixed models
and implementations. Users are provided with meta-classes
for containers and states, and they can extend them. The


https://github.com/BehaviorTree/BehaviorTree.CPP/issues/41
https://www.behaviortree.dev/migrationguide
https://py-trees.readthedocs.io/en/devel/changelog.html#x-2019-11-15-blackboards-v2
https://py-trees.readthedocs.io/en/devel/changelog.html#x-2019-11-15-blackboards-v2

extension of control-flow types is possible, however we have
not observed any such customization in the analyzed projects
(see Sect. 6), just like the behavior-tree projects. Further
investigation by including the users of languages would
be required to determine the reason.

This design pragmatically supports openness of the
language and makes adaptation to diverse scenarios in !
robotics easy. The openness seems to be required due to *
a lack of agreement in the robotics community about the |
ideal control model for robot behavior. Since this question is s

likely to remain open for a long time, the design allows users ©

to adapt the language as they see fit when building robots.

5 LANGUAGE IMPLEMENTATION (RQ2) v

11
This section focuses on analyzing the behavior-tree libraries 2
in the first three rows in Table 1, and the state-machine ”
libraries in the first two rows in the second half of the table, .
all set in bold font. For the identified libraries, we broaden i
the scope of our analysis by inspecting their implementation
techniques and practices.

5.1

Turning our attention to how behavior-tree languages are
implemented from the language-design perspective, the first
striking observation is that both languages are predominantly
distributed as libraries, not as language tool chains, or model-
ing environments. BehaviorTree.CPP is implemented as a
C++ library, packaged as a ROS component, easy to integrate
with a ROS-based codebase [67]. In contrast, PyTrees is
a pure Python library. It has an extension PyTrees_ros
which packages PyTrees as a ROS package and adds ROS-
specific nodes.

Behavior-Tree DSLs: Language Design

Syntax and Visualization

Both DSLs come with ways to visualize models as graphs.
BehaviorTree.CPP even has a graphical editor and a
visual runtime monitor for its models called Groot (which
created the behavior tree in Fig. 1).

Nevertheless, it is important to understand that behavior
trees are not a visual modeling language in a traditional
sense. First, in both libraries, the models are constructed
in a text editor, in a mixture of C++, respectively Python.
Second, the models are constructed directly in abstract
syntax, by instantiating and wiring abstract syntax types. For
convenience, and to support Groot, BehaviorTree.CPP
offers an XML format, which can be used to write the tree
syntax in static files. Listing 1 shows the XML file for the
mission displayed in Figure 1. This file is interpreted at
runtime, and an abstract syntax tree is constructed from it
dynamically. Third, crucially, the types of nodes (and, thus,
the XML file in BehaviorTree.CPP) do not constitute the
entire meaning of the model. An important part of the model
is embedded in C++/Python code that is placed in the
methods of the custom node classes. This part of the model
is neither modifiable nor presentable in the graphical tools.

Finally, recall that BehaviorTree.CPP is realized as an
external DSL through Groot and the XML-like format, while
PyTrees_ros constitutes an internal DSL, since it does not
have similar tools. From our experience analyzing their mod-
els (cf. Sect. 6), we can confirm that the BehaviorTree.CPP
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models are much easier to comprehend, and the availability
of its visual editor Groot has made it faster to analyze the
behavior tree models than PyTrees_ros models.

Listing 1: The same example in Figure 1 shown in Behavior—
Tree.CPP XML notation.

<root main_tree_to_execute="MainTree" >
<BehaviorTree ID="MainTree">
<SequenceStar name="MainSeq">
<Action ID="CollectWaypoints"/>
<RetryUntilSuccesful num_attempts="10" >
<Negation>
<Sequence name="ExplorationSeqg">
<Action ID="PopWaypoint"/>
<Action ID="MoveBase"/>
<Action ID="Explore"/>
</Sequence>
</Negation>
</RetryUntilSuccesful>
</SequenceStar>
</BehaviorTree>
</root>

Concurrency

The design of our behavior-tree DSLs does not prescribe
the model of concurrency, and implementations vary. For
instance, the BehaviorTree.CPP engine uses a single-
threaded execution engine. All nodes are supposed to return
a status immediately. If an operation lasts longer, it should
spawn an asynchronous logic and inform the behavior-tree
engine that it continues to run (or that it completed, if
ticked again upon the completion). So, the programmer has
complete freedom to choose the concurrency mechanism.

OBSERVATION 5. The implementations of our behavior-
tree DSLs support both interleaving and true concurrency
indirectly by resorting to the underlying ROS platform.
The model of concurrency is not defined strictly in the
language, but is, instead, left largely to the users.

An internal or external DSL?

Our DSLs are unusually open. BehaviorTree.CPP is
technically an external DSL, but its implementation exposes
aspects of dynamic internal DSLs. The programmer can
both create models in XML (external, static), and create new
node types or modify the shape of the syntax tree at runtime
(dynamic). PyTrees_ros is an entirely dynamic DSL, where
new node types and Python code can be freely mixed, like
in internal DSLs.

An interpreter or a compiler?

Our DSLs” models are interpreted. Once the abstract syntax
tree is constructed, the user is supposed to call a method
to trigger the model once, or to trigger it continuously at a
fixed frequency. This does not seem to depart far from other
applications of models-at-runtime [29], [30]. Behavior-
Tree.CPP uses template metaprogramming instead of code-
generation, which allows to offer a bit of type-safety when
implementing custom tree nodes, without exposing users
to any specialized code-generation tools. Using the library
appears like using a regular C++ library. As expected, no
static type safety is offered in PyTrees_ros.
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Fig. 7: A state-machine example representing the mission in Fig. 1 and Fig. 3, using smach_viewer syntax. On the left, a top
view is provided. The middle and right illustrations represent expanded iterator and nesting containers, respectively

5.2 State-Machine DSLs: Language Design

SMACH and FlexBe are open-source software frameworks
written in Python for building and monitoring state machines
and hierarchical state machines. Similar to PyTrees_ros,
SMACH can be used without the ROS system and it has a ROS
binding through smach_ros.

Looking at how these state-machine DSLs are
implemented from a language-design perspective, there
is a difference in how SMACH and FlexBe are realized.
Although FlexBe can be used directly as a Python
library, it is used as a modeling environment, since it
offers a graphical user interface (GUI) called FlexBE App
(github.com/FlexBE/flexbe_app). It is used to construct state
machines using a graphical notation, and to monitor and
modify the state machine during runtime. On the other
hand, SMACH is mainly used as a pure Python library, and
it has a package smach_ros to integrate it with ROS. It has
a GUI called smach_viewer (wiki.ros.org/smach_viewer) for
inspecting and debugging an already created state machine,
but not constructing or modifying it. Although SMACH is
ROS independent, its viewer cannot be executed without
having a running ROS.

Syntax and Visualization

SMACH and FlexBe have their own notation, different from
the UML standard in Fig. 4. SMACH uses an ellipse shape for
states and a double-frame ellipse shape for nested machines,
and FlexBe uses rectangle shapes. F1lexBe uses a dedicated
notation for initial and final states like UML, while SMACH
does not. Figure 7 shows a state-machine example using the
smach_viewer syntax. Events are called outcomes in SMACH

and FlexBe. SMACH distinguishes between a container
outcome and a state outcome in the visual syntax. The
outcome of a state that caused a transition (triggering event)
is represented on the transitioning arrow. The outcome of
a container, like the Interator_10_attempts in Fig. 7,
is represented explicitly as a red ellipse, which looks like a
state. This deviates from the typical state-machine syntax.

The two languages are used differently for constructing
the state-machine model. FlexBe mixes graphical and
textual syntax. The graphical syntax is constructed using
the FlexBE App (FlexBe graphical GUI) in a drag-and-drop
manner, then an interpreter generates the textual syntax
as Python code. The generated code represents the model
structure, and certain parts of it can be edited to provide
flexibility to developers. For each state, a stub is auto-
generated for class methods consisting of basic functions, e.g.,
a constructor, execution function, and so on. Developers are
expected to complete the auto-generated stubs for states in
Python code. Meanwhile, SMACH users construct the model’s
abstract syntax directly in a text editor in Python.

FlexBe uses MDE techniques in the construction of
the model. It makes use of model-based design processes
through (semi-)automatic generation of code from the mod-
els. Syntactic and semantic checks for model consistency
are also supported. Consequently, separation-of-roles is
supported in FlexBe. BehaviorTree.CPP also supports
separation-of-roles [67], in addition to separation-of-concerns,
by providing a GUI for constructing the graphical model and
generating the textual syntax in an XML format from the
model, which is useful, but the language still requires manual
repetitive coding. While F1exBe reduces the manual coding
by generating boilerplate code, such as the import of needed
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libraries and default functions for the state initialization.
If adopted by behavior-tree languages, this functionality
might reduce programming effort and reduce syntactic errors.
However, since custom-execution functions still need some
manual coding, it is not fully applicable without some
programming background.

OBSERVATION 6. One of the state-machine DSLs has
used concepts from model-driven engineering that reduce
repetitive coding and code syntactic errors. Enhancing the
user support of behavior-tree DSLs for similar features
could reduce programming effort and syntactic errors.

Concurrency

Similar to behavior trees, the model of concurrency is not
strictly enforced in the implementation. The user can exploit
any concurrency semantics available in the ROS platform. In
both libraries, every state-machine container is executed in
its own thread, and its UserData, the locally scoped dictionary
of key-value pairs, is not shared between the different state-
machine containers. To facilitate data sharing between two
running state machines, one needs to resort to external
synchronization and communication mechanisms.

The analyzed DSLs offer a concurrency container. In both
DSLs, Python threading is used allowing multiple states to
be active at the same time, each running at its own rate.
States are activated sequentially, not parallel due to using
the Python threading (interleaving).

An internal or external DSL?

The openness of FlexBe is similar to other modeling
languages using model-based design. Similar to Behavior-
Tree.CPP, it is realized as an external DSL. State-machine
models can be created using the graphical notation in the
FlexBE App. Syntactic and minor semantic verifications run
before generating code to ensure model consistency, such
as the existence and correctness of the associated UserData
with each state. Extension of the model and states is possible
offline. Once the model and states are instantiated, runtime
modification is limited to the structure of the state-machine
model, e.g., add and remove states, and transition function,
while modifying the implementation of a state is not possible.
On the other hand, SMACH is similar to PyTrees_ros and
it is realized as an internal DSL, where extending the model
and states is done easily by simply editing the Python code.

An interpreter or a compiler?

Both libraries execute the state-machine model through
interpretation at runtime. FlexBe allows modifications
at runtime. In FlexBe, modification to a running state
machine is simply realized through patches—a standard for
minimal summaries of the modifications. Patches are applied
by taking the difference between old and new code and
only re-importing the changes to the source code. In order
to apply the modifications, the modified state is locked to
prevent transitions during the modification using the Python
threading lock(docs.python.org/3/library/threading.html), then
the Python module is reloaded (using the built-in reload()
function). No modification is applied before the FlexBe
engine has run verification checks to ensure consistency (cf.
Sect. 5.2). So, overall, the F1exBe developers implemented
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Fig. 8: Usage of the state-machine and behavior-tree DSLs in
open-source projects on GitHub over time

a pragmatic state-machine swap at runtime, largely relying
on Python’s reload support. SMACH has no verification step
for the created model before execution.

6 BEHAVIOR-TREE AND STATE-MACHINE MODELS
(RQ3J)

Our mining returned hundreds of GitHub projects per DSL.
In the following, we report on our exploratory investigation
of the usage of state-machine and behavior-tree DSLs in
these projects. First, we present an overview of the different
languages’ popularity among the mined open-source projects.
Second, we provide our analysis results for a sample of these
projects. Our analysis covers the structure of the sampled
models and their code reuse among the projects.

6.1 Language Popularity

The initial mining returned 1,086 projects using our state-
machine DSLs and 271 projects using our behavior-tree
DSLs (see Sect. 3.3 for the search terms). To visualize the
language (i.e., library) use in open-source projects over time,
we tracked the number of active projects per year per library
in these mined projects and plotted each library’s trend line.

Figure 8 shows the trend. Until 2015, SMACH was the only
available language among our five DSLs, and its usage has
been increasing steadily over the past five years (1.2 times
more each year). In 2015, the other four languages were
released. However, their usage only started to increase signif-
icantly in 2018. In general, the use of the languages has grown
over the past five years. In 2021, BehaviorTree.CPP’s and
PyTrees’s usage in open-source projects reached almost
ten times what they were in 2018. We hypothesize that this
significant increase in the last three years is due to ROS
adopting it as the core component for its navigation stack
Navigation 2 [36]. For PyTrees, it could be because it was
the only Python implementation for behavior trees offering
a stable and actively maintained language and a wide range
of constructs for node types. Although the FlexBe usage
in open-source projects is lower than SMACH (78% lower
than SMACH in 2021), its overall usage growth since 2018 is
much higher than that of SMACH. In 2021, the F1exBe usage
was 6.5 times higher than in 2018, while that of SMACH only
increased around 1.6 times.
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TABLE 4: Overview on our sampled GitHub projects that TABLE 4: Sampled projects overview (continued)
use behavior-tree and state-machine DSLs to define robot ”
behavior T
§ project, GitHub link language g Type
project, GitHub link language 8 Type MiRON-project Behavior- 1 research
ajbandera/MiRON-project Tree.CPP
sam_march PyTrees_ros1 research robocup2020 Behavior- 2 research
KKaflem/samfmarc.h IntelligentRoboticsLabs /robocup2020 Tree.CPP
mf)bllg_robot_prOJeclt ) PyTrees_ros1 unknown carve-scenarios-config Behavior- 1 research
simutisers nestas/ mobile_robot_project CARVE-ROBMOSYS/ carve-scenarios-confif ree . CPP
smarc_missions PyTrees_ros?2 research ROS Test ws FlexBe 6 unknown
smarc-project/smarc_missions QuiN- oy /ROS._ Test_ws
dyno PyTrees_ros2 company lisa_shared_ws_flexbe_integration FlexBe 4 research
samiamlabs/dyno lawrence-iviani/lisa_shared_ws_flexbe_integration
glzmo ) PyTrees_ros8 unknown sweetie_bot FlexBe 5 company
p eterhelml/. g1zmo sweetie-bot-project/sweetie_bot
robortsfprOJect ) PyTrees_ros1 unknown chris_turtlebot_flexible_navigation FlexBe 3  research
Taospirit/roborts_project CNURobotics/chris_turtlebot_flexible_navigation
robqtlcsfplayer ) PyTrees_ros1 unknown hand-eye-calibration FlexBe 2 research
braineniac/robotics-player tku-iarc/hand-eye-calibration
refills_second_review PyTrees_ros1 research dema flexbe FlexBe 8  unknown
refills-project/refills_second_review an dy?Chi en/dcma_flexbe
Robotics-Behaviour-Planning PyTrees_ros3 unknown tortoisebot waiter FlexBe 2 company
jotix16 /Robotics-Behaviour-Planning rigbetellabs_/ tortoisebot waiter
pickplace Behavior- 1 research Anahita - SMACH 2 research
ipa-rar/pickplace Tree.CPP AUV-IITK/ Anahita
stardust Behavior- 4 research wrs 2021 SMACH 2 unknown
julienbayle/stardust Tree.CPP hen_taihusinsva/wrs 2021
neuronbot2_multibot Behavior- 2 unknown Heihei ’ - SMACH 2 unknown
skylerpan/neuronbot2_multibot Tree.CPP Luobokeng2021/Heihei
mecatro-P17 Behavior- 11 unknown THEDRONELAB SMACH 2 research
alexandrethm /mecatro-P17 Tree.CPP DeVinci-Innovation-Center/ THEDRONELAB
Yarp-SmartSoft-Integration Behavior- 1 research kobuki-ros-nav SMACH 3 unknown
CARVE-ROBMOSYS/ Yarp-SmartSoft-Integfaties . CPP vibin18,/kobuki-ros-nav
bundles Behavior- 5 research visionx SMACH 3 unknown
MiRON-Project/bundles Tree.CPP tsoonjin /visionx
BTCompiler ) Behavior- 8 research wpi_sample_return_challenge_2015  SMACH 3  research
CARVE-ROBMOSYS/BTCompiler Tree. (.:PP rexking /wpi_sample_return_challenge_2015
BT_ros2 Behavior- 2 company rbear_rsband SMACH 4 unknown
Adlink-ROS/BT _ros2 Tree.CPP darshan-kt/rbcar_rsband
vizzy_behavior_trees Behavior- 7 research vizzy - SMACH 6 research
vislab-tecnico—lisl?oa/vizzyfbehavioritrees Tree.CPP vislab-tecnico-lisboa /vizzy
hans‘-ros-superwsor ) Behavior- 1 research omniWheelCareRobot-usual SMACH 7 unknown
1.<m1-robots/hans-ros-superwsor Tree.CPP Art-robot0/omniWheelCareRobot-usual
Pilot-URJC , Behavior= 2 research CSULA-URC-2020-21 SMACH 11 research
MROS-RobMoSys-ITP /Pilot-URJC Tree.CPP CSULA-URC/CSULA-URC-2020-21
vizzy_playground Behavior- 6 research
vislab-tecnico-lisboa/vizzy_playground =~ Tree.CPP
behavior_tree_rosC++ Behavior- 1 unknown

ParthasarathyBana/behavior_tree_rosC++ Tree.CPP
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TABLE 5: Projects and models extracted per library

SMACH FlexBe Behavior-— PyTrees_ros
Tree.CPP
projects 560 60 141 28
models 2065 442 595 63

6.2 Characteristics of the Models

After applying the multiple filtering steps in our mining, we
ended up with 620 projects that include 2,507 state-machine
models used in them, and 169 projects that include 658
behavior-tree models. Table 5 shows the number of projects
and models per DSL. In a project, a file with a full definition
of a model is counted as a model, resulting in projects with
multiple models. We randomly sampled 75 models per
language. We analyzed a total of 150 models of behavior
trees and state machines (75 models each) belonging to
43 projects (25 behavior trees and 18 state machines), as
summarized in Table 4. The difference in the number of
projects stems from the choice to sample the same number
of models rather than projects.

In our sample dataset, we found eleven different domains,
as shown in Figure 9. The dominating domains are robotic
patrolling, waiter robotics and pické&place applications.
We identified three types of projects: (1) research projects
belonging to labs, research groups, or competing teams
in events, (2) company projects belonging to companies
producing robotic solutions, and (3) unknown projects, for
which we could not find enough information to characterize.
Table 4 presents the types of our projects with a link to their
corresponding organization and their GitHub repository by
hovering over the blue text.

We noticed a variation between the structural properties
of behavior-tree and state-machine models in the analyzed
sample. As a start, state-machine models have a right-skewed
model-size distribution with an average model size of 9
across the population. Similarly, behavior-tree models have a
right-skewed model-size distribution, but the average model
size is three times larger than that of state machines (the aver-
age model size is 26 across the population). Interestingly, the
average branching factor BT.ABF is 3, which is small, mean-
ing the developers kept the trees in a somehow manageable
size. The reason behavior-tree models seem to have a larger
model size compared to state machines could be linked to the
former representing both execution nodes and control-flow
nodes, which state-machine models lack [16]. Another reason
could be linked to state-machine models becoming complex
once their size is big, affecting their understandability [96],
[97]. Consequently, developers might try to keep them small.
For behavior trees, there is no work in the literature that
confirms the optimal size of models. However, through
our analysis of models we noticed that the combination
of moderate size and branching of nodes makes a model easy
to navigate and understand. By moderate, we refer to the
average reported values for both BT.size and BT.ABE.

Another structural property we were interested to capture
is nesting and depth. According to existing empirical studies
[98], [99] the nesting level affects the understandability
of state-machine models, so shallow models should be
preferred.
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In our sample, state-machine models have an average
nesting level of one, and behavior-tree models have an
average depth of five (similar across the different DSLs).
In state-machine models, those using F1lexBe implemented
hierarchical state machines, where the nesting level is above
one, more often than models using SMACH (11 out of the
14 hierarchical state-machine models). It appears that the
developers in our sample projects kept the models shallow,
both when building state-machine and behavior-tree models.
Unfortunately, there is yet no study on the impact of a
behavior-tree’s depth on its complexity that could justify
the developers’ tendency to design shallow models. A justi-
fication could link the design decision to understandability,
which would be similar to state-machine models. However,
a proper investigation is required to confirm.

Now we turn to the use of different language constructs
in the sampled models, starting with behavior trees. In our
behavior-tree sample, 66% of the nodes in the dataset are leaf
nodes (1,228 out of 1,850 nodes), and 34% are composite
nodes. Table 6 summarizes the usage of composite nodes
for each library and for the total population of behavior-tree
models.

Most of the composite nodes in our projects are of type
Sequence (56% of total composite nodes) followed by Selector
type (21% of total composite nodes). The Parallel node
concept, which generalizes Sequence and Selector, was not
used much, only for 7% of all composite nodes. This might
explain why standard libraries for programming languages
normally do not include generalizations of existential and
universal quantifier functions (exists and forall)—these use
cases seem to be rare. The re-entrant nature of the behavior-
tree DSLs allows to use Parallel to wait until a minimum
number of sub-trees succeed. This, however, does not seem
to be used as often as we expected.

Decorators are used relatively rarely in PyTrees_ros
models, where they constitute 6% of the composite nodes.
This is likely explained by the fact that it is easier to apply
the transforming operations directly in the Python code,
using Python syntax, than elevating it to behavior-tree
abstract-syntax constructors. The situation is different with
BehaviorTree.CPP, where decorators are used almost
three times as often (19% of composite nodes). Here, the
benefit of using the decorators (data-flow operators) of the
behavior tree instead of C++ allows them to be visualized
and monitored in the graphical editor (Groot). No such tool
is available for PyTrees, so likely larger parts of the model
may “leak” to the code. This demonstrates that users of
behavior trees often have a choice of what is in scope and
what is out of scope for a model. By model scope, we refer to
the boundaries of a model which decide what is included in
the model and what is left to be programmed outside of the
model. This is a property that clearly distinguishes general-
purpose languages (GPLs), such as Python and C++, from
DSLs. Yet, in our experience, the competence of deciding the
model scope and the precision level is only rarely (with excep-
tions [23]) discussed in the teaching and research literature.

Finally, we observed that none of the models implement
their own custom nodes. They rely on the extensibility of
behavior trees using new custom operators (decorators). The
available off-the-shelf decorators in BehaviorTree.CPP
and PyTrees_ros were sufficient to create a custom behav-



TABLE 6: Usage of different behavior-tree composite nodes
to the total of them per library and in total for all models

composite nodes
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BehaviorTree.CPP 57% 19% 19% 6%
PyTrees_ros 53% 28% 6% 13%
share in population of all models 56% 21% 16% 7%

ior to change an action/condition status, or to customize an
action duration, e.g., wanting to execute an action without
waiting, retrying an action n times before given up, or
repeating an action n times.

Going back to Fig. 1, the decorator (RetryUntil-
Succesful) was used to create a conditional loop that
executes the sub-tree under (ExplorationSeq) 10 times,
unless the task fails, which is inverted into a success by an
(Inverter). The developers were able to model this without
having to use a while-loop or a similar general control-flow
structure in the script.

OBSERVATION 7. The studied behavior-tree DSLs offer a
range of concepts that are well suited to roboticists, but
the usage of the offered concepts differs according to the
GUI support of the languages.

For state-machine DSLs, we focused on the control-flow
containers as a concept equivalent to the composite nodes
in behavior trees. As mentioned in Sect. 4.2, SMACH offers a
range of control-flow containers, sharing only Concurrence
behavior with FlexBe. For this reason Sequence and Iterator
data is reported only for SMACH. In general, control-flow
constructs in our sampled state-machine models are used far
less than in behavior trees. Only 12% of the state-machine
models used some kind of control-flow construct, while in the
behavior-tree models all of them used some type of control-
flow node. Concurrence is used in 11% of all models, with
models using FlexBe being responsible for the majority of
this number (7 out of the 8 models used FlexBe). Although,
Concurrence is used less in SMACH than in FlexBe, it
makes for 67% of the total control-flow constructs used in
SMACH projects. Iterator is the second most used control-flow
construct in the projects using SMACH with 33% of the total
control-flow types. Sequence is never used in our sample.

It is not clear why the offered control-flow constructs
are not as popular in our analyzed sample of state-machine
models compared to the behavior-tree models. It might be
related to the syntax of state-machine models, or users
not being familiar with them. By syntax we mean that
state machines have a structure that is easy to understand,
where states represent the status of a system and transitions
facilitate the control-flow between states. Adding a layer of
complexity to the model by using the control-flow constructs
offered by the DSLs is less needed. Also, it might be a similar
case to the use of PyTrees_ros’s Decorators, where it is
easier to apply the pattern directly in Python syntax, than
elevating it to the state-machine abstract syntax.
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TABLE 7: Frequency of reuse patterns per library for skill
and task level

library intra-model clone-and-own | inter-model
referencing referencing
skills  tasks skills  tasks skills  tasks
SMACH - - 20%  13% 35% 8%
FlexBe 1.3% - - 16% 32% -
total for state | 1.3% - 20% 29% 67% 8%
machines
Behavior- 25%  13% 3% 39% 37% 3%
Tree.CPP
PyTrees_ros | 5% 5% 13% 9% 19% -
total for be- | 30% 18% 16% 48% 56% 3%
havior trees

6.3 Reuse

After presenting the core structural characteristics of our
models in the sample, we now shift to reuse as one of the
major issues in robotics engineering software [1], [6], [80],
[81], [82], [100] and control architectures [5], [32]. To facilitate
reuse, a decomposition of a robotic mission or behavior into
modular components should be supported by the modeling
language. A behavior-modeling language supporting mod-
ular design—consequently, reusable components—is an im-
portant aspect for overcoming challenges of robotics control
architectures and enhancing robotics software maintainability
and quality [5], [6], [32], [100].

In our work, reuse refers to the ability to use already im-
plemented skill code (also known as action in other contexts),
or reusing code of a repeated task (composed of different
skills) in the same model or across models in a project. We
use the terms skill-level and task-level in the remainder to ref-
erence each. For skill-level and task-level code reuse, we ob-
served three patterns of reuse in our sample: intra-model refer-
encing, reuse by clone-and-own [101] and inter-model referencing.

Intra-model referencing was mostly used by behavior tree
models. On the task-level, it is implemented by creating a
sub-tree for a repeated activity, then re-using it by reference in
multiple branches in the model after passing new values to its
parameters (usually by writing a new value to a blackboard).
A skill-level implementation defines a leaf node as a function
in the main model execution file, then reuses it by reference
after passing new values to its parameters.

The behavior-tree models often exploited intra-model
referencing on skill-level (30% of the behavior-tree models),
while on task-level it was only used in 18% of the models.
This pattern was rarely used in state-machine models. Only
one reused its skills by reference, and few reused on the task-
level. Figure 10 shows an excerpt from one of our behavior-
tree models, presenting the different tasks for a robot in
a retirement home. The red box highlights an example of
intra-model referencing, where the developer wrapped the
moving activity in the sub-tree (Recharge) and reused it in
multiple parts of the model. An example on the skill-level
is shown in the action moveRoboterPosition, which was
used in multiple parts in the model, only changing the values
of parameters (name, approachRadius, x, and y).

Reuse by clone-and-own was the most used pattern for task-
level reuse in the DSLs. In projects with multiple behavior-
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Fig. 10: Behavior tree model of a retirement home robot from project bundles. The red box highlights an example of a
intra-model referencing for a sub-tree Recharge (expanded on the right side). A legend is shown in Fig. 2.

tree models, we observed that, when two behavior trees
have the same activities, the similar parts (a sub-tree or the
entire model) are reused after some minor changes, such as
adding new nodes or removing old ones. Similarly in state
machines, minor modifications are introduced to a model by
adding or removing states to accommodate similar tasks. On
the skill-level, clone-and-own was mainly implemented by
minor modifications to the skill code.

Users of behavior trees and state machines favored using
clone-and-own for task-level reuse in our sample. It was
the most used pattern for task-level reuse compared to the
other two patterns (48% of models in behavior trees and
29% of models in state machines used it). Clone-and-own
was not as popular for skill-level reuse as task-level reuse.
It was the least-used pattern in behavior-tree models (16%
of the behavior-tree models) and second used pattern in
state-machine models with only 20% of models reusing skills
using this pattern. The Dyno project in Fig. 11, a drone-based
parcel delivery project, includes two behavior-tree models:
one for a parcel delivery mission (M1) and another one for a
route scheduler mission (M2). These models are an example
of task-level clone-and-own, where the developer reused the
entire behavior-tree model for two different missions that
share similar activities after proper modification depending
on the mission.?

Inter-model referencing was the most used pattern for skill-
level reuse in the DSLs. Repeated skills were implemented
as action nodes or associated with states in external files
that were imported later in the main model execution file.
This allows projects with multiple models having similar
skills to reuse these skills in different parts of the model.
Similar implementation paradigm was used for task-level by
defining a repeated task as a behavior-tree or state-machine
model in an external file then it is imported and invoked in
the main model execution file. The repeated task is plugged
as a sub-tree in the main behavior tree or as nested state
machine in the main state-machine model.

Inter-model referencing was the most used pattern for
skill-level reuse among the different languages (used in 67%

3. The model can be found in full-size in the online appendix, [31] in
addition to the models of the other projects.

of the state-machine models and 56% of the behavior-tree
models). For task-level, only two projects from the state-
machine dataset used it and one project from the behavior-
tree dataset (corresponding to 8% of the state-machine
models and 3% of the behavior-tree models).

An interesting observation was that inter-model
referencing through predefined skills offered by
FlexBe developers as either an APl flexbe_state
(github.com/FlexBE/generic_flexbe_states), or as separate
state libraries generic_flexbe_states (github.com/Flex-
BE/generic_flexbe_states) and Flexible Navigation
(github.com/FlexBE/flexible_navigation/tree/ros2-devel-
alpha/flex_nav_flexbe_states). The skills were used in 73% of
the FlexBe models. Similar behavior was observed across
projects of SMACH and PyTrees_ros libraries by reusing
ROS Navigation Stack skills, such as move_base
package (in 55% of the SMACH projects and 60% of the
PyTrees_ros projects). The data shows that predefined
skills APIs could facilitate reuse, and could be worth
considering by developers to facilitate reuse.

In general, we observed in our sample that the choice of
reuse mechanism is influenced by the implementation of the
DSL, and whether one reuses skills or tasks. It was noticeable
that inter-model referencing was favored for skill-level reuse
among the different DSLs, since defining a skill in an external
file and importing it is a pretty straight-forward mechanism.
For task-level reuse, inter-model referencing was the least-
used method, while clone-and-own was more favored. Simi-
lar missions might share a set of skills, but the combination
of them to form a task changes to accommodate specific
needs, thus clone-and-own is the most used pattern for task-
level reuse. Zooming into reuse for each DSL, projects using
BehaviorTree.CPP have reported higher reuse frequency
compared to projects using PyTrees_ros. These numbers
can be related to BehaviorTree.CPP having a dedicated
XML format to express the behavior-tree model and Groot for
visualizing the model, instead of intertwining the model with
the code like in PyTrees_ros. Visualization and abstraction
of the model could be an aspect to explore for pushing
toward reusing in robotic missions.

We conjecture that the identified simple reuse
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Fig. 11: An example of clone-and-own referencing in Behavior trees from project Dyno. Each model belong to a different
mission (M1) parcel delivery, and (M2) a route scheduler. Legend in Figure 2.

mechanisms suffice for the identified robotics projects.
It is less clear whether it would be useful to have safer
and richer reuse mechanisms known from mainstream
programming languages, including name-spacing and safe
reuse contracts (interfaces), as they tend to be heavyweight
for users to learn and use. More research is needed to
determine whether sufficiently lightweight and safe reuse
mechanism could be realized.

7 THREATS TO VALIDITY

Internal Validity. We provide a dataset of behavior-tree
and state-machine models in robotics. Our dataset could
include projects from courses or tutorials, and we could have
missed projects with behavior-tree or state-machine models
expressed in our libraries. To mitigate that, we applied a
multi-step filtration mechanism that was adopted to our
observations during the mining process. We derived our
filtration steps from our data observations. After each step,
we checked randomly a sample of the results to see if we
needed to adopt the filtration mechanism.

Another threat that could affect the results, is possible
errors in our Python scripts calculating the model metrics.
In behavior trees, as a form of quality check, we manually
counted node types and checked the script results against
them. We excluded commented parts and unused node types
in the behavior-tree codes. In state machines, we rechecked
the automatic counting results by going through the models.

External Validity. A threat is the generalizability of our
quantitative results and the identified reuse patterns, since
we used a random sample of the mined models. We mitigated
that by aggregating the models into pools of sizes according
to their data distribution, then randomly sampling our
dataset. This way, we made sure to capture different projects

with different model sizes. In addition, our project domains,
presented in Fig. 9, show that our random sample covers
different domain categories.

The list of identified open-source robotics projects might
be missing examples from Bitbucket and GitLab. Both
platforms are used in the robotics community; however, they
do not provide a code search API, which makes it difficult
to conduct a code-level search. We conducted a less precise
query in Bitbucket and GitLab using behavior trees and state
machine as search terms in the web interface. However, for be-
havior trees, we could not identify any real robotics projects
from that search. For state machines, GitLab returned results
for which it was hard to check if any of the subject libraries
were used. We favored using GitHub for the flexibility of the
provided APIs, for their integration with Python and other
languages for mining, and because it is a platform widely
used by developers to publish open-source projects.

We have only considered projects using Python and C++
libraries with ROS support, while there might be other open-
source robotics projects out there. We acknowledge that
limiting our search to ROS-supported languages might have
resulted in missing other robotics projects. However, we
focused on the two dominant languages in ROS, assuming
that this is the most representative framework for open-
source robotics.

8 RELATED WORK

In the literature, researchers compare—theoretically—
behavior trees to popular control architectures in robotics,
such as finite state machines, the subsumption architecture,
and decision trees. They show that behavior trees generalize
them [7], [16], [32]. They also discuss advantages and
disadvantages of each control architecture based on design
properties that are important for robotic control architectures.



Colledanchise et al. [15] describe the drawbacks of using
state machines for multi-robot scenarios in comparison to
behavior trees using illustrative examples. In another work,
Colledanchise et al. [68] illustrate how to represent different
kinds of behaviors from state machines in behavior trees,
provide available software libraries and show what kind
of representations they support. Modularity, reactiveness
expressiveness, and readability are some of the properties
of behavior trees that are studied in a formal-theoretical
manner and compared to state machines by Biggar et al. [12].
Colledanchise and Natale [68] highlight that behavior-tree
tools are less mature than tools available for state machines;
however, their findings do not build on an analysis of
available tools. In our work, we observed good language-
design practices for the studied behavior-tree and state-
machine DSLs (tools), and some sub-optimal ones. However,
we cannot conclude that the studied state-machine DSLs
were better designed than the behavior-tree DSLs. Each
language design had its own advantages and disadvantages.

The related work only bases its findings to a very limited
extent on software engineering practice in real-world robotics
projects. In this work, we scope the analysis to behavior-tree
DSLs in robotics from the software-language perspective,
and we compare them to state-machine DSLs, which has
not been done so far in the literature. Compared to previous
work, we shift the comparison of behavior trees and state
machines from the theoretical perspective to the real world.
We do not report on the advantages, or disadvantages, of
one model over the other. We report on the similarities
and differences between the supporting languages of both
models in robotics. We report on the state-of-practice by
analyzing the usage of behavior-tree and state-machine
DSLs in open-source projects. In our work, we focus on
the structural properties and reuse-of-code in open-source
projects, using the identified languages. Consequently, our
work complements the related work. In addition, we provide
behavior-tree and state-machine models as a community
dataset, which has not been done so far. The dataset can be
used for further research.

9 CONCLUSION

We presented a study of behavior-tree and state-machine
DSLs, and of their use in open-source ROS robotics
applications. We systematically compared the concepts
available in popular behavior-tree DSLs and contrasted
them with well-established DSLs for reactive modeling—the
language of state machines. We mined open-source projects
from code repositories and extracted the behavior-tree and
state-machine models from their codebases. We analyzed
the structure of a sample of these models, as well as how
they use the concepts and how they reuse model code. We
contribute a dataset of models in an online appendix [31],
together with scripts and additional data.

Results and Implications

The paper displays popular DSLs designed outside of the
language-engineering community for the vibrant domain of
robotics. We believe that studying modeling and language-
engineering practices is beneficial for both communities, as
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it helps to improve language-engineering methods and tools,
as well as to improve the actual practices and languages.

Our analysis showed that both groups of DSLs follow
good design practices and even obtain some improvement by
learning from each other. As a start, having a GUI that pro-
vides constructing, editing, and runtime monitoring of mod-
els is a good practice. A GUI supports visualization and build-
ing abstractions. Both FlexBe and BehaviorTree.CPP
provide similar tools, which is reflected in their users reusing
code more often compared to SMACH and PyTrees_ros.

In addition, our results illustrate that many of the
modeling and language-engineering methods are relevant
in practice. Developing DSLs in a rather pragmatic way,
without hundreds of pages of specification documents and
with a basic, but extensible meta-model, or even without
an explicitly defined meta-model seems to be successful.
Such a strategy seems to attract practitioners not trained in
language and modeling technology, allowing practitioners
who come from lower-level programming paradigms to raise
the level of abstraction and effectively implement missions
of robots in higher-level representations.

Concepts from software engineering are adopted in the
design of the studied languages. BehaviorTree.CPP is
built with separation-of-concerns and separation-of-roles in
mind [67], making it possible to decouple models from the
robotic system for visualization and testing. During model
analysis, we managed to load models easily in Groot without
the need to setup ROS or fulfill other requirements of the
robotic projects. Also, inspecting the XML representation
of the models was relatively easy. These are two features
that we appreciated during the analysis. Unfortunately
the state-machine DSLs and PyTrees_ros lack an easily
accessible visualization tools, which required us to build
custom ways to inspect models.

Not all the studied languages support the separation-of-
roles to the same extent. F1lexBe uses code generation from
model-based design for boilerplate code, while Behavior-
Tree.CPP requires custom code in an internal DSL, which
requires programming skills. Although code-generation, and
external DSLs, are more constraining than the flexibility
offered by programming in a general-purpose language with
an internal DSL, support from code generators for creating
repetitive parts seems valuable, as more aspects of modeling
can be performed by domain experts. Furthermore, syntactic
and semantic checks of model consistency are another natural
feature of external DSLs exploited in FlexBe (these can be
realized in internal DSLs as well, albeit at a higher cost). Still,
the users of all the studied languages need to be familiar
with language-oriented programming (meta-programming).
This is despite the fact that most robot developers are not
trained in this field. This poses an interesting challenge for
the language design community to come up with designs
that would reduce the friction of integrating models with the
rest of the robot architecture.

Promoting and adopting mode-driven engineering
practices has been on the rise in the robotics community to
improve the reusability and maintainability of systems [6],
[24], [79], [80], [100], [102], [103], [104], [105]. Through our
analysis, we observed common practices across the different
languages that are adopted from model-driven engineering
specifically, and from software engineering generally,



which seem well received by practitioners. In addition,
improvements to these behavior-modeling languages could
be adopted and evaluated in the robotics community.

Future Work

In the future, we would like to build on top of current
observations and conduct studies with users in the loop. Our
goal would be to compare the usability, comprehension and
expressiveness of the studied behavior-modeling languages,
and the needed improvements. Specifically, a valuable study
would be to systematically explore the realization of mission
requirements (e.g., specified in natural textual language)
in different behavior-modeling languages and measuring
expressiveness, but also non-functional aspects such as
succinctness and intuitiveness of the resulting model.

Also, we would like to provide good design guidelines for
behavior-modeling languages that promote MDE practices
but are compatible with the current state-of-practice. Finally,
during our analysis we noticed that most projects lack
mission specifications. We want to use our dataset to develop
automatic tools to generate mission specifications in natural
language from existing behavior-tree models. By achieving
that we help in creating automated re-engineering tools for
legacy projects that could be reused by other practitioners
instead of starting from scratch.

Another valuable piece of future work would be to gather
empirical data on the use of behavior-modeling languages
in robotics projects in general, without the limitation
to behavior-tree and state-machine DSLs. While these
are, as we argue, the most prominent kinds of modeling
languages used, we believe that other languages are also
used. However, identifying other languages as used in
open-source projects is not trivial and would constitute one
or even multiple future studies.

ACKNOWLEDGMENTS

We thank Alexey Gorskiy for implementing the GitHub
mining and model analysis scripts, including providing
visualizations of SMACH and FlexBE scripts, usage statistics
of the libraries, as well as extracting and calculating model
metrics. Our work was partially supported by the Wallenberg
Al, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation.

REFERENCES

[1] S. Garcia, D. Striiber, D. Brugali, T. Berger, and P. Pelliccione,
“Robotics software engineering: A perspective from the service
robotics domain,” in FSE, 2020.

[2] C.Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and T. Berger,
“Specification patterns for robotic missions,” IEEE Trans. Software
Eng., vol. 47, no. 10, pp. 2208-2224, 2021. [Online]. Available:
https://doi.org/10.1109/TSE.2019.2945329

[3] S. Dragule, S. Garcia, T. Berger, and P. Pelliccione, “Languages
for specifying missions of robotic applications,” in Software
Engineering for Robotics, A. Cavalcanti, B. D. ad Rob Hierons,
J. Timmis, and J. Woodcock, Eds. Springer, 2021.

[4] E Michaud and M. Nicolescu, “Behavior-based systems,” in
Springer handbook of robotics. Springer, 2016, pp. 307-328.

[5] D. Kortenkamp, R. Simmons, and D. Brugali, “Robotic systems
architectures and programming,” in Springer handbook of robotics.
Springer, 2016, pp. 283-306.

[6] D.Brugali and A. Shakhimardanov, “Component-based robotic
engineering (part ii),” IEEE Robotics & Automation Magazine, vol. 17,
no. 1, pp. 100-112, 2010.

(7]

(8]

(9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

22

M. Colledanchise and P. Ogren, Behavior Trees in Robotics and Al:
An Introduction. CRC Press, 2018.

J. Chen and D. Shi, “Development and composition of robot
architecture in dynamic environment,” in RCAE, 2018.

F. W. Heckel, G. M. Youngblood, and N. S. Ketkar, “Representa-
tional complexity of reactive agents,” in CIG, 2010.

D. Isla, “Handling complexity in the Halo 2
AL” GDC 2005 Proceedings, 2005. [Online]. Avail-
able: https:/ /www.gamasutra.com/view /feature/130663 /gdc_
2005_proceeding_handling_.php?page=2

K. Mcquillan, “A survey of behaviour trees and their applications
for game AI” 2015, course CP5330 final report, James Cook
University.

O. Biggar, M. Zamani, and I. Shames, “An expressiveness hierar-
chy of behavior trees and related architectures,” IEEE Robotics and
Automation Letters, vol. 6, no. 3, pp. 5397-5404, 2021.

M. Iovino, J. Forster, P. Falco, ]. ]. Chung, R. Siegwart, and C. Smith,
“On the programming effort required to generate behavior trees
and finite state machines for robotic applications,” arXiv preprint
arXiv:2209.07392, 2022.

J. A. Bagnell, F. Cavalcanti, L. Cui, T. Galluzzo, M. Hebert,
M. Kazemi, M. Klingensmith, J. Libby, T. Y. Liu, N. Pollard et al.,
“An integrated system for autonomous robotics manipulation,” in
IROS, 2012.

M. Colledanchise, A. Marzinotto, D. V. Dimarogonas, and P. C)gren,
“The advantages of using behavior trees in multi robot systems,”
in 47th International Symposium on Robotics (ISR), 2016.

M. Colledanchise and P. Ogren, “How behavior trees modularize
hybrid control systems and generalize sequential behavior com-
positions, the subsumption architecture, and decision trees,” IEEE
Transactions on robotics, vol. 33, no. 2, pp. 372-389, 2016.

M. Colledanchise, R. Parasuraman, and P. Ogren, “Learning of
behavior trees for autonomous agents,” IEEE Transactions on Games,
vol. 11, no. 2, pp. 183-189, 2018.

A. Marzinotto, M. Colledanchise, C. Smith, and P. Ogren, “To-
wards a unified behavior trees framework for robot control,” in
ICRA, 2014.

P. Ogren, “Increasing modularity of uav control systems using
computer game behavior trees,” in AIAA Guidance, Navigation, and
Control Conference (GNC), 2012.

F. Rovida, B. Grossmann, and V. Kriiger, “Extended behavior trees
for quick definition of flexible robotic tasks,” in IROS, 2017.

S. Garcia, P. Pelliccione, C. Menghi, T. Berger, and T. Bures, “High-
level mission specification for multiple robots,” in SLE, 2019.

A. Klockner, “Interfacing behavior trees with the world using
description logic,” in AIAA Guidance, Navigation, and Control
Conference (GNC), 2013.

A. Wasowski and T. Berger, Domain-specific Languages: Ef-
fective Modeling, Automation, and Reuse. Springer, 2023,
http://dsl.design.

E. de Aratjo Silva, E. Valentin, J. R. H. Carvalho, and
R. da Silva Barreto, “A survey of model driven engineering in
robotics,” Journal of Computer Languages, vol. 62, p. 101021, 2021.
G. L. Casalaro, G. Cattivera, F. Ciccozzi, I. Malavolta, A. Wort-
mann, and P. Pelliccione, “Model-driven engineering for mobile
robotic systems: a systematic mapping study,” Software and Systems
Modeling, pp. 1-31, 2021.

A. Nordmann, N. Hochgeschwender, and S. Wrede, “A survey on
domain-specific languages in robotics,” in SIMPAR, 2014.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng et al., “ROS: an open-source robot operating
system,” in ICRA workshop on open source software, 2009.

R. Ghzouli, T. Berger, E. B. Johnsen, S. Dragule, and A. Wasowski,
“Behavior trees in action: a study of robotics applications,” in SLE,
2020.

N. Bencomo, R. B. France, B. H. C. Cheng, and U. Afimann,
Eds., Models@run.time—Foundations, Applications, and Roadmaps,
vol. 8378. Springer, 2014.

G. Blair, N. Bencomo, and R. B. France, “Models@run.time,” IEEE
Computer, vol. 42, no. 10, pp. 22-27, 2009.

“Online appendix,” https:/ /bitbucket.org/easelab/behaviortrees,
2020. [Online]. Available: https://doi.org/10.5281/zenodo.
7515222

M. Colledanchise, “Behavior trees in robotics,” Ph.D. dissertation,
KTH Royal Institute of Technology, 2017.

S. Dragule, T. Berger, C. Menghi, and P. Pelliccione, “A survey on
the design space of end-user-oriented languages for specifying


https://doi.org/10.1109/TSE.2019.2945329
https://www.gamasutra.com/view/feature/130663/gdc_2005_proceeding_handling_.php?page=2
https://www.gamasutra.com/view/feature/130663/gdc_2005_proceeding_handling_.php?page=2
https://bitbucket.org/easelab/behaviortrees
https://doi.org/10.5281/zenodo.7515222
https://doi.org/10.5281/zenodo.7515222

[34]

[35]

[36]
[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]
[50]
[51]
[52]

[53]

[54]
[55]

[56]

[57]

(58]

[59]

[60]

[61]

robotic missions,” Software and Systems Modeling, vol. 20, pp. 1123—
1158, 2021.

M. Colledanchise and P. Ogren, “How behavior trees generalize
the teleo-reactive paradigm and and-or-trees,” in IROS, 2016.

D. C. Conner and ]. Willis, “Flexible navigation: Finite state
machine-based integrated navigation and control for ros enabled
robots,” in SoutheastCon, 2017.

S. Macenski, F. Martin, R. White, and ]J. G. Clavero, “The Marathon
2: A navigation system,” in IROS, 2020.

J. M. Zutell, D. C. Conner, and P. Schillinger, “Ros 2-based flexible
behavior engine for flexible navigation,” in SoutheastCon, 2022.

S. Garcia, P. Pelliccione, C. Menghi, T. Berger, and T. Bures,
“Promise: High-level mission specification for multiple robots,”
in ICSE Demonstrations, 2020.

S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi,
Y. Kitsukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Au-
toware on board: Enabling autonomous vehicles with embedded
systems,” in ICCPS, 2018.

A. Dosovitskiy, G. Ros, E. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the
1st Annual Conference on Robot Learning, 2017, pp. 1-16.
“ScenarioRunner for CARLA  documentation,”
/ / carla-scenariorunner.readthedocs.io, 2022.

M. Iovino, E. Scukins, J. Styrud, P. Ogren, and C. Smith, “A survey
of behavior trees in robotics and Al,” Robotics and Autonomous
Systems, vol. 154, p. 104096, 2022.

M. Colledanchise and L. Natale, “Analysis and exploitation of
synchronized parallel executions in behavior trees,” arXiv preprint
arXiv:1908.01539, 2019.

L. Millington and ]. Funge, Artificial intelligence for games.
Press, 2009.

M. L. Crane and ]. Dingel, “UML vs. classical vs. rhapsody
statecharts: not all models are created equal,” Software & Systems
Modeling, vol. 6, no. 4, pp. 415435, 2007.

M. von der Beeck, “A comparison of statecharts variants,” in
Third International Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems, 1994.

Object Management Group, “OMG unified modeling language
2.5.1,” 2017. [Online]. Available: https:/ /www.omg.org/spec/
UML/

B. P. Douglass, “Chapter 5 - design patterns for state machines,”
in Design Patterns for Embedded Systems in C, B. P. Douglass, Ed.
Newnes, 2011, pp. 257-356.

M. Samek, “A crash course in UML state machines,” Quantum
Leaps, LLC, 2009.

H. Kubéatov4, K. Richta, and T. Richta, “Petri nets versus UML
state machines,” in Proc. SDOT, 2013, pp. 53-59.

B. Hajji, A. Mellit, and L. Bouselham, Finite State Machines.
Singapore: Springer Singapore, 2022, pp. 175-205.

D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of computer programming, vol. 8, no. 3, pp. 231-274, 1987.
G. Liittgen, M. Von der Beeck, and R. Cleaveland, “A composi-
tional approach to statecharts semantics,” ACM SIGSOFT Software
Engineering Notes, vol. 25, no. 6, pp. 120-129, 2000.

D. Stonier, N. Usmani, and M. Staniaszek, “Py Trees library docu-
mentation,” https:/ /py-trees.readthedocs.io/en/devel/, 2020.

D. Faconti and M. Colledanchise, “BehaviorTree.CPP library
documentation,” https:/ /www.behaviortree.dev, 2018.

J. Bohren and S. Cousins, “The SMACH high-level executive [ros
news],” IEEE Robotics & Automation Magazine, vol. 17, no. 4, pp.
18-20, 2010.

P. Schillinger, S. Kohlbrecher, and O. von Stryk, “Human-robot
collaborative high-level control with an application to rescue
robotics,” in IEEE International Conference on Robotics and Automa-
tion (ICRA), May 2016.

P. Schillinger, “An approach for runtime-modifiable behavior con-
trol of humanoid rescue robots,” Technische Universitat Darmstadt,
2015.

S. Kohlbrecher, A. Stumpf, A. Romay, P. Schillinger, O. Von Stryk,
and D. C. Conner, “A comprehensive software framework for
complex locomotion and manipulation tasks applicable to differ-
ent types of humanoid robots,” Frontiers in Robotics and Al, vol. 3,
p- 31, 2016.

J. Bohren and S. Cousins, “SMACH library documentation,” http:
/ /wiki.ros.org/smach/Documentation, 2010.

P. Schillinger, “FlexBE library documentation,” http://philserver.
bplaced.net/fbe/documentation.php, 2016.

https:

CRC

[62]

[63]

[64]

[65]
[66]

(671

[68]

[69]

[70]

[71]

[72]

(73]

(74]

[75]

[76]

[77]

(78]

[79]

(80]

[81]

(82]

(83]

[84]

[85]

23

D. Stonier, N. Usmani, and M. Staniaszek, “Py Trees ROS library
documentation,” https:/ /py-trees-ros.readthedocs.io/en/devel/,
2020.

D. Faconti and M. Colledanchise, “BehaviorTree.CPP library
tutorials,” https://www.behaviortree.dev/tutorial_01_first_tree/,
2018.

D. Stonier, N. Usmani, and M. Staniaszek, “Py Trees ROS
library tutorials,” https:/ / py-trees-ros-tutorials.readthedocs.io/
en/devel/tutorials.html, 2020.

P. Schillinger, “FlexBE library tutorials,” http://wiki.ros.org/
flexbe/ Tutorials, 2021.

J. Bohren and S. Cousins, “SMACH library tutorials,” http:/ /wiki.
ros.org/smach/Tutorials, 2021.

D. Faconti, “MOOD2Be: Models and tools to design
robotic  behaviors,” European Union’s Horizon 2020
Research and Innovation Programme, 2019. [Online].

Available: https:/ /github.com/BehaviorTree/BehaviorTree.CPP/
blob/master/MOOD2Be_final_report.pdf

M. Colledanchise and L. Natale, “On the implementation of
behavior trees in robotics,” IEEE Robotics and Automation Letters,
vol. 6, no. 3, pp. 5929-5936, 2021.

A. Romay, S. Kohlbrecher, A. Stumpf, O. von Stryk, S. Maniatopou-
los, H. Kress-Gazit, P. Schillinger, and D. C. Conner, “Collaborative
autonomy between high-level behaviors and human operators
for remote manipulation tasks using different humanoid robots,”
Journal of Field Robotics, vol. 34, no. 2, pp. 333-358, 2017.

P. Schillinger, “An approach for runtime-modifiable behavior
control of humanoid rescue robots,” Master’s thesis, TU Darm-
stadt, 2015, https:/ /www.sim.informatik.tu-darmstadt.de/publ/
da/2015_Schillinger_MA.pdf.

M. AlMarzouq, A. AlZaidan, and J. AlDallal, “Mining GitHub for
research and education: challenges and opportunities,” Interna-
tional Journal of Web Information Systems, 2020.

I. Malavolta, G. A. Lewis, B. Schmerl, P. Lago, and D. Garlan,
“Mining guidelines for architecting robotics software,” Journal of
Systems and Software, vol. 178, p. 110969, 2021.

G. Robles, T. Ho-Quang, R. Hebig, M. R. Chaudron, and M. A.
Fernandez, “An extensive dataset of UML models in GitHub,” in
2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). 1EEE, 2017, pp. 519-522.

S. R. Chidamber and C. F. Kemerer, “A metrics suite for object
oriented design,” IEEE Transactions on software engineering, vol. 20,
no. 6, pp. 476493, 1994.

T. Berger and J. Guo, “Towards system analysis with variability
model metrics,” in VaMoS, 2014.

J. A. Cruz-Lemus, M. Genero, and M. Piattini, “Using controlled
experiments for validating UML statechart diagrams measures,”
in Software Process and Product Measurement. Springer, 2007, pp.
129-138.

, “Metrics for UML statechart diagrams,” in Metrics for
Software Conceptual Models, 2005, pp. 237-272.

R. van Tonder and C. Le Goues, “Lightweight multi-language syn-
tax transformation with parser parser combinators,” in Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2019, pp. 363-378.

S. Garcia, D. Striiber, D. Brugali, A. Di Fava, P. Pelliccione, and
T. Berger, “Software variability in service robotics,” Empirical
Software Engineering, vol. 28, no. 2, pp. 1-67, 2023.

S. Garcia, D. Strueber, D. Brugali, A. D. Fava, P. Schillinger,
P. Pelliccione, and T. Berger, “Variability modeling of service
robots: Experiences and challenges,” in VaMoS, 2019.

D. Brugali and E. Prassler, “Software engineering for robotics
[from the guest editors],” IEEE Robotics & Automation Magazine,
vol. 16, no. 1, pp. 9-15, 2009.

I. A. Nesnas, R. Simmons, D. Gaines, C. Kunz, A. Diaz-Calderon,
T. Estlin, R. Madison, J. Guineau, M. McHenry, I.-H. Shu ef al.,
“CLARAty: Challenges and steps toward reusable robotic soft-
ware,” International Journal of Advanced Robotic Systems, vol. 3,
no. 1, p. 5, 2006.

M. Colledanchise, “BT++ library documentation,”
https:/ / github.com/miccol /ROS-Behavior-Tree/blob/master/
BTUserManual.pdf, 2017.

E. Rovida, “SkiROS2 library documentation,” https:/ /github.com/
RVMI/skiros2 /wiki, 2020.

RoboSoft Al, “SMACC library documentation,” https://smacc.
dev/, 2018.



https://carla-scenariorunner.readthedocs.io
https://carla-scenariorunner.readthedocs.io
https://www.omg.org/spec/UML/
https://www.omg.org/spec/UML/
https://py-trees.readthedocs.io/en/devel/
https://www.behaviortree.dev
http://wiki.ros.org/smach/Documentation
http://wiki.ros.org/smach/Documentation
http://philserver.bplaced.net/fbe/documentation.php
http://philserver.bplaced.net/fbe/documentation.php
https://py-trees-ros.readthedocs.io/en/devel/
https://www.behaviortree.dev/tutorial_01_first_tree/
https://py-trees-ros-tutorials.readthedocs.io/en/devel/tutorials.html
https://py-trees-ros-tutorials.readthedocs.io/en/devel/tutorials.html
http://wiki.ros.org/flexbe/Tutorials
http://wiki.ros.org/flexbe/Tutorials
http://wiki.ros.org/smach/Tutorials
http://wiki.ros.org/smach/Tutorials
https://github.com/BehaviorTree/BehaviorTree.CPP/blob/master/MOOD2Be_final_report.pdf
https://github.com/BehaviorTree/BehaviorTree.CPP/blob/master/MOOD2Be_final_report.pdf
https://www.sim.informatik.tu-darmstadt.de/publ/da/2015_Schillinger_MA.pdf
https://www.sim.informatik.tu-darmstadt.de/publ/da/2015_Schillinger_MA.pdf
https://github.com/miccol/ROS-Behavior-Tree/blob/master/BTUserManual.pdf
https://github.com/miccol/ROS-Behavior-Tree/blob/master/BTUserManual.pdf
https://github.com/RVMI/skiros2/wiki
https://github.com/RVMI/skiros2/wiki
https://smacc.dev/
https://smacc.dev/

(86]

(87]

[88]

[89]

[90]

[91]

[92]

[93]
[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

M. Steinbrink, P. Koch, S. May, B. Jung, and M. Schmidpeter, “State
machine for arbitrary robots for exploration and inspection tasks,”
in Proceedings of the 2020 4th International Conference on Vision,
Image and Signal Processing, 2020, pp. 1-6.

Y. Maruyama, S. Kato, and T. Azumi, “Exploring the performance
of ros2,” in Proceedings of the 13th International Conference on
Embedded Software, 2016, pp. 1-10.

F. Rovida, M. Crosby, D. Holz, A. S. Polydoros, B. Grofsmann,
R. Petrick, and V. Kriiger, “SkiROS — a skill-based robot control
platform on top of ROS,” in Robot operating system (ROS). Springer,
2017, pp. 121-160.

F. Rovida and V. Kriiger, “Design and development of a software
architecture for autonomous mobile manipulators in industrial
environments,” in ICIT, 2015.

P. Laker, “Blackboard design pattern,” https://social.
technet.microsoft.com/wiki/contents/articles/13215.
blackboard-design-pattern.aspx, 2012.

J.-P. Tolvanen and S. Kelly, “How domain-specific modeling
languages address variability in product line development: In-
vestigation of 23 cases,” in 23rd International Systems and Software
Product Line Conference, ser. SPLC, 2019.

A. Alami, Y. Dittrich, and A. Wasowski, “Influencers of quality
assurance in an open source community,” in 11th International
Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE), 2018.

E. E. Moore et al., “Gedanken-experiments on sequential machines,”
Automata studies, vol. 34, pp. 129-153, 1956.

J. Bosch, “Design patterns as language constructs,” Journal of Object
Oriented Programming, 1997.

J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of
practice in model-driven engineering,” IEEE software, vol. 31, no. 3,
pp- 79-85, 2013.

J. A. Cruz-Lemus, A. Maes, M. Genero, G. Poels, and M. Piattini,
“The impact of structural complexity on the understandability of
UML statechart diagrams,” Information Sciences, vol. 180, no. 11,
pp- 2209-2220, 2010.

M. Genero, D. Miranda, and M. Piattini, “Defining and validating
metrics for UML statechart diagrams,” in QAOOSE, 2002.

J. A. Cruz-Lemus, M. Genero, M. Piattini, and A. Toval, “Inves-
tigating the nesting level of composite states in UML statechart
diagrams,” Proc. QAOOSE, vol. 5, pp. 97-108, 2005.

——, “An empirical study of the nesting level of composite states
within UML statechart diagrams,” in International Conference on
Conceptual Modeling. Springer, 2005, pp. 12-22.

D. Brugali and P. Scandurra, “Component-based robotic engineer-
ing (part i)[tutorial],” IEEE Robotics & Automation Magazine, vol. 16,
no. 4, pp. 84-96, 2009.

Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and
K. Czarnecki, “An exploratory study of cloning in industrial
software product lines,” in CSMR, 2013.

L. Gherardi and D. Brugali, “Modeling and reusing robotic
software architectures: The hyperflex toolchain,” in ICRA, 2014.
C. Schlegel, A. Lotz, M. Lutz, D. Stampfer, J. F. Inglés-Romero, and
C. Vicente-Chicote, “Model-driven software systems engineering
in robotics: covering the complete life-cycle of a robot,” it-
Information Technology, vol. 57, no. 2, pp. 85-98, 2015.

D. L. Wigand, A. Nordmann, M. Goerlich, and S. Wrede, “Modu-
larization of domain-specific languages for extensible component-
based robotic systems,” in IRC, 2017.

SPARC Robotics, “Robotics 2020 multi-annual roadmap for
robotics in Europe,” SPARC Robotics, EU-Robotics AISBL, The Hauge,
The Netherlands, 2017.

Razan Ghzouli is currently working towards a
PhD degree at Chalmers University of Technol-
ogy, Gothenburg, Sweden, where she is part
of the software engineering division at the De-
partment of Computer Science and Engineering.
She received her master degree in applied data
science from the university of Gothenburg, Swe-
den and her bachelor degree in computer and
automation engineering from Damascus univer-
sity, Syria. Her PhD focuses on facilitating the
migration to model-based design and systems to

enable reusable and maintainable robotic missions.

24

Thorsten Berger is a Professor in Computer
Science at Ruhr University Bochum in Germany.
After receiving the PhD degree from the Univer-
sity of Leipzig in Germany in 2013, he was a
Postdoctoral Fellow at the University of Waterloo
in Canada and the IT University of Copenhagen in
Denmark, and then an Associate Professor jointly
at Chalmers University of Technology and the
University of Gothenburg in Sweden. He received
competitive grants from the Swedish Research
Council, the Wallenberg Autonomous Systems
Program, Vinnova Sweden (EU ITEA), and the European Union. He is
a fellow of the Wallenberg Academy—one of the highest recognitions
for researchers in Sweden. He received two best-paper and two most-
influential-paper awards. His service was recognized with distinguished
reviewer awards at the tier-one conferences ASE 2018 and ICSE 2020,
and at SPLC 2022. His research focuses on model-driven software
engineering, program analysis, and empirical software engineering.

m  Einar Broch Johnsen is a Professor at the
. Department of Informatics of the University of

2 Oslo in Norway. He is the strategy director of
\ Sirius, a center for research-driven innovation
‘ with long-term funding from the Research Council
| of Norway. He has been prominently involved in
many national and European research projects;

= in particular, he was the coordinator of the EU
FP7 project Envisage (2013-2016) on formal
methods for cloud computing and the scientific
coordinator of the EU H2020 project HyVar (2015-
2018) on hybrid variability systems. His research focuses on formal
methods, programming models and methodology, and model-based
analysis in domains such as distributed and concurrent systems, cloud

computing, digital twins and robotics.

Andrzej Wasowski is Professor of Software
Engineering at the IT University of Copenhagen.
He has also worked at Aalborg University in
Denmark, and as visiting professor at INRIA
Rennes and University of Waterloo, Ontario. His
interests are in software quality, reliability, and
safety in high-stake high-value software projects.
This includes semantic foundations and tool
support for model-driven development, program
analysis tools, testing tools and methods, as well
as processes for improving and maintain quality
in software projects. Many of his projects involve commercial or open-
source partners, primarily in the domain of robotics and safety-critical
embedded systems. Recently he coordinates the Marie-Curie training
network on Reliable Al for Marine Robotics (REMARQO). Wasowski holds
a PhD degree from the IT University of Copenhagen, Denmark (2005) and
a MSC Eng degree from the Warsaw University of Technology, Poland
(2000).

Swaib Dragule is a PhD Fellow in Computer
Science and Software Engineering at Chalmers
University of Technology and Makerere University.
He holds MSc. and BSc. in computer science. He
is an academic staff of Makerere university, Col-
lege of Computing and Information Sciences. His
research interests are in programming languages,
domain-specific languages, and robotics.



 https://social.technet.microsoft.com/wiki/contents/articles/13215.blackboard-design-pattern.aspx
 https://social.technet.microsoft.com/wiki/contents/articles/13215.blackboard-design-pattern.aspx
 https://social.technet.microsoft.com/wiki/contents/articles/13215.blackboard-design-pattern.aspx

	Introduction
	Background
	Behavior Trees
	State Machines

	Methodology
	Identifying DSLs and Language Concepts (RQ1)
	Analyzing DSL Implementations (RQ2)
	Identifying and Analyzing Robotics Projects (RQ3)

	Language Concepts (RQ1)
	Concepts and Semantics in Behavior-Tree DSLs
	Concepts and Semantics in State-Machine DSLs

	Language Implementation (RQ2)
	Behavior-Tree DSLs: Language Design
	State-Machine DSLs: Language Design

	Behavior-Tree and State-Machine Models (RQ3)
	Language Popularity
	Characteristics of the Models
	Reuse

	Threats to Validity
	Related Work
	Conclusion
	References
	Biographies
	Razan Ghzouli
	Thorsten Berger
	Einar Broch Johnsen
	Andrzej Wasowski
	Swaib Dragule


