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Abstract—Traditional software engineering tools for managing
assets—specifically, version control systems—are inadequate to
manage the variety of asset types used in machine-learning model
development experiments. Two possible paths to improve the
management of machine learning assets include 1) Adopting
dedicated machine-learning experiment management tools, which
are gaining popularity for supporting concerns such as versioning,
traceability, auditability, collaboration, and reproducibility; 2)
Developing new and improved version control tools with support
for domain-specific operations tailored to machine learning assets.
As a contribution to improving asset management on both
paths, this work presents Experiment Management Meta-Model
(EMMM), a meta-model that unifies the conceptual structures
and relationships extracted from systematically selected machine-
learning experiment management tools. We explain the meta-
model’s concepts and relationships and evaluate it using real
experiment data. The proposed meta-model is based on the
Eclipse Modeling Framework (EMF) with its meta-modeling
language, Ecore, to encode model structures. Our meta-model can
be used as a concrete blueprint for practitioners and researchers
to improve existing tools and develop new tools with native
support for machine-learning-specific assets and operations.

Index Terms—Machine learning experiments; Management
tools; MDE; Metamodeling;

I. Introduction
Improving the effectiveness of developing intelligent software
systems requires new methods and tools for managing the devel-
opment of machine learning components. The management of
machine learning models and other involved assets is essential
for two reasons: First, training a machine learning model
involves a potentially long sequence of experiments consisting
of several iterations, a.k.a., runs [1]. Each run employs different
versions of assets (e.g., datasets, hyperparameters, source code)
within the solution space of the considered task. Explicit
management of experimental runs can help model developers
avoid redundant effort and recover earlier experimental paths
on demand. Second, trained models are integrated into larger
software systems, in which their performance is continuously
monitored [2]. A typical activity is the retraining of models after
more data has become available, possibly from new encountered
contexts. To make informed judgments for retraining, it is even
essential to understand the data used for training the earlier
versions of the model in question, and the experimental paths
that have been explored during the training.

Traditional software engineering tools for the management
of assets–specifically, version control systems (VCSs)–are

faced with severe challenges when used for such tasks [1],
[3]–[6]. Machine-learning-enabled systems involve a greater
variety of asset types than traditional software development,
including resource artifacts such as datasets, features, and
models; software artifacts such as source code files and (hyper)-
parameters; and metadata, including experiment metadata,
execution metadata, and performance metrics [7]. VCSs are not
geared to support advanced, domain-specific queries on such
assets, such as: which features have been used in a run in which
the final model precision was 0.6 or greater? Consequently,
new ways to manage machine-learning model development
experiments involving these asset types are needed [5]–[9].

To address this situation, we identify two paths to improve
the management of machine learning assets:

First, dedicated machine-learning experiment management
tools that aim to provide support to manage assets of machine
learning experiments effectively. Many of such tools have
recently become available, including Neptune.ai, DVC, and
MLflow. These tools aim to offer practical ways to maintain
an account of the provenance of the assets and processes used
during machine learning experiments, supporting concerns such
as versioning, traceability, auditability, experiment reproducibil-
ity, and collaboration. Fig. 1 shows a high-level illustration
of how they work. Yet, as these tools have become available
quite recently, they are potentially not fully matured yet. Mora-
Cantallops et al. [10] highlight several factors that may hinder
the adoption of these tools, including: lack of interoperability
across different tools, lack of explicit representation of domain
knowledge, and friction or overhead incurred during usage. As
a common drawback, users have to carry out a lot of code
instrumentation to track assets [11].

Second, new and improved version control tools, building
on traditional ones and extending them with domain-specific
operations tailored to machine learning assets. This would
address the perspective of software engineers, who routinely
use standard tools such as Git, thereby addressing the issues of
interoperability and usage overhead to some extent. Yet, such
tools should ideally be interoperable with existing experiment
management tools, which are tailored toward the needs of data
scientists. Furthermore, the development of such tools should
incorporate the domain knowledge about machine learning
experiments and runs, which is already available in machine-
learning experiment management tools.



In this work, we contribute toward both paths: the develop-
ment of next-generation versioning tools and the improvement
of existing machine-learning experiment management tools. We
present the Experiment Management Meta-Model (EMMM), a
meta-model that unifies concepts and relationships extracted
from systematically selected experiment management tools,
focused on the concept of experimental runs.

Our meta-model characterizes two main concerns: (i)
machine-learning asset structures as concepts and their relation-
ship as observed in the state-of-the-art tools; (ii) conceptual
version control structures that can hold both machine learning
and traditional assets. It can be used as a blueprint for
practitioners to improve existing tools (targeting data scientists)
and for researchers to develop new tools (targeting software
engineers) with capabilities to natively support the identified
concepts and relationships. We hope such capabilities can
foster the realization of tools with native support for machine-
learning-specific asset types and natively support machine
learning experiment concerns, such as versioning, traceability,
auditability, collaboration, and reproducibility.

We evaluate our meta-model on a real case, validating
its usefulness and suitability for capturing actual revision
histories of machine learning software. In addition, we discuss
the improvements enabled by our meta-model in terms of
possible use cases. EMMM and the evaluation artifacts are
available from an online appendix: https://github.com/
emmm-metamodel/emmm.

II. Background

A. Machine Learning Experiments

Similar to traditional software engineering processes [12],
machine-learning experiments follow well-defined processes
designed in data science and data mining contexts such as
CRISP-DM [13] and KDD [14]. The workflow, which consists
of data-oriented, model-development, and model-operation
stages [6], [8], [9], [15], has multiple feedback loops that
represent the iterations over sets of steps within the workflow
for a variable number of times until the process results in the
desired outcome [5]. An asset of a machine learning experiment
is an individually storable unit of an experiment that serves a
specific purpose [7].

Many incremental iterations are often performed over
workflow stages as experiment runs. In some cases, runs can
be executed in parallel to improve performance. Each run
represents a unique configuration in the solution space of a
learning task. The solution space includes datasets from the
application domain presenting relevant features for the learning
task, a slice or subset of the initial dataset as training data,
learning algorithms, and their (hyper)-parameters. A completed
run’s outcome often includes a trained model, the model
performance measurement based on test data, and obtained
predictions from an unseen slice or subset of the initial dataset.

We describe two levels within a run—the pre-model and
post-model phases (see Fig. 2). These levels follow users’
perceptions of activities carried out before generating a model
and the evaluation-related activities. The physical representation
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Fig. 1: Illustration of how experiment management tools work
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Fig. 2: A representation of a machine-learning experiment run

of assets used during an experiment varies depending on the
platforms and tools used. For instance, users may use the exact
text file representation for an experiment’s (hyper)-parameters,
algorithms, and features in small setups. Consequently, our
representation of the run and assets here is a logical one.

B. Model-Driven Engineering & Meta-Modeling

Model-driven engineering (MDE) focuses on creating and ex-
ploiting models to produce software. With the help of MDE, it is
possible to express software design using concepts that closely
reflect the problem domain than the actual implementation
technology. Meta-modeling is an essential concept in MDE,
closely related to domain modeling (e.g., using UML diagrams
in the early stages of software development). A meta-model
provides a more formal representation of a domain model and
precisely describes the possible model instances.

A meta-model determines the abstract syntax of a model,
that is, an underlying data structure of concrete model instances
[16]. Concrete model instances can be visualized in different
concrete syntaxes (e.g., graphical and textual ones). To encode
the knowledge collected in our analysis, we encoded it as a
formal meta-model. To this end, we used Ecore from the Eclipse
Modeling Framework (EMF) [17], a popular meta-modeling
language in the MDE community [16].

C. Related Work

We now present the two main directions of related work.
Machine Learning Experiment Management Tools: Two
main concerns of experiment management tools are traceability
and reproducibility. Mora-Cantallops et al. [10] review nine
relevant tools for their traceability in connection to building
machine learning models and machine-learning-based systems.
They found several tools supporting traceability and repro-
ducibility but stated that the tools do not support a common
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approach. Hence, the authors recommend that future research
fill this gap, enabling interoperability across traceability tools
through shared semantics. A survey by Serban et al. [18] that
shows the level of adoption of the recognized engineering
practices among 300+ practitioners highlights the importance
of tracking predictions with model versions and input data
(traceability), which is commonly supported by experiment
management tools. Several empirical studies [7], [19]–[21]
investigate experiment management tools for the support of
reproducibility and comparison of their features, including
StudioML, MLflow, Weights & Biases, Polyaxon, Comet.ml,
Sacred, Sumatra, and DVC.
Artifact Meta-modeling is a model-driven technique for
representing assets and their relations. By relying on artifact
meta-models, tools may offer better support for working
with diverse file types. Some studies adopt meta-modeling
techniques to represent and understand assets managed by
tools or within projects [22]–[25]

Hillemacher et al. [25] and Atouani et al. [24] intro-
duce meta-models for machine learning and deep learning
frameworks, aiming to provide a development foundation for
automation and data management for developing software with
machine learning components.

Samuel et al. [26], [27] develop the REPRODUCE ME
ontology for reproducibility of general experiments using Se-
mantic Web technologies. Including machine learning concepts
is mentioned as a future work direction of high-interest [27].

Our work applies a meta-modeling technique comparable
to [24], [25]. However, our work differs since we focus on
concepts within machine learning experiments and runs, as
opposed to finalized machine learning components. The meta-
models from both works [24], [25] do not make the revision
history of machine learning assets explicit; therefore, they
cannot be used in the way our subject tools and ideas for new
tools do. To this end, we applied a systematic methodology,
extracting concepts from an analysis of our 17 subject tools.

III. Methodology

We now discuss our methodology, including the aspects of
tool selection and the extraction of knowledge about critical
structures and relationships supported by the subject tools.

A. Tool Selection

For this part of our methodology, we rely on our previous
survey of machine-learning experiment management tools [7],
which provides a suitable basis: It surveyed available tools and
their high-level characteristics, following systematic literature
review guidelines. We focus on the persistency and versioning
aspects of the tools, which are critical for our considered
scenarios. Table I shows the final selection, which includes
nine cloud-based and eight standalone software tools.

B. Domain analysis & Validation

We proceeded with a domain analysis, in which we developed
a meta-model, entitled EMMM, representing the superset of
the concepts supported by our considered tools. The two main

TABLE I: Considered tools (following the selection from [7]).

Cloud Service Standalone Software

Neptune.ml (netptune.ml) Datmo (github/datmo)

Valohai (valohai.com) Feature Forge (github/machinalis)

Weights & Biases (wandb.com) Guild (guild.ai)

Determine.ai (determined.ai) MLFlow (mlflow.org)

Comet.ml (comet.ml) Sacred (github/IDSIA)

Deepkit (github/deepkit) StudioML (github/open-research)

Dot Science (dotscience.com) Sumatra (neuralensemble.org)

PolyAxon (polyaxon.com) DVC (dvc.org)

Allegro Trains (github/allegroai) -

components of a meta-model are classes and references showing
concepts of machine-learning experiment management tools
classes and their relationships. The concepts and relationships
were formulated based on a detailed manual analysis of the
tools and how they support their features for asset management.
When we observed conflicts between observations in two tools,
we chose a higher-level concept that encapsulates them, in line
with one of the main intentions of meta-modeling—reducing
information complexity by abstraction [16]. For example,
the specific metadata supported across the subjects are often
conflicting in the sense that different tools support different
types of metadata; so, we introduce the class Metadata that
can represent any metadata type.

We carried out the above domain modeling in three phases:
First, one author performed the initial design of the meta-
model to establish its classes and their relationships. Then, we
adopted an iterative process to refine the class relationships
from the initial design. This involved weekly meetings of
all authors, where we reviewed and iteratively improved the
meta-model design until all authors approved the meta-model.
We performed a validation phase where we populated our
meta-model with concrete experiment information from actual
experimental revision histories to reveal design flaws and
identify improvement opportunities.

IV. EMMM: ProposedMeta-model

In this section, we present EMMM along with justifications for
our design decisions. EMMM unifies essential characteristics,
concepts, and relationships from 17 subject tools (see Table I).
Figure 3 shows the resulting structure of our meta-model.
Below, we describe EMMM’s different aspects.

A. Experiments & Experiment Runs

Experiment: Model development experiments consisting of
multiple runs are the main concept in our subject tools. An
experiment can be described as a project for a specific goal
or learning task. For example, Neptune and PolyAxon refer
to experiments as projects. The analyzed subjects support
essential information about experiments with details such as
names, descriptions, and requirements. Therefore, we present
the class Experiment as the top-level asset of the meta-model.
Some subjects allow custom metadata to store information
such as tags, requirements, and authors. Accordingly, the
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https://valohai.com
https://github.com/machinalis/featureforge
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https://github.com/IDSIA/sacred
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https://github.com/open-research
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https://polyaxon.com
https://dvc.org
https://github.com/allegroai


Fig. 3: EMMM: Metamodel unifying all asset types and their relationships extracted from the 17 subject tools.

class Experiment references multiple instances of the class
Metadata to represent such information.

Experiment Runs: As the core abstraction of the subject tools,
an experiment run represents the main asset type to which other
asset types are associated (as illustrated in Figures 1 and 2).
Our tools support the book-keeping of the exact versions of the
assets used in a specific run. Consequently, our meta-model
has the class Run with the attribute versionId. The class
references Metadata to support storing additional metadata
such as tags, descriptions, and notes on the thought process of
decisions made for each run. These metadata instances can be
useful for managing, comparing, or analyzing experiment runs.
The versionId stores the incrementing count of experiment
trials and is important for tracking and linking versions of other
assets to an instance of the Run class. It represents the version
id (similar to the unique commit id in traditional VCS) as a
machine learning experiment evolves with constant updates
and changes to its associated assets.

The class Run is related to all other experiment assets through
association with the abstract class Asset. Through this abstract
class, Run is associated with the following assets: (a) Datasets
and features, (b) Implementation assets and their parameters, (c)
Execution results and performance data from a run. A specific
version of an asset can be shared by multiple instances of Run,
or it can be unique to an instance of Run. Suppose that an asset

is modified between two successive runs, then the previous and
current versions of the asset are uniquely associated with the
previous and current Run instances. On the other hand, if an
asset were to be unchanged (while other assets are changed),
a copy of the asset version is shared between previous and
current run instances. However, the meta-model should not
generate a new Run instance if nothing changes. Therefore,
given the versionId of an instance of Run, the meta-model
retrieves the snapshot version of all associated assets.

A Run instance is typically created after the execution of
an experiment process finishes. For subjects such as Guild.ai
and DVC, a Run instance is created when users invoke a
command to execute the current Run instance. For DVC, "$
dvc exp run" executes the experiment process as presented
in the current version of assets and creates a Run instance with
an increment of the versionId attribute. Versions of assets
modified afterward are associated with the new instance until
another Run execution command is issued. Likewise, Guild
provides the "$ guild run" command. An experiment run is
associated with the execution of data-oriented, model training,
and model evaluation tasks. At the execution point of such
tasks, we associate all snapshots of assets with the current run.

B. Assets
The abstract class Asset supports modeling various concrete
asset types used during experiments. The attribute versionId



tracks the different versions of assets created as an experiment
evolves. The snapshot version of assets inherited from the
abstract class has a one-to-one or one-to-many relationship
with an instance of Run.

As summarized in Section III-A, there are four core groups
of asset types observed in the subject tools: resource, software,
metadata, and execution assets, which we represent as follows:

1) Resource assets: The core resource asset types are dataset
and model. Many subjects prioritize these two primary assets
of machine learning experiments. Datasets serve as input
at multiple stages (i.e., data processing and model training
stages) of machine learning experiments, and models generated
from datasets serve as input for the model evaluation phase
of experiments. In contrast to datasets and models, generic
resources represent arbitrary assets of any type [7].
Dataset & DataFeature: We introduce the class Dataset as
a kind of Asset that represents the input data available for
an experiment. Since the subject tools often target supervised
machine learning experiments, the datasets can be in tabular
form, with features available as headers of each column of the
datasets. The class Dataset contains multiple DataFeature,
which store dataset’s features. During an experiment, data trans-
formations or modifications create new instances of Dataset
while incrementing the value of its inherited versionId
attribute. The list of DataFeature instances used from one Run
instance to another varies when new features are engineered or
removed. Irrespective of the state of Dataset, the instances
of DataFeature used during a particular run may be a subset
of or all the features contained in the latest Dataset instance.
This justifies the need for a separate representation of data
features as class DataFeature and their type. Since class
DataSet, and DataFeature inherit from Asset, metadata
describing the dataset (e.g., URI, author and data source) can
be stored in the meta-model.
Data partitions: A crucial aspect of machine learning ex-
periments involves the selection of data instances for training,
testing, and validating the model performance. There are several
approaches for this purpose, e.g., cross-validation [28]. Users
may use different partitioning ratios between two different
experiment runs. Also, the selection of instances can be random,
making it difficult to recreate the exact selection later. Conse-
quently, data partitioning methods available in machine learning
frameworks often provide a ’random seed’ argument to ensure
consistent results. Some tools, including DVC, and Neptune,
store data partitioning information as experiment parameters.
To account for data partitioning, our meta-model presents
classes TrainingSet and EvalSet, which are referenced by
ModelTrain and ModelEval implementations, respectively.
Model: Machine learning models are trained from datasets
using learning algorithms typically provided by development
frameworks, such as TensorFlow (http://tensorflow.org) and
SciKit-Learn. (http://scikit-learn.org) Some subjects, such as
Comet.ml, Valohai, and Neptune support direct or indirect
tracking and storing models and their metadata as asset types
to support asset management concerns, such as traceability
analysis. When a model is trained and evaluated within an

experiment run, the snapshot versions of other assets (such as
software and dataset features) are linked with the specific model.
To support certain operations, such as model comparison across
different runs, subject tools support the storage and tracking
of Model as an asset type.

The subclass Model, by inheriting from Asset, can store
model-related metadata. The class Model also references
DataFeature to store information on the features or schema
that the model supports. With the Metadata inherited by the
class Model, information such as documentation of the model’s
characteristics or model’s intended use cases and context can be
stored. As with other parts of our meta-model, assets connected
to a model can be easily retrieved through the class Run, which
contains all its associated assets. For example, the resulting
performance metrics and execution data when training a model
can be fetched through the versionId of a Run instance that
is associated with the Model instance in question.
Dependency: Information about the dependency of experiments
on external libraries and environments is crucial for the subject
tools since many offer reproducibility as a key functionality.
Since sharing a dependency or environment with source
code and dataset provides the highest level of reproducibility
[29], subjects such as MLFlow track required dependencies
to reproduce the previous experiment runs. Examples of
supported dependencies are container or package management
information, e.g., Docker container and Conda environments.
Additional relevant information includes environment variables,
host OS information, hardware details, and library versions used
for experiments. Accordingly, we include class Dependency,
referenced by Implementation assets, to store all dependency
or environment-related files and metadata.
GenericFile: Pre-determining all information users may require
to support their experiments seems impossible. Consequently,
many subjects offer ways to track and manage arbitrary files.
Examples of such information are credentials to authenticate
external services that host other resources or application domain
reports to help understand the experiment. Furthermore, some
subjects provide a "one-size-fits-all" to track and manage
resources (i.e., tracks all asset types without particular consid-
eration for the specific types). Therefore, our meta-model has
a concrete class ArbitraryFile, which inherits the abstract
class GenericFile—a type of Asset— to store arbitrary files.
The abstract class GenericFile must be extended to store
other custom files.

2) Software assets: Software assets represent the scripts or
source code used to implement the experiment’s processes as
one or more stages of a machine learning workflow. They also
typically rely on the supporting machine learning frameworks
or model development tools that provide a collection of
general machine learning techniques, such as SciKit-Learn,
PyTorch, TensorFlow, and Keras. Our meta-model reflects the
support found in the subjects to store implementation assets
through the classes DataOriented, ModelTrain, ModelEval,
GenericImpl, Parameter, and Pipeline.
Implementation: Implementation assets represent text-based
files with implementation details to carry out specific machine
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learning operations. Version control systems (VCS), such as Git,
are essential source code management tools commonly used
when managing implementation assets of traditional software
systems. For machine-learning experiment assets, there is a
desire for alternative approaches that are better suited for
the exploratory nature of machine-learning experiments [5].
Accordingly, many subjects integrate or build on existing VCS
to offer tailored approaches. For example, DVC extends Git
to provide methods to prepare experiment assets in stages
and execute experiment runs while automatically tracking the
versions of assets as the experiment evolves. Also, subjects such
as MLFlow and Neptune interface with Git repositories to track
their commit information (i.e., commit hash and messages)
along with the states of other assets as experiments evolve.

Consequently, we include the class Implementation, point-
ing to a sourceFile taking other Assets as inputs or outputs.
The classes DataOriented, ModelTrain, and ModelEval are
types of Implementation based on the aspect of the machine
learning workflow they represent. Since these classes inherit
from abstract class Asset, the classes can store source code-
related metadata. Classes DataOriented, ModelTrain, and
ModelEval vary based on specific asset inputs and outputs
they support. Class DataOriented represents implementation
instances for preprocessing, transformation, or engineering of
datasets, and it references class Dataset as input and output.
The implementation of the training stage, where machine
learning algorithms use training datasets to generate a new
model, is represented by the class ModelTrain. It references
instances of TrainingSet and DataFeature as its input, with
class Model as its output. Implementation of the performance
evaluation of a model is represented by the class ModelEval,
which references the instances of Model and EvalSet as the
model to evaluate and dataset to use for evaluation, respectively.
The class GenericImpl represents other implementations such
as model deployment or monitoring that are not represented
by DataOriented, ModelTrain, and ModelEval.
Parameter: (Hyper-)parameters are special parameters control-
ling the model training process of a machine learning algorithm
(e.g., learning rate, regularization, and tree depth). Most subjects
support hyper-parameters tracking and management through
custom metadata, while the subjects Comet.ml, PolyAxon,
and Valoh.ai support hyper-parameters as asset types. Such
tools offer hyper-parameter-specific features, including hyper-
parameter tuning to facilitate the model-oriented stages of
machine learning workflow. In addition, the parameter asset
type represents other configurable parameters that may influ-
ence any aspect of experiment processes.

It is mostly the responsibility of the users to define necessary
experiment parameters for the tools to track. Consequently,
our meta-model has the class Parameter inherited from the
abstract class Asset. The class Parameter can be referenced
by Implementation as input through inheritance from Asset.
For example, an instance of Parameter can serve as input for
different instances of the class ModelTrain.
Pipeline: Subjects such as DVC support representing sequences
of implementation assets to produce a complete machine

learning pipeline. Here, the inputs and dependencies of
each implementation stage are defined along with expected
outputs in a direct acyclic graph. Consequently, our meta-
model includes the class Pipeline, referencing sub-classes
of Implementation as its stages. To represent a concrete
pipeline, an instance of class Pipeline can store instances of
DataOriented, ModelTrain, ModelEval or GenericImpl
as sequence with their respective inputs and outputs.

3) ExecutionData assets: The abstract class Execution-
Data represents execution-related information that the subject
tools track explicitly or automatically when executing experi-
ment processes. It inherits from Asset and can be referenced
as output generated by the class Implementation.
ExecutionInfo: ExecutionInfo stores execution information
as generally tracked by the tools, e.g., terminal outputs, logs,
book-keeping information (e.g., progress, status, duration, and
events), and live hardware consumption (e.g., CPU, GPU, and
memory utilization).
ModelPerfomance: Most subject tools track the model per-
formance information generated as the output of model
evaluations. This is based on evaluation metrics, as tracked
in different forms based on the machine learning task (e.g.,
sensitivity or ROC values for classification tasks; MSE, MAPE,
or R2 for regression tasks). Our meta-model stores model
performance using class ModelPerformance, a subtype of
ExecutionData.

4) Metadata: Metadata describes the descriptive and struc-
tural static information about machine learning experiments and
their assets. The subject tools support metadata management
for software assets, datasets, models, execution, dependencies,
and experiments [7]. The supported metadata of assets can be
predefined or custom-defined meta information. For example,
tag is a type of metadata information supported in Neptune;
however, users can create additional custom key-value metadata
information as required to associate with experiment runs.
Since metadata is core to the experiment management tools,
all concrete classes of asset types have an association with the
class Metadata through the abstract class Asset.
Experiment Stores: Class ExperimentStore represents the
storage of all experiment-related information and assets. How
subjects physically store the actual Experiment information
differs: some use file systems, others use databases, clouds, or
a combination of those. For instance, PolyAxon, DotScience,
and MLFlow delegate the storage of software assets to external
version control systems, such as Git. Similarly, several tools
such as DotScience, MLFlow, and DVC support storage and
tracking of datasets from different storage types, including dis-
tributed storage systems such as AWS S3. ExperimentStore
objects can contain Run s, containing all assets used during a
specific run. The physical storage of assets may differ based on
the asset types. For instance, the class Dataset can be stored
in separate storage specific to data, while the class Model
can be stored in another storage specific to models and their
relevant metadata. Similarly, the class GenericFile can also
be stored separately.



V. Metamodel Evaluation: Modeling a real case

We validated our metamodel EMMM by instantiating it for
a real case. In this section, we describe the details of this
instantiation and how doing so led to further improvements.
All evaluation artifacts are available via our online appendix:
https://github.com/emmm-metamodel/emmm.

We instantiated our meta-model for a case of a submission
to Kaggle, a machine learning competition community. The
submission addressed the Titanic survival classification task
with 18 experimental runs (https://www.kaggle.com/code/

hosamwajeeh/titanic-survival-crossval-81-89-score-0-78708).
To create the instance, we used the EMF-generated source
code [17] for EMMM, which includes all required classes,
packages, and factories. We fetched the Kaggle experiment,
extracted the assets for the available runs, and added the assets
to the instance of EMMM. We persisted the created instance
as an XMI file through EMF’s resource class. The interchange
file viewer provides a way to review the meta-model for
consistency with the source experiment data. We modified the
meta-model for encountered inconsistencies.

Figure 4 shows an excerpt of the created EMMM instance.
The root entity is the Experiment Store, which holds the
Experiment "Titanic Survival Prediction," containing the 18
experiment runs and their assets. The figure shows the asset
under the fifth experiment run, which are of different runs. For
example, Dataset and DataOriented implementation have
not been modified since run 1, while the second version of
Parameter and ModelEval was used during run 5.

Validating EMMM with actual experiment data led to several
improvements. While modeling the experiment, we solved two
problems with prior meta-model versions: generating multiple
Models from ModelTrain and evaluating multiple ones using
EvalModel in a single run was previously not possible, which
we fixed. Similarly, we updated the representation of the data-
related assets and their associations with the software assets
to easier modeling of experiment data.

Fig. 4: EMMM instance showing an experimental run.

VI. Discussion

We discuss how EMMM provides a practical foundation for
new and improved tools, including possible uses of EMMM
and customization opportunities, as well as threats to validity.

Using EMMM: Our meta-model is a ready-to-use software
artifact, formalized in Ecore, directly usable to facilitate tool
development. Via the EMF-generated code [17] that we provide
with the meta-model, it provides APIs and standard editors for
manipulating its instances (shown in Section V). We foresee
the following uses of EMMM:

(i.) Enabling interoperability. Lack of interoperability has
been cited as a weakness of existing experiment management
tools [10]. Our meta-model provides a foundation for enabling
interoperability, offering an empirically informed representation
of concepts from 17 tools. Developers of such tools can write
import and export functions towards our meta-model; instead
of one importer and exporter for each of the other tools, which
might be prohibitively expensive.

(ii.) Blueprint for developing new tools. Extending available
versioning tools such as Git towards native support for machine
learning requires a conceptualization of machine learning
projects. Our meta-model provides such a conceptualization.
Developers of tool extensions could represent the machine-
learning-specific information of a revision history as instances
of our meta-model.

(iii.) Connecting to available MDE tools and services. By
formalizing concepts of machine learning experimentation in a
meta-model, our contribution bridges two technical domains of
MDE and machine learning. In doing so, we make a plethora
of MDE work [16] applicable to a new context in machine
learning, e.g., tools for model analysis, simulation, refactoring,
quality assurance, testing, and many others.

Customizing EMMM: The variety of existing tools [7] can
be ascribed to different user needs and scenarios. Even though
we have presented a unified meta-model, not all valid uses
require the support of the meta-model in its entirety. Instead,
it might be desirable that new tools implement support for a
subset of the meta-model based on their specific needs. This
leads to the notion of a configurable meta-model, in which a
configuration can be described as views representing subsets
of all the concepts and their relationships.

For example, we currently have tools that serve mainly as
machine-learning model registries (e.g., ModelDB [30]) or
those that integrate model registries (e.g., MLFlow, Vertai,
and Neptune model registries). Such tools or aspects of tools
focus on the class Model and its Metadata. So, configuring
our meta-model with views on relevant assets can serve
tools that require a subset of the meta-model. A configurable
meta-data also provides opportunities for new kinds of tools.
For example, tools with views on DatasetFeature can be
used to trace model features back to concrete concepts within
the application domain. Such information can be valuable
knowledge for domain experts. In future work, we aim to
extend EMMM to provide such configurable views.

https://github.com/emmm-metamodel/emmm
https://www.kaggle.com/code/hosamwajeeh/titanic-survival-crossval-81-89-score-0-78708
https://www.kaggle.com/code/hosamwajeeh/titanic-survival-crossval-81-89-score-0-78708


Threats to Validity: Concerning external validity, while our
meta-model represents concepts from 17 systematically selected
tools, some tools may exist that have not been covered by
our methodology, especially in a fast-moving field such as
machine learning. Our considered tools are generally tailored
towards supervised machine learning algorithms instead of other
machine learning types, such as reinforcement learning. Future
development of such tools will still benefit from the present
unification effort since other machine learning algorithms
generally share some characteristics with supervised machine
learning (e.g., storing information about multiple experiment
runs is essential for provenance questions). In addition, our
use of just one case for the evaluation may limit external
validity. On internal validity, our design decision justifications
are based on the features and asset types observed in the subject
tools. One threat is that our interpretations of different tool
features are subjective. We mitigated this threat by adopting a
methodology where one author designed the initial meta-model,
which was iteratively reviewed and improved by all authors.

VII. Conclusion and FutureWork

We proposed EMMM, a unified meta-model representing the
asset types, their relationships, and their evolution history
among machine learning experiments as observed in 17
machine-learning experiment management tools. We propose
EMMM as a reference for tool developers and researchers
seeking to improve existing tools or develop next-generation
tools with native support for machine learning. EMMM presents
a superset of conceptualized structures and their relationships
extracted from our subject tools. Our meta-model can foster
the improvement of tools and the development of new tools
with native support for machine learning assets.

In the future, we plan to extend our meta-model to make it
configurable for supporting multiple views for specific tool and
user needs. Furthermore, we aim to validate it qualitatively,
following evaluation methods from the assessment of tax-
onomies [31], [32], addressing a need for more comprehensive
usefulness and effectiveness evaluations of machine learning
asset management research [33]. A recent extension [34] of the
survey that informed our tool selection [7] provides new cases
(from research papers instead of in-practice tools) which could
be addressed to ensure the completeness of the metamodel.
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