
Noname manuscript No.
(will be inserted by the editor)

Software Variability in Service Robotics

Sergio Garćıa · Daniel Strüber · Davide Brugali · Alessandro Di Fava ·
Patrizio Pelliccione · Thorsten Berger

Received: date / Accepted: date

Abstract Robots artificially replicate human capabili-

ties thanks to their software, the main embodiment of in-

telligence. However, engineering robotics software has be-

come increasingly challenging. Developers need expertise

from different disciplines as well as they are faced with

heterogeneous hardware and uncertain operating envi-

ronments. To this end, the software needs to be variable—

to customize robots for different customers, hardware,

and operating environments. However, variability adds

substantial complexity and needs to be managed—yet,

ad hoc practices prevail in the robotics domain, challeng-

ing effective software reuse, maintenance, and evolution.

To improve the situation, we need to enhance our em-

pirical understanding of variability in robotics.

We present a multiple-case study on software vari-

ability in the vibrant and challenging domain of service

robotics. We investigated drivers, practices, methods,

Sergio Garćıa
University of Gothenburg | Chalmers, Gothenburg, Sweden
E-mail: sergio.garcia@gu.se

Daniel Strüber
Radboud University Nijmegen, Nijmegen, Netherlands
E-mail: d.strueber@cs.ru.nl

Davide Brugali
University of Bergamo, Bergamo, Italy
E-mail: davide.brugali@unibg.it

Alessandro di Fava
PAL Robotics, Barcelona, Spain
E-mail: alessandro.difava@pal-robotics.com

Patrizio Pelliccione
Gran Sasso Science Institute (GSSI), L’Aquila, Italy
E-mail: patrizio.pelliccione@gssi.it

Thorsten Berger
University of Gothenburg | Chalmers, Gothenburg, Sweden &
Ruhr University Bochum, Bochum, Germany
E-mail: thorsten.berger@rub.de

and challenges of variability from industrial companies

building service robots. We analyzed the state-of-the-

practice and the state-of-the-art—the former via an

experience report and eleven interviews with two service

robotics companies; the latter via a systematic literature

review. We triangulated from these sources, reporting

observations with actionable recommendations for re-

searchers, tool providers, and practitioners. We formu-

lated hypotheses trying to explain our observations, and

also compared the state-of-the-art from the literature

with the-state-of-the-practice we observed in our cases.

We learned that the level of abstraction in robotics

software needs to be raised for simplifying variability

management and software integration, while keeping a
sufficient level of customization to boost efficiency and

effectiveness in their robots’ operation. Planning and

realizing variability for specific requirements and imple-

menting robust abstractions permit robotic applications

to operate robustly in dynamic environments, which are

often only partially known and controllable. With this

aim, our companies use a number of mechanisms, some

of them based on formalisms used to specify robotic be-

havior, such as finite-state machines and behavior trees.

To foster software reuse, the service robotics domain

will greatly benefit from having software components—

completely decoupled from hardware—with harmonized

and standardized interfaces, and organized in an ecosys-

tem shared among various companies.

Keywords Autonomous and (self-)adaptive systems ·
service robots · variability · robotics software engineering

2 Sergio Garćıa et al.

Fig. 1: An excerpt of the TIAGo robot family

1 Introduction

Robots are increasingly involved in our everyday life.

In contrast to automatized and reprogrammable mani-

pulators—industrial robots1 used in assembly lines, for

instance—service robots1 are autonomous robots that

assist human beings by performing useful tasks. The

service robotics market is booming worldwide, head-

ing towards a value of 24 billion US dollars by 2022.2

Moreover, robots demonstrated being powerful allies of

humanity in the fight against COVID-19, the virus that

shook the world in 2020. Especially relevant are: (i) dis-

infecting robots that kill bacteria and viruses in human-

populated areas,3 as well as (ii) delivery robots that
transport items in hospitals,4 supporting the staff and

allowing safety distancing—both subjects in our paper.

Robots are cyber-physical systems blending hard-

ware and software to interact with their environment.

Developing, integrating, and customizing hardware, soft-

ware, and environmental components adds substantial

complexity to robotic systems. Managing this complex-

ity calls for systematic engineering practices as they

have been applied successfully to other cyber-physical

domains, such as automotive or aeronautics systems. In

fact, there is growing pressure on the robotics commu-

nity to promote well-defined engineering practices that

stimulate component supply chains (Bozhinoski et al.

2019), maturing the robotics market. Unfortunately, soft-

ware engineering (i) has been traditionally considered

an auxiliary concern (Brugali and Prassler 2009) and (ii)

is still not mature in the robotics domain (Garćıa et al.

2020), as witnessed by the absence of best practices in

1https://www.iso.org/standard/55890.html
2https://www.marketsandmarkets.com/Market-Reports/

ivd-bric-market-198.html
3https://www.forbes.com/sites/richblake1/2020/04/17/

in-covid-19-fight-robots-report-for-disinfection-duty
4https://www.mvpromedia.com/article/

robots-to-assist-fight-against-covid-19-in-hospitals/

robotics software engineering. This challenges quality

assurance, validation, integration, and the autonomy of

robotics software.

A core challenge is variability—the ability of soft-

ware to be changed, customized, or configured (Bosch

2004). Robotics software needs to account for a diversity

of hardware, operating environments, and customer de-

mands. Similar to other domains faced with variability,

such as automotive, avionics, telecommunication, and

industrial automation (Berger et al. 2020), the “drivers

of variability” are hardware diversity, environment un-

certainty, and the different purposes and functions of

robots. However, while the drivers and the realization

of variability are reasonably well understood in other

domains, that is not the case for autonomous robots.

Consider a robot needing to operate robustly in open-

ended environments. To this end, it is typically equipped

with a mix of perception, control, planning, learning,

and interaction capabilities. The latter depend strongly
on the robot’s mechanical structure (e.g., a rover with

zero or multiple arms), the missions to be performed

(e.g., cleaning a floor, rescuing people after a disaster),

and the environmental conditions (e.g., indoor, outdoor,

underground). For instance, the robot TIAGo5—one of

our target robots—is available in many different vari-

ants, some of which are illustrated in Fig. 1. Not only

the different hardware and mechanical structure but also

the missions that TIAGo performs require appropriate

mechanisms to deal with variability.

Not properly handled variability easily leads to fail-

ures, for instance, through feature interactions (Calder

et al. 2003; Apel et al. 2014). Consider a robot with

the capability of helping humans transport heavy equip-

ment.6 In some variants it also has the feature to simulta-

neously navigate through the environment, and in many

other variants it also has the feature to perform collision

5https://pal-robotics.com/robots/tiago
6https://www.youtube.com/watch?v=wzQoWtEHbKA

https://www.iso.org/standard/55890.html
https://www.marketsandmarkets.com/Market-Reports/ivd-bric-market-198.html
https://www.marketsandmarkets.com/Market-Reports/ivd-bric-market-198.html
https://www.forbes.com/sites/richblake1/2020/04/17/in-covid-19-fight-robots-report-for-disinfection-duty
https://www.forbes.com/sites/richblake1/2020/04/17/in-covid-19-fight-robots-report-for-disinfection-duty
https://www.mvpromedia.com/article/robots-to-assist-fight-against-covid-19-in-hospitals/
https://www.mvpromedia.com/article/robots-to-assist-fight-against-covid-19-in-hospitals/
https://pal-robotics.com/robots/tiago
https://www.youtube.com/watch?v=wzQoWtEHbKA

Software Variability in Service Robotics 3

avoidance. These features might work well in isolation,

but when combined in a variant, a braking command

issued by the collision avoidance feature might be over-

ridden by the transportation algorithm commanding the

robot to maintain the same path as that of the human.

Our long-term goal is to improve variability manage-

ment in robotics, where, as we will show, variability is

affected by drivers not seen in other domains and is man-

aged in ways lagging behind the state-of-the-art. How-

ever, we first need to improve our empirical understand-

ing of variability in service robots—the aim of this study.
We present a study on variability management in ser-

vice robotics. We investigate the drivers, practices, and

challenges of variability. We triangulate from three differ-

ent data sources: our experiences systematically synthe-

sized in an experience report, an in-depth examination

of two companies—i.e., a multiple-case study—based

on interviews with nine engineers from two robotics

companies, and a systematic literature review (SLR).

Our research questions are:

RQ1: What are the drivers of variability in the service

robotics domain? We identify the drivers from our

subject companies and describe each driver’s impact on

the companies’ practices.

RQ2: What variability management practices are ap-

plied by the companies to address the drivers of vari-

ability? We study what practices (i.e., strategies and

mechanisms) are applied by our studied companies to

manage variability.

RQ3: What challenges do service robotics companies

face when managing variability? We identify the chal-

lenges our practitioners face when managing variability

for service robots. We discuss their impact on our com-
panies’ development processes.

Our contributions are:

– Qualitative empirical data about variability drivers

and realization, together with challenges.

– A literature review on variability management in

service robotics.

– A comparison of the respective state-of-the-art and

state-of-practice.

– A replication package as an online appendix (Garćıa

et al. 2021) containing (i) the interview guide, (ii) the

codebook from the qualitative analysis, (iii) the lit-

erature review protocol, (iv) the used search strings,

(v) the data extraction template, and (vi) the de-

tailed literature search results.

– Key observations, proposed hypotheses explaining

the phenomena we observed, and actionable rec-

ommendations for our intended audience, namely,

researchers, tool providers, and practitioners.

Figure 2 summarizes our findings. For instance, we

learned that (and how) the identified drivers impact

development processes, including regulations and stan-

dards for safety in open-ended and human-populated

environments. Configuration files are a simple, but nec-

essary mechanism to conditionally load software compo-

nents in robotic applications (e.g., a concrete navigation

algorithm). They also parameterize missions the robots

perform (e.g., location coordinates in patrolling mis-

sions). We also learned that behavior trees (Colledan-

chise and Ögren 2018; Ghzouli et al. 2020) and finite-

state machines (Risler and von Stryk 2008; Dragule et al.

2021a) are mechanisms used by our studied companies
to specify both mission and adaptation rules. The most

pressing challenge stemming from the identified variabil-

ity drivers is raising the success rates of configurations

and mission specifications that are usable by different

robots in various contexts without requiring extensive

tuning. We present our findings in detail, throughout

the paper highlighting our 38 key observations (labelled

as “Obs.” in Figure 2) with their associated recommen-

dations to researchers and practitioners.

This article significantly extends our previous work-

shop paper (Garćıa et al. 2019b), which only relied on

the first of the three data sources: on our experiences

(one author has 24 years of experience in robotics) and

those of two practitioners of two different organizations

developing service robots. We now add two substantial

data sources: nine additional interviews, five of them

with a company not considered in the previous paper,

and a systematic literature review. We also systemati-

cally investigate the drivers of variability, the variability-
management practices, and the respective challenges.

As such, the present article is a multiple-case study

based on systematically elicited empirical data from a

total of eleven interviews (first and second source) and

the literature (third source). The latter allowed us to
compare the state-of-practice with the state-of-the-art.

Organization. Sec. 2 introduces the required back-

ground and terminology for our study. In Sec. 3 we

present the research methodology. In Sections 4, 5, and

6 we describe the results of the study—each section cor-

responding to one of our research questions, structured

along the codebook derived as part of our methodology—

and in Sec. 7 we discuss them. Section 8 lists the poten-

tial threats to the study’s validity. In Sec. 9 we position

our study with respect to the related work and conclude

in Sec. 10 with final remarks.

2 Background

We now introduce the necessary background on robotics

and variability.

4 Sergio Garćıa et al.

Environment Robot Hardware Mission

Strategies Mechanisms Strategies Mechanisms Strategies Mechanisms

Obs 1: Environment events

RQ1: Drivers of variability

RQ2: Variability management practices

Obs 9: Installation
process Obs 12: Scenario

configuration and
parameters

Operator-driven conf.

Self-configuration

Obs 15: Mechanisms for
adaptation rules
Obs 16: Contextual
navigation

Obs 17: Community-based
resources

Robotic skills

Obs 18: Collaboration with
customers
Obs 19: Decoupling and
interfaces’ harmonization
Obs 20: Inter-projects
communication

Hardware customization
Obs 21: Unify codebases
& harmonize interfaces

Control system design
Obs 22: Middleware
Obs 23: Certification &
standards

Inter-usable skills
among platforms

Obs 27: Generic
missions

Obs 28: Mission-
specification
mechanisms

RQ3: Variability-Related Challenges

Obs 30: Generic solutions
Obs 31: Parametric configuration

Obs 32: Generic solutions among robots

Obs 2: Environment features

Obs 3: Inclusion of humans

Obs 4: Services and capabilities

Obs 5: Hardware customization impact

Obs 6: Expertise of human operators

Obs 7: Human-robot interaction

Obs 8: Comparison in drivers of variability

Obs 10: Scenario
modelling
Obs 11: Generic
configurations

Obs 13: Operator-driven
map configuration
Obs 14: Mechanisms for
customers

Obs 24: Version control

Obs 25: Reuse mechanisms
Obs 26: Libraries

Obs 29: Comparison in variability management

Obs 33: Testing variant-rich systems
Obs 34: Integration and lack of standards
Obs 35: Trade-offs

Obs 36: Mission specification
Obs 37: User-friendly tools

Obs 38: Comparison in variability challenges

Fig. 2: Overview of observations. The figure is structured based on our research questions: in RQ1 we identify three

drivers of variability—i.e., environment, robot hardware, and mission—, in RQ2 we list variability-management

practices applied by our studied companies, and in RQ3 we discuss challenges related to that management. Each

column of the figure represents one of the three drivers of variability identified for RQ1.

2.1 Robotics

Robots are cyber-physical systems embodying a blend of

hardware and software that interacts with the environ-

ment. The software is typically called a robotic control

system, described as a “set of logic control and power

functions that allows monitoring and control of the me-

chanical structure of the robot and communication with

the environment.”1 Although we include findings re-

lated to the robots’ hardware, our main focus is on the

software of service robots, which “perform useful tasks

for humans or equipment excluding industrial automa-

tion applications.”1 These robots differ from industrial

robots in that the latter are confined to a well-defined en-

vironment and mostly execute a well-defined program to

achieve repetitive tasks with high precision. In contrast,

service robots often operate in uncertain environments,

requiring higher degrees of intelligence and autonomy

to handle or transport objects in social or industrial

facilities, such as hotels, hospitals, or production plants.

Multiple categories of service robots exist (IFR 2016;

IEEE Robots 2020), depending on their scope or appli-

cation field. The following types of service robots are

developed by our robotics companies.

– Research platforms are robots with special features

suitable for research. They may be used to assess

the efficiency of robotics software or newly devel-

oped appliances. Therefore, their operation typically

requires expert knowledge. Many robots from PAL

Robotics belong to this group.

– Professional service robots are produced by PAL
Robotics and Blue Ocean. Such robots are “used

for a commercial task, usually operated by a prop-

erly trained operator.”1 They often provide certain

services and operate in specific environments, and

their main features (e.g., functionalities, hardware,

embodiment) are not expected to be changed once

released to the market. They typically do not re-

quire technical knowledge (e.g., programming skills,

robotics engineering) from the operator, although

they require some training and an expert to program

their behaviors beforehand.

An operator is the person designated to start, mon-

itor, and stop the intended operation of a robot.1 She
is typically also in charge of commanding tasks and

missions (explained shortly). If the operator is not tech-

nically skilled, missions are often defined previously by

an operator with the required skills:

– Technical operators have knowledge of programming

languages and are able to use advanced mechanisms

for mission specification—e.g., behavior trees (Gh-

zouli et al. 2020; Colledanchise and Ögren 2018),

finite-state machines or programming languages with

respective libraries.

Software Variability in Service Robotics 5

– Non-technical operators do not possess programming

or robotics engineering knowledge and, therefore,

typically resort to end-user-oriented, visual envi-

ronments to specify missions (Dragule et al. 2021a;

Ajaykumar et al. 2021).

Another important concept is the mission, which

expresses the desired behavior of a robot. The imple-

mentation of a mission coordinates the robot’s skills—

programmed actions a robot can perform, often devel-

oped as software components by experts—to achieve a

mission goal (Garćıa et al. 2019a; Ghzouli et al. 2020;

Menghi et al. 2018, 2019; Dragule et al. 2021b). An ex-

ample is: “A robot r1 operating in a hospital consisting
of a number of rooms and corridors must reach room2

and disinfect it.” Note that the terms mission and task

are often used synonymously in the literature, even in

reference documents (SPARC 2016). To distinguish both

terms, we refer to tasks as repetitive and simpler pro-

cesses than missions. So, tasks are repetitive and simple

coordinated robotic behaviors that are realized as a

combination of skills. A mission can be constructed by

composing several tasks.

The Robot Operating System (ROS) (Quigley et al.

2009) is the current de facto middleware for robotics

(Garćıa et al. 2020). ROS offers an ecosystem of core

software easily extensible by creating or using existing

resources in the form of packages (Estefo et al. 2019).

Packages organize software in ROS and may contain

libraries, datasets, configuration files, or third-party

software, allowing reuse of robotics software in a stan-

dardized packaging format. In ROS, a node represents a

process that performs specific computational tasks, such

as controlling actuators, running navigation algorithms,

or processing images.

2.2 Variability Management

Software variability is the ability of a software system to

exist in different variants. Among others, variants arise

from a diversity of hardware, operating environments,

and customer demands—referred to as variability drivers

in the remainder. A variety of strategies and mechanisms

to manage variability has been proposed (Van der Lin-

den et al. 2007; Apel et al. 2013a; Berger et al. 2014;

Nešić et al. 2019; Czarnecki and Eisenecker 2000). In

the following, we introduce some of them, ranging from

ad hoc to systematic variability management.

Clone & own is an ad hoc strategy to create soft-

ware variants by cloning existing variants and adapting

them to the new requirements, changing ownership and

decoupling the development lifecycle for the new vari-

ants. This strategy is simple and cheap, but does not

scale with the number of variants (Dubinsky et al. 2013;

Berger et al. 2020; Krueger and Berger 2020; Businge

et al. 2022). Clone management frameworks (Rubin

et al. 2013; Mahmood et al. 2021) reduce this burden to

some extent, but ultimately, organizations often need

to re-engineer the cloned variants and integrate them

into a configurable platform.

Configurable platforms are software systems with

variability mechanisms (Apel et al. 2013a; Van der Lin-

den et al. 2007; Berger et al. 2014). These are implemen-

tation techniques to realize variation points (places in

the source code that differ for individual variants). Since

large systems can have many variation points, these are
often controlled by features (Berger et al. 2015) (ex-

plained shortly) modeled in a feature model (Berger

et al. 2013; Czarnecki et al. 2012; Nešić et al. 2019)—

tree-like structures organizing features in a hierarchy,

together with constraints among the features. Feature

models allow keeping an overview understanding of the

platform’s variability and, together with configurator

tools (Bashroush et al. 2017; Krueger 2007; Kastner

et al. 2009; Hubaux et al. 2012; Franz et al. 2021), allow
deriving individual variants in an automated process.

Variants are determined by a selection of features—i.e.,

the configuration—that adhere to constraints specified

in the feature model.

Software product line engineering (SPLE) is the

paradigm behind building configurable platforms. it com-

prises methods, tools, and processes to systematically

engineer configurable platforms—i.e., software product
lines—in a specific application domain (Van der Linden
et al. 2007; Apel et al. 2013a; Clements and Northrop

2001; Czarnecki and Eisenecker 2000).

Features—distinct and well-understood aspects of a

system (Berger et al. 2015)—are an important abstrac-

tion to represent the variability of complex configurable

platforms. Features are typically developed to be indi-

vidual and independent units of behavior, but when com-

posed together, may behave differently. This situation,

where a feature influences another feature’s behavior, is

known as feature interaction (Apel et al. 2013b, 2014).

To avoid unwanted interactions, developers need to in-

vest time to detect, analyze, and verify interactions,

which is especially crucial in safety-critical systems,

such as autonomous cars (Juarez Dominguez 2012) or

robots (Vierhauser et al. 2019). As such, developers need

to manage software variability using proper variability

mechanisms. We explore such mechanisms together with

related challenges and practices in the remainder.

6 Sergio Garćıa et al.

Stage 2: multiple-case study

Stage 1: experience report

0

Exploratory
interviews (2)

Second stage interviews (9)

RQ1. Drivers of
variability

RQ3.
Challenges

RQ2.
Management
of Variability

Experiences

Updated
interviews
guidelines

Data analysis and triangulation

Preliminary
interviews
guidelines

Transcriptions
(9 hours)

Paper A (RQ1, Chapter 2) - An Empirical Assessment of Robotics Software Engineering

Stage 3: SLR

Results
Collected data

Legend Artefact
Activity

Experience
report

Search &
Filter

Database
(30 papers)

Data extraction

Fig. 3: Research methodology overview.

3 Methodology

We triangulate data and findings from three different

sources, which are in the following referred to as stages.

In the first stage, we gathered our experiences from dif-

ferent projects and enriched them with two interviews

with robotics experts. In the second stage, after iden-

tifying the main topics we wanted to explore in detail,
we designed a multiple-case study and contacted and

interviewed nine robotics experts working for two differ-

ent companies. The third stage consists of a systematic

literature review for which we analyzed 213 papers and

selected and extracted data from 30 of them. Figure 3

depicts an overview of our methodology and the stages.

3.1 Stage 1: Experience Report (Authors’ Experiences)

For this stage, we collected our experience on variability

management with a focus on service robots. Our expe-

rience stems from various EU, academic, and industrial

robotics software engineering projects. Bischoff et al.

(2010)’s project BRICS aimed to provide researchers and

developers with software methods and tools that sim-

plify the configuration of a robot control software system

according to the requirements of a given application. A

key outcome of BRICS is the HyperFlex toolchain (Gher-

ardi and Brugali 2014), which uses feature models to

represent the variation points, variants, and constraints

between them using an automated robotic product gen-

eration process. The goal of the project Co4Robots7 was
to develop a framework to support robotic applications

to perform complex missions collaboratively (Logothetis

et al. 2021; Schillinger et al. 2021). One of the authors

has been the coordinator of the IEEE RAS TC on Soft-

ware Engineering for Robotics (TC-SOFT) for more

than ten years. TC-SOFT has promoted yearly work-

shops and discussion groups with experts in robotics on

7http://www.co4robots.eu

the synergies between robotics and software engineer-

ing, where variability management has been a recurrent

topic (Brugali and Prassler 2009). The same author is

also an active member of the EuRobotics Topic Group

on Software Engineering, Systems Integration, Systems
Engineering.

In this stage, we conducted two exploratory inter-

views (see Fig. 3 and Table 1) to collect experiences

from the two industrial partners of Co4Robots, namely

PAL Robotics and the Bosch Center for Artificial In-

telligence (BCAI).8 PAL Robotics is involved in sev-

eral EU projects on, among others, service and indus-

trial robotics, benchmarking robotic frameworks, model-

driven methodology, multiple-robot collaboration, and

home-assisting robots. The experience at the BCAI
stems from a research project on coordinating mul-

tiple robots, as detailed by Schillinger et al. (2018).

Variability-related challenges in this context primarily

concern the governance of different robot configurations

being incorporated in a single coordination framework

and largely sharing the same software stack.

3.2 Stage 2: Multiple-Case Study (State of Practice)

For the second stage, we obtained rich qualitative data

directly from industrial practitioners as opposed to just

our own experiences, which, as academic researchers,

might be biased. To collect that data, we designed a

multiple-case study. Given that our research questions

are of an exploratory nature we decided to conduct an

exploratory multiple-case study, as explained by Easter-

brook et al. (2008). Our cases are two companies working

on the service robotics domain: PAL Robotics and Blue
Ocean Robotics. The chosen cases have multiple embed-

ded units of analysis (Easterbrook et al. 2008), since we

chose to focus on projects. This decision allowed us to un-

derstand the decision-making processes of projects and

8https://www.bosch-ai.com

http://www.co4robots.eu
https://www.bosch-ai.com

Software Variability in Service Robotics 7

Table 1: List of interviewees. P1 and P2 correspond to

our preliminary interviews from Stage 1 and interviewees

A–I to those of Stage 2 (see Fig. 3)

Company Exp. (years) Role in the company

P1 PAL Robotics 13 Product Manager
P2 PAL Robotics 10 Software Engineer

I1 PAL Robotics 4 Software Engineer
I2 PAL Robotics 10 Software Engineer
I3 PAL Robotics 14 Software Manager
I4 PAL Robotics 12 Chief Technology Officer
I5 Blue Ocean 16 Senior Robotics Architect
I6 Blue Ocean 5 Robotics Architect
I7 Blue Ocean 7 Senior Robotics Developer
I8 Blue Ocean 3 Senior Robotics Developer
I9 Blue Ocean 4 Senior Robotics Engineer

their interactions with other projects. We planned this

stage of our study to be conducted in several iterations

where data is collected repeatedly and then analyzed.

3.2.1 Selection of Interviewees

The companies that we mainly report on in the first stage

of our study work in the areas of robot manufacturing

and research. Therefore, both companies primarily work
with developers, academics, and researchers, that is, a

type of customer knowledgeable in robotics and program-

ming languages. According to our experience in robotics,

other companies’ scope is to provide robotic solutions to

end-user domains (e.g., hospitals). To increase the com-

prehensiveness of our study, we included a case of such

a type of company in our study, namely Blue Ocean.

We recruited interviewees from PAL Robotics and

Blue Ocean following the criteria of heterogeneous roles

and experience. We asked interviewees about practi-

tioner colleagues who may fit our selection criteria and

might be interested in our study. Following this strategy

lead to a variation in the number of interviewees per com-

pany, but on the other hand, it gave us a broader number

of cases. We did not ask our interviewees about their

experience with variability management, we selected

instead selected practitioners knowledgeable in robotics

and familiar with software development processes.

In total, we conducted nine interviews with nine

practitioners from the two companies. Table 1 gives an

overview of our interviewees organized by their company

and Table 2 gives a short description of each consid-

ered company. For every interviewee, we show their

experience in robotic in years and their role within the

company.

Table 2: The two companies considered in our study

PAL Robotics (Spain)

Medium-sized robotics manufacturer that mainly produces
humanoid robots. One of the authors of the present article
is employed at PAL Robotics. Within the company, each
robot platform is assigned to a product manager. Project
teams are not robot-specific but shared among all the
business units that conform PAL Robotics and personnel
resources are allocated depending on the work requirements.
At the company, the humanoid robots are considered mainly
research platforms while TIAGo base9 and StockBot10 are
considered professional service robots.

Blue Ocean Robotics (Denmark)

Medium-sized robotics company that offers solutions based
on professional service robots. The company’s strategy is to
conduct robotics projects that, if succeed on a feasibility
exam through validation in the market, are then constituted
as a company, passing to form part of the Blue Ocean’s
portfolio. Each robotics project or company in the portfolio
is the project owner of a robot specialized in offering a
specific service. The main areas in which Blue Ocean works
are healthcare, hospitality, construction, and agriculture.
Most of Blue Ocean’s customers are end-users from these
areas (e.g., hospital staff).

3.2.2 Data Collection

In our study, we used semi-structured interviews to col-

lect qualitative data (Myers and Newman 2007). Semi-

structured interviews follow a script prepared before-

hand but allow for improvisation, as opposed to struc-

tured interviews. This form of data collection allowed us
to cover certain question blocks while at the same time

the interview could flow freely based on ideas or aspects

the interviewee discussed, to which we could choose

whether to pay more attention. We were also able to

emphasize special topics depending on the interviewee

and their role at the company. Concretely, the infor-

mation provided by practitioners in higher positions of

each company’s hierarchy contained more details about

organizational aspects of variability management, while

software and robotics engineers provided more tech-

nical information on development issues, engineering

paradigms, and technological spaces.

We designed a semi-structured interview guide and

piloted it with our exploratory interviews, whose results

were used to establish the final interview guide (which

was still slightly refined after each semi-structured in-

terview). We provide the interview guide in our online

appendix (Garćıa et al. 2021). The interviews ranged

from 40 to 76 minutes, averaging around 60 minutes. All

interviewees agreed to record the interview, amounting

to a total of 541 minutes of interview recordings.

8 Sergio Garćıa et al.

3.2.3 Data Analysis

We analyzed the interviews by transcribing them and

then performing collaborative iterative open coding

(Corbin and Strauss 1990, 2014). In open coding, data is

broken down analytically, where incidents (i.e., events,

actions, or interactions) in the transcribed data are com-

pared with others for similarities and differences. This

comparison is a central aspect of open coding, and to ac-

complish it researchers add conceptual labels that help

group together incidents to form categories and sub-

categories. The result of open coding—i.e., the labeled

categories of incidents in the transcribed data—was then

documented in our codebook (MacQueen et al. 1998).

We started creating our codebook by identifying central

topics for our study based on our research questions.

Based on these central topics we created a priori codes,
as proposed in the guidelines from Runeson and Höst

(2009). Since we read the transcriptions line by line dur-

ing the analysis we were able to find appropriate codes

for specific statements. As suggested by Verner et al.

(2009), we used NVivo11 to ease the data analysis and

document the large amount of collected interview tran-

script data. Finally, we followed an editing approach,

as proposed by Runeson and Höst (2009), for which we

created new codes from the firstly defined a priori codes

in a hierarchical manner where new interesting topics

came up. These codes were continuously revised, which

resulted in their occasional merging and splitting.

As suggested by Cornish et al. (2013), performing

collaborative coding allowed us to create and refine our

codes under different perspectives, which also enriches

our understandings and promotes the reliability of our

study. The open coding was firstly conducted by one

of the researchers to ensure consistency with the use

and meanings of the codes. Then, a second researcher

was informed of the codes through an informal coding

workshop and further refined the coding iteratively. In

these iterations, the two authors continuously discussed

and refined the codes and organized them in a hierar-

chy. These iterations led to the definition of 386 codes,

2.6% of them being a priori codes. Many initial codes

evolved, and sub-codes were created. For instance, the

code “Features acquisition” evolved to three different

sub-codes named “How are features identified,” “How

are the features modeled,” and “How are features im-

plemented/built.” The two authors in charge of coding

then presented and discussed with the rest of the au-

thors the resulting codes to align our knowledge and

refine our codebook.

11https://www.qsrinternational.com/

nvivo-qualitative-data-analysis-software/home

During our data analysis, we strove to establish a

chain of evidence—as remarked by Verner et al. (2009)

and Runeson and Höst (2009)—to provide sufficient in-

formation of each step taken in our study so a reader can

follow our derivation of results and conclusions from the

collected data. Concretely, we discussed the codes be-

tween two of the researchers, creating living documents

with listings and annotations with that purpose. After

some iterations, we created tables, discussed relations,

and identified themes, which allowed us to conceive a

story to report on the findings for each research question.
Some of these artifacts (e.g., our codebook) are provided

in our replication package, which can be found in our

online appendix (Garćıa et al. 2021). Another important

artifact is represented in Table 8. It puts together our

findings for our research questions based on data from

the interviews. The table shows an overview of the main

drivers’ characteristics and a mapping to the applied

variability management practices and challenges faced

by service robotics companies. The mapping was created

after several iterations of analyzing the interviews’ data.

We also created write-ups that give details on the organi-

zations in which the variability management is done. We

append a write-up for each of our studied companies that

analyses the collected data based on the BAPO model

(Van der Linden et al. 2007) to our replication package.

We provide summaries of our main findings as ob-

servations in boxes in the respective sections. For each

observation we also provide actionable recommenda-

tions for our intended audience, namely researchers,
tool providers, and practitioners. Then, the observa-

tions are referenced and exploited when we discuss our

hypotheses and recommendations.

3.3 Stage 3: Literature Review (State of the Art)

Following established guidelines (Kitchenham and Char-

ters 2007), our systematic literature review comprised

three steps: planning the review by defining a search

strategy (Sec. 3.3.1) together with inclusion/exclusion

criteria (Sec. 3.3.2); conducting the review by extracting

data from selected papers (Sec. 3.3.3) and assessing its

quality (Sec. 3.3.4); and documenting the paper selec-

tion process (Tables 5 to 7) and the synthesis of results

according to our research questions (sections 4.4, 5.7

and 6.4). Our replication package (Garćıa et al. 2021)

provides additional artifacts documenting our review,

including the review protocol, data extraction templates,

and details of our literature selection process.

https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home
https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home

Software Variability in Service Robotics 9

3.3.1 Search Strategy

A first initial search for systematic literature reviews on

variability in robotics software (via ACM Digital Library,

Scopus, and Google Scholar) by September 2020 revealed

that no such publication exists. The search string used

for this initial search was divided into three groups of

keywords (forming three categories) and applied to the

entire content:

1. ("robot" OR "robotic" OR "robotics") AND

2. ("variability" OR "variant") AND

3. ("SLR" OR "literature review" OR

"systematic literature review")

After the first search, we understood that Google

Scholar is not a digital library but instead a search en-

gine that references multiple digital libraries (Mourão
et al. 2020). Google Scholar’s queries also return many

unpublished papers and therefore we replaced Google

Scholar with IEEE Explore to design a search strategy
that balances result quality and review effort. We then

defined our search strategy, focusing on the search en-

gines ACM Digital Library, IEEE Explore, and Scopus.

The search query was applied to abstract, title, and

keywords without limiting the time range and restricted

to the subject areas Computer science and Engineer-

ing. Papers classified only in other subject areas were

considered not relevant, such as Mathematics, Materials

Science, Physics and Astronomy, Earth and Planetary

Sciences, Energy, and Decision Sciences. These papers

typically mention robots and software in the context

of applications where variability is related to domain-

specific aspects, e.g., plant density in wealth crops, leaf

nitrogen in coffee, oil spills parameters. Specifically, we

created a search string divided into three groups of

keywords as follows:

1. ("service robot*" OR "autonomous robot*" OR

"Autonomous guided vehicle*" OR

"unmanned aerial vehicle*") AND

2. ("variability" OR "variant*") AND

3. ("software")

With pilot searches, we validated and refined the

search string together with the terms and keywords used.

For instance, we experimented with adding more terms,

such as inspection robot*, lawn-mowing robot*, va-

cuuming robot*, and entertainment robot*, which,

however, did not yield more results.

An overview of the search results using both search

engines and the string for each filtering iteration is de-

picted in Table 3. Our first search in Scopus in Septem-

ber 2020 yielded 70 results, from which we filtered out

42 search results using our inclusion/exclusion criteria

Table 3: Selection process with filtering results

Scopus1

First Search4 Filtering 15 (-42) Filtering 26 (-10)
70 28 18

ACM Digital Library2

First Search Filtering 1 (-3) Filtering 2 (-95)
108 105 10
IEEE Xplore3

First Search Filtering 1 (-15) Filtering 2 (-18)
35 20 2

1 Queried Sep. 2020. 2 Queried Oct. 2020. 3 Queried
Nov. 2021. 4 Total number of hits using the final search
string. 5 Application of inclusion/exclusion criteria (cf.
Table 4) to title, keywords, and abstract. 6 Application
of inclusion/exclusion criteria to entire paper.

upon the paper title, keywords, and abstract. We filtered

out 10 more papers applying these criteria to the full
paper, yielding 18 papers for analysis. We followed the

same process for the ACM Digital Library, obtaining

108 search results, then excluding 3 papers and 95, re-

spectively, obtaining a total of 10 papers for analysis.

Finally, the search in IEEE Xplore yielded 35 results,

from which we filtered out 15 and 18 papers in two steps,

resulting in 2 papers.

3.3.2 Inclusion and Exclusion Criteria

Table 4 details our inclusion/exclusion criteria. Notably,
we did not restrict the scope of our paper selection to a

time range. Since, as explained above, no prior literature

review on variability in robotics exists, our goal was to
obtain a full overview. In fact, our search resulted in

papers published between 1989 and 2021, which is a

rather large time span for a literature review.

One notable criterion of our exclusion criteria is

Studies focusing on industrial or toy robots. As specified

in Sec. 1, according to ISO vocabulary, industrial robots

and service robots are two different categories of robots.

This is particularly true with regards to the driver of

variability considered in this paper: the environment

of industrial robots is typically structured according to

the specific robot work space; the hardware consists of

standard manipulator arms, where only the end-effector

is replaced; tasks are repetitive and pre-programmed.

While entertainment robotics is a subcategory of service

robotics considered in our investigation, we conceptu-

alize toy robots as robotic kits consisting of simple

mechanical and electronic building blocks.

10 Sergio Garćıa et al.

3.3.3 Data Extraction

We extracted data from 30 papers for which we have

built a database of the identified drivers of variability,

practices, and challenges. The assessment criteria we

used to analyze the search results and record the infor-

mation that we used to answer our research questions

is based on the generated codebook from our multiple-

case study. Concretely, we created a data extraction

template for each digital library (Garćıa et al. 2021),

whose structures were based on the two top-level codes

of our codebook.

The data extraction was performed mainly by one re-

searcher, using the data extraction templates as ground

guidelines. The goal was to match our codes from the

multiple-case study with the analyzed papers to bet-

ter triangulate the data between these two sources. We

then chose randomly 12 publications out of the total for

which a second researcher performed the data extrac-

tion independently and the results were compared as a
quality assurance check. This triggered a discussion that

led to the refinement of our data extraction process. For

instance, the researchers agreed to not go deeper than

three levels down the codebook’s hierarchy—which is

seven levels deep—to keep a balance between the level

of detail and complexity. The discussion also allowed the
researchers to reach an agreement on fine-grained details,

e.g., whether a finite-state-machine-based mechanism

for managing mission variability could also be used for

environment variability, making the code cross-cutting.

3.3.4 Quality Assurance

We assured the quality of our paper selection and anal-
ysis as follows. First, defining the inclusion/exclusion

criteria that relied on an agreement of five of the authors.

Second, while the selection of papers and their analy-

Table 4: Inclusion and exclusion criteria.

Inclusion criteria

1. Primary studies.
2. Studies focusing on service robots.
3. Studies that relate to robotics software variability.
4. Studies that identify drivers of variability, variabil-

ity management practices, or variability-related chal-
lenges.

Exclusion criteria

1. Studies written in any language other than English.
2. Short publications and posters (< 3 pages).
3. Workshop summaries.
4. Studies focusing on industrial or toy robots.
5. Studies that do not deal with software variability (e.g.

mechanical modeling, statistical modeling).

sis were performed by one author, to mitigate potential

bias, the results were reviewed and compared by another

author—as explained in Sec. 3.3.3. Once a disagreement

was found we involved all the authors, discussed and

reached an agreement. In the case of disagreement we

would go for majority vote, but it was not needed since

we reached the agreement in every case.

The comparison revealed a disagreement on apply-

ing the inclusion/exclusion criteria to one paper (i.e.,

whether the paper is relevant) and five disagreements

on the interpretation of data to answer our research
questions (i.e., what aspects of our research questions

were covered by the search results). In the latter case,

the disagreement was concerned with the classification

of solutions for the Management of Variability. The se-

lected papers, as well as the majority of the collected

papers, do not clearly specify to which driver of variabil-

ity the proposed solution can be applied. As discussed

in Sec. 5.7, these include the adoption of engineering

paradigms such as Model-Driven Engineering, Software

Product Line Engineering, Software Frameworks, and

Component-Based Software Engineering. One author

proposed to exclude these solutions from the data anal-

ysis related to Management of Variability, but after

a discussion the authors decided to classify them as

generic solutions to the Management of Variability for

all drivers of variability.

We discussed these disagreements among all authors

until consensus was reached. We then also clarified our

inclusion/exclusion criteria to minimize selection bias.

Third, the same two authors met weekly to discuss the

progress of paper selection and analysis. These sanity

checks helped us improve our literature review iteratively
and maintain its quality by discussing threats to validity

and clarifying the methodology.

4 Drivers of Variability (RQ1)

Our selection of drivers of variability was strongly in-

fluenced by the seminal work by Brooks (1991), who

identifies a set of aspects that characterize every robotic

system. These aspects were contextualized with vari-

ability of robotic systems in the taxonomy of factors by

(Gherardi 2013). We built upon these studies and trian-

gulated data from the literature, our experiences, and

the interviews with practitioners from PAL Robotics

and the BCAI to design our list of drivers of variability:

– Environment (based on robot situatedness Gher-

ardi, 2013). Robots are cyber-physical systems that

are situated in the world—instead of being purely

software-based agents—which influences the behav-

ior of their systems.

Software Variability in Service Robotics 11

– Robot hardware (based on robot embodiment Gher-

ardi, 2013). Robots have bodies with which they

perceive the external world and operate and manip-

ulate it.

– Mission (based on robot intelligence Gherardi, 2013).

Robots are required to operate based on adequate

and useful behaviors, described as missions.

In what follows, we elaborate on the characteristics

and impact of the three main drivers—environment,

hardware, and mission—on both our studied companies.

We highlight the concrete characteristics of these drivers

identified from our interviews. Thereafter, we report

the results from our SLR and contrast them with the

findings from the interviews in an observation.

4.1 Environment

Service robots are increasingly expected to work in open

environments, often populated by humans, as stated by

Bozhinoski et al. (2019) and the H2020 Multi-Annual

Robotics Roadmap.12 In the taxonomy by Gherardi

(2013), this variability driver is related to robot situated-

ness, or context—that is, robots operate in a dynamic
and complex environment. To this end, robots must be

aware of their state and surroundings, which is typically

achieved using a variety of sensors as well as navigation

and perception algorithms.

Companies need to deal with various characteris-

tics of variability, namely managing (i) different sce-

nario and map models, (ii) events that may oc-

cur, (iii) specific features of the environment (e.g.,

whether humans will populate it), and (iv) dealing
with the inclusion of humans and uncertainty.

Scenario and map models. The operation of ser-

vice robots needs to consider several scenarios, which

compile a set of characteristics of an environment and

requirements of the robotic application. Engineers (i.e.,

technical operators) need to model such scenarios and

their scope to make their robotic systems able to operate

in these contexts. Broader scopes—i.e., those covering

more scenarios—lead to more complex modeling. Also,

engineers need to consider many details for the modeling

of a scenario. For instance, the robot’s maximum speed,

which is dictated by its hardware and configuration, will

determine execution times, but also how much space it

will need to brake if an obstacle is detected. In the case of

the farming robot from Blue Ocean, the robot requires a

special type of tires to drive on mud, while the motors of

other robots from the same company as PTR and UVD

12https://eu-robotics.net/sparc/upload/about/files/

H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf

must be powerful enough to allow navigation in hospi-

tals (where the maximum slope in corridors is under

regulation). Standards also affect the definition of the

scenario, e.g., by defining the maximum speed a robot

can operate in an environment populated by humans.

For the modeling of scenarios, operators often map

the environment to create 3D models, which are used

by robots while they operate or by operators to specify

regions of interest—as described in Sec. 5.2.

Events. A common characteristic of environment

variability highlighted by our interviewees is the mod-

eling of events—phenomena that may occur in the en-

vironment where robots operate.13 Service robots must

be able to cope with such events so to ensure robust-

ness in their operation. Different robot platforms are
designed to adapt their behavior based on events from

the environment; for instance, any of the studied robots

that operate in human-populated environments are ex-

pected to avoid collisions with moving objects when
navigating. Furthermore, our studied companies need

to model adaptation behaviors to specific events that

may occur in customer-specific environments, typically

handled during the installation process (Obs. 9). This

results in these companies managing sets of events for

different customers that are later use for mission spec-

ification, which makes this topic cross-cutting with the

mission driver of variability (see Sec. 4.3).

To guarantee robustness, service robots must be able

to cope with events that may occur in their operating

environment. From our studied companies we learned

that often solutions need to be adapted to customer-
specific operating environments and this might cause

a high variability demand and customizability needs.

Actionable recommendations for researchers

and tool providers: There is the need for instru-

ments such as configuration management tools and

model-driven toolchains to enable customizability to

meet customer-specific operating environments while

dealing with robustness under uncertainty. Examples

discussed in this study are the Hyperflex toolchain

and the project RobMosys.

Observation 1 (Environment events)

Specific features of the environment. The en-

vironments where robots operate may also pose distin-

guishing characteristics. From our interviews, we identify

a number of distinct categories of environment features:

(i) Outdoors vs. indoors. While outdoor environments

are inherently challenging due to their proneness to

changes (e.g., light and surface conditions), operat-

ing indoors presents distinct challenges as well, e.g.,

13https://www.iso.org/standard/70939.html

https://eu-robotics.net/sparc/upload/about/files/H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf
https://eu-robotics.net/sparc/upload/about/files/H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf
https://www.iso.org/standard/70939.html

12 Sergio Garćıa et al.

robots may be prevented from using GPS or GNSS

sensors. Almost all robots of our considered compa-

nies (with the exception of Blue Ocean’s farming

robot) are dedicated to either outdoor or indoor use.

(ii) Light conditions. A well-lit environment rich in vi-

sual features requires less powerful components for

robot localization (e.g., cameras and localization al-

gorithm) than a poorly-lit or feature-less one. Espe-

cially in outdoor environments, the light conditions

are prone to change, due to changing weather and

daytime.

(iii) Surface conditions. Driving on special surfaces (e.g.,

mud) can make localization challenging because the

skidding of wheel tires can make the wheel sensors

unreliable. To address this challenge, Blue Ocean

uses additional sensors (IMU and GNSS) to support

localization. Moreover, stairs are an environment

feature posing an insurmountable hurdle for robots

that are set up on wheels.

(iv) Type of obstacles. The number, size, and dynamic

movement of obstacles found in the environment

leads to variability in the expectations for the navi-

gation components. A particularly crowded environ-

ment may benefit from more sophisticated, adaptive

planning components.

(v) Inclusion of humans. We dedicated a separate discus-

sion (see next paragraph) to the crucial feature of

whether the environment is populated by humans.

The companies we studied deem it important to study

the environment where the robots will operate—e.g.,

indoor versus outdoor—and the context—e.g., social

or factory-like. The features that characterize the

environment affect a broad range of aspects of a

robotic application, from the sensors a robot may

equip to the regulations a robot needs to adhere to.

Actionable recommendations for practition-

ers: The high variability of customer-specific oper-

ating environments highlighted also in Obs. 1 should

be properly studied and taken into account when

developing robotic applications due to its impact.

Observation 2 (Environment features)

Inclusion of humans. The inclusion of humans in

the operating environment imposes several aspects to

be considered by the engineers, including safety regu-

lations and uncertainty. Safety regulations may entail,

among others constraints, reducing the robot’s speed

and, more broadly, maintaining safety instead of reach-

ing a waypoint as the ultimate goal. Based on the inclu-

sion of humans, our studied companies differentiate the

environments between “factory-like” or “social.” The

former represents factory scenarios (e.g., a storehouse),

typically regulated, where efficiency and speed are the

aspects to promote. Social environments (e.g., a hospital,

a conference) are less structured and normally have an

increased presence of humans, who may not behave in

a pre-defined or deterministic manner.

The following two examples illustrate two different

environment types. A TIAGo base from PAL Robotics

is used in an industrial setting (concretely a storehouse)

to deliver supplies with the aim of optimizing logistics.14

The robot navigates autonomously, but even though it

must collaborate with human operators the environment

is not highly human-populated. On the other hand, the

GoBe, a telepresence robot from GoBe Robots15—a
project within Blue Ocean’s portfolio—is mainly used

to remotely attend to social events such as conferences,

hospital visiting, or teaching. I1: “It’s not the same to be

grasping from the top of a table when there’s absolutely

no one around than to be grasping on a shelf that is

completely filled with stuff, and while other people are

roaming around the robot.”

A robot that operates in human-populated environ-

ments must adhere to specific safety regulations.
Furthermore, humans do not behave in a determin-

istic manner, and this complicates the definition of

adaptation rules and in general, makes it harder for

the robots to operate robustly.

Actionable recommendations for practition-

ers, researchers, and tool providers: The
increasing use of robots in unpredictable and

uncontrolled environments requires innovative

ways to guarantee safety and adherence to safety

standards. Artificial Intelligence (AI) and Machine

Learning (ML) are valuable instruments to deal with

uncertainty and unpredictability but they need to be

properly validated for corner cases or coupled with

safety envelop solutions as currently investigated in

the case of autonomous cars.

Observation 3 (Inclusion of humans)

4.2 Robot Hardware

Hardware variability is also a consequence of the cyber-

physical nature of robotic systems. Hardware affects

the services a robot may provide since they are directly

dependent on their capabilities; the locomotion system

of a mobile robot allows it to navigate, a robotic manip-

ulator can grasp objects thanks to its robotic arm, and a

robot equipped with a camera can “see” the environment

where it operates. Due to the cyber-physical nature of

14https://www.youtube.com/watch?v=eN9Dl1zG3no
15https://www.gobe-robots.com

https://www.youtube.com/watch?v=eN9Dl1zG3no
https://www.gobe-robots.com

Software Variability in Service Robotics 13

robots and the reasons explained in Sec. 4.1, the envi-

ronment strongly influences hardware variability. For

instance, the context in which robots operate influences

their hardware design from the very beginning, e.g.,

hardware components suitable for an indoor robot may

not be adequate for an outdoor robot. Thus, hardware

must conform to the requirements of a robot, including

the environment where it will operate and the missions

it will be commanded to achieve. In this section we

describe several characteristics of robot hardware vari-

ability, namely (i) services, (ii) robotic capabilities,
(iii) embodiment, and (iv) customer requirements.

Services. Robots are conceived with a purpose,

meaning that they are designed to provide specific ser-

vices. For instance, Blue Ocean’s UVD robot16 disinfects

hospital rooms and PAL Robotics’ Stockbot helps with

retail. The embodiment and hardware design of such

robots are tailored to the services they provide. For

example, ultraviolet lamps are a specific requirement

for disinfecting robots.

Robotic capabilities. To fulfill their expected ser-

vices, robots must be able to carry on specific capabil-

ities. For example, the PTR robot17 was developed to

handle patients’ transportation at hospitals. To accom-

plish this service, the robot needs at least two capabili-

ties, namely to cautiously lift the patient and navigate to

the target location. Specific mechanisms and sensors are

required for the robots to perform such capabilities. For

instance, a robot would need some sort of gripping actu-

ator to grasp objects. Despite efforts from the companies

to harmonize solutions and interfaces to ease the man-

agement of variability among their robots (see Obs. 19),

the set of specific capabilities of each of their robots
entail another source of variability. The hardware signif-

icantly differs between two robots of the same company

as is the case of UVD and PTR robots because their

intended services and thus capabilities are different.

Robots, especially professional service robots, are

developed to provide specific services by incorporating

certain capabilities. Robots require a specific hardware

design to carry out those capabilities.

Actionable recommendations for researchers

and tool providers: The high variability of

hardware demanded by specific scenarios requires

advanced mechanisms for reusing and customizing
software solutions in a reliable and easy way.

Observation 4 (Services and capabilities)

Embodiment. One of the most consequential fea-

tures of a robot is the mechanical embodiment, as dis-

cussed by Gherardi (2013). Recent studies (Ventre-Dominey

16http://www.uvd-robots.com
17http://ptr-robots.com

et al. 2019) have demonstrated that the embodiment

of a service robot can increase social closeness and ac-

ceptability by its users. The embodiment can affect the

hardware design of a robot due to various factors, in-

cluding its size, e.g., an RGBD camera might be too

big to substitute a monocular camera. Another aspect

of the robot influenced by the mechanical side is the

design and selection of hardware; for instance, different

types of motors and actuators would require different

motor controllers, drivers, or feedback sensors. The em-

bodiment directly affects the software since the robotic
sensors and actuators describe which capabilities and

services a robot can perform. For instance, different

navigation algorithms are used based on the kinematics

of a robot. That is, a drone would require a different

navigation algorithm than a ground robot, and in turn,

a differential drive would require a different navigation

algorithm than an omnidirectional one.

Hardware-related customer requirements. As

described in Sec. 3, the scope of both companies is differ-

ent and it hugely affects the impact of hardware variabil-

ity in each of them. PAL Robotics mainly manufactures

research platforms whose hardware modules can be con-

figured by customers, as described in leaflets of their

products, having more than 30 variants for one of them,

i.e., TIAGo.18 An excerpt of the possible features of this

robot is depicted in the feature model of Fig. 4. Dif-

ferences between the configurations based on customer

requirements generally lead to static variability in this

context. Hardware choices of sensors and actuators de-

fine the required interfaces and controllers to be deployed

into de robot. Although PAL Robotics creates variants

of their robots based on tailored customer requirements,
the company also provides some pre-defined variants of

their products, e.g., TIAGo Iron, Steel, Titanium, and

TIAGo++ (see Fig. 1). As opposed, Blue Ocean’s robots

are considered professional service robots, and thus, once

released to the market their hardware design is fixed.

The scope of robotics companies heavily determines

the impact of hardware variability in their products.

The companies we studied need to manage the

variability of the robot software control systems that

support such customization.

Actionable recommendations for practition-

ers: A possible strategy to deal with complexity

is to reduce as much as possible the possibilities

of hardware customization and to offer to their

customers pre-defined variants of their products.

Observation 5 (Hardware customization impact)

18http://pal-robotics.com/wp-content/uploads/2020/05/

TIAGo-Datasheet.pdf

http://www.uvd-robots.com
http://ptr-robots.com
http://pal-robotics.com/wp-content/uploads/2020/05/TIAGo-Datasheet.pdf
http://pal-robotics.com/wp-content/uploads/2020/05/TIAGo-Datasheet.pdf

14 Sergio Garćıa et al.

Fig. 4: Feature model of the TIAGo robot (excerpt). The model shows several features that a TIAGo robot may

incorporate and the versions that can be equipped (e.g., different types of navigation lasers or RGBD cameras).

The cross-tree constraints at the top-left indicate that the equippment of fingertip sensors require a specific parallel
gripper and the force-torque sensor a robotic arm with seven degrees of freedom (DoF).

4.3 Mission

We define missions as coordinated combinations of skills
that express the desired goals of the robots. Missions

must be specified by operators, either customers (e.g.,

end-users, developers) or engineers at the company. Mis-

sions possess several characteristics of drivers of vari-

ability, namely (i) expertise of the human operator,

(ii) means of human-robot interaction, and (iii) ex-

pected and unexpected events (already discussed

in Sec. 4.1). Both companies strive to raise the levels

of abstraction of their mission specification methods

to promote reusability, modularity, and improve their

user-friendliness.

Expertise of human operator. As described in

Sec. 3, the scope of each of the studied companies varies,

resulting in a difference between customer groups. As

detailed in Sec. 5.6 technical operators, since they have

knowledge of programming languages, are able to use

advanced mechanisms for mission specification—e.g.,

behavior trees, finite-state machines, general-purpose

languages. PAL Robotics’s main portion of customers is

developers with programming skills. Operators working

with professional service robots from Blue Ocean are

mostly non-technical operators and therefore cannot

modify the underlying mission used by the robotic ap-

plication and instead can only modify some parameters

via a GUI. A reason for this policy, apart from the ex-

pertise it would require, is safety concerns. Allowing

non-technical operators without technical and safety

regulations knowledge to modify the underlying mis-

sions would breach the safety of the robots. To a lesser

extent, PAL Robotics also provides robotic applications

to non-technical operators, specifically based on TIAGo

Base and Stockbot.

The companies we studied have the following strategy.

They do not allow non-technical operators to specify

missions but rather just to tune some aspects of

these missions. The reason is their presumed lack

of technical and safety regulation knowledge. For

PAL Robotics, technical operators are allowed to
specify and manipulate the robots’ missions, at their

own risk. This company provides dedicated tools and

mechanisms to support their customers in this task.

Actionable recommendations for practition-

ers, researchers, and tool providers: In the
near future, companies will probably need to produce

multi-purpose robots to be operated by non-technical

operators. This would require new solutions for

mission specification enabling to easily, correctly, and
safely specify missions that robots need to accomplish.

Observation 6 (Expertise of human operators)

Means of human-robot interaction. It includes

mechanisms and strategies between robots and opera-

tors. The operator needs to be able to communicate the

mission to be executed by the robot and the robot might

need to communicate when it has completed the mission.

The ISO 8373:20121 defines human-robot interaction

(HRI) as the “information and action exchanges between

human and robot to perform a task by means of a user

interface” and in turn, user interface as “means for infor-

mation and action exchanges between human and robot

during human-robot interaction.” For instance, robots

may communicate the state of the mission they are

performing (e.g., changing behavior to charging mode),

which could be accomplished by prompting a message in

a graphical user interface (as is the case of UVD robots),

via voice commands or flashing LEDs. Interaction via

communication could also comprehend altering aspects

Software Variability in Service Robotics 15

of the mission at runtime (e.g., the operator specifies

which object to grasp to the robot19), which could be

performed using buttons in the robot, a GUI, or visual

signals (Garćıa et al. 2018).

Interaction and communication between the operator

and the robots are key for the functioning of the lat-

ter. The companies observed in this study implement

intuitive interfaces to support such interaction both

before and during mission execution.

Actionable recommendations for practition-

ers, researchers, and tool providers: Trustwor-

thiness is becoming increasingly important in robotic

solutions. Interfaces enabling operator–robots inter-

action and communication play an important role.

Observation 7 (Human-robot interaction)

4.4 Drivers of Variability from the Literature

We now present the results from our systematic litera-

ture review (SLR) that identifies drivers of variability

in robotics. Table 5 provides an overview of the ana-

lyzed papers on the topic, indicating with black dots

which driver of variability is addressed in each paper.

While conducting our SLR, we realized that the selected

papers were concerned with two main types of robots.

Concretely, 17 papers refer to wheeled ground robots

(with or without an onboard robotic arm) used in indoor

environments, while 13 papers refer to professional or

low-cost unmanned air vehicles (UAV). We will highlight

this distinction in every table listing our SLR results.

The drivers of variability are mostly described in the

introduction section of each paper and used as motiva-

tion for the proposed scientific approach. We interpret

this data as an indicator of the relevance of the topic

addressed by our investigation.

Most papers (29 out of 30) identify one or more of the

three drivers of variability that we hypothesized when

we formulated RQ1. We interpret this as a confirmation

of the significance of the research question.

Regarding the drivers of variability investigated in

our study, environment variability is addressed more ex-

plicitly in papers that refer to ground robots as they have

to operate in everyday open-ended environments with

changing operational conditions (e.g., illumination) that

affect the correct acquisition of sensory measurements.

Some papers focus on robotic applications working in

diverse environments, as the study by Álvarez et al.

(2006), which discusses the variety of ship types and

shipyards their robotic applications must adapt to. The

main horizontal domain to which UAVs of the studied

19https://www.youtube.com/watch?v=GdMmyrzIP8o

Table 5: Drivers of variability from the literature (RQ1)

E1 H2 M3

G
r
o
u
n
d

r
o
b
o
ts

P1 Kwanwoo Lee et al. (2006) •
P2 Álvarez et al. (2006) • • •
P3 Kimour et al. (2009) • • •
P4 Steck and Schlegel (2011) • • •
P5 Lotz et al. (2013) • • •
P6 Brugali and Gherardi (2016) • • •
P7 Brugali and Valota (2016) • • •
P8 Brugali and Hochgeschwender (2017) • • •
P9 Brugali and Hochgeschwender (2018) • • •
P10 Brugali et al. (2018) • • •
P11 Rollenhagen et al. (2019) • • •
P12 Wirkus et al. (2020) •
P13 Seiger et al. (2015) •
P14 Niemczyk and Geihs (2015) • • •
P15 Goldsby and Cheng (2008) •
P16 Saglietti and Meitner (2016) •
P17 Buchmann et al. (2015) •

U
A
V
s

P18 Brown et al. (2007) • • •
P19 Steiner et al. (2013) • •
P20 Silva. et al. (2013) • • •
P21 Fragal. et al. (2013) • • •
P22 Ozdemir et al. (2014) • • •
P23 Queiroz and Braga (2014) • •
P24 Czerniejewski et al. (2016) • • •
P25 Feng et al. (2015) •
P26 Braga et al. (2012) • • •
P27 Olaechea et al. (2018) • • •
P28 Brooks and Iagnemma (2009) •
P29 Pant et al. (2015) • • •

1Environment variability 2Hardware variability 3Mission vari-
ability

papers are applied is agriculture, where environment

variability mostly consists of the different field types

during agricultural tasks.

Hardware variability in ground robots typically refers

to the variety of sensors that can be used for common

robot functionalities, while for UAV robots it refers to

differences in the mechanical structure.

Service robots operating in hostile environments,

such as nuclear plants, vessel internals, and disaster

scenarios (Álvarez et al. 2006; Niemczyk and Geihs

2015), are equipped with specific sensors (e.g., RGB

cameras, infrared cameras, depth cameras) according to

the task to be performed and the operational conditions

(e.g., illumination, radiations).

https://www.youtube.com/watch?v=GdMmyrzIP8o

16 Sergio Garćıa et al.

Home service robots (Kimour et al. 2009) perform

tasks that require interaction with humans using a vari-

ety of human-robot interfaces, such as physical buttons,

microphones, speakers, cameras, and touch screens.

Service robots for logistics and factory automation

(Brugali and Valota 2016; Rollenhagen et al. 2019) con-

sist of mobile manipulation platforms that can be cus-

tomized for the transportation and manipulation of

various types of loads. Hardware customization requires

adequately configuring kinematics, dynamics, and con-

trol parameters (e.g., speed, acceleration, impedance).

Parameters configuration might be performed before the

execution of a task (i.e., at startup) or even during the

execution of a task (i.e., at runtime); for example, when

the robot automatically changes the manipulation tool.

Similarly, UAVs used for service robotics tasks have

a customizable kinematics structure. This permits, for

instance, to dynamically activate or deactivate addi-

tional motors for short-distance transportation of heavy

loads or long distance transportation of lighter loads

(Olaechea et al. 2018; Silva. et al. 2013; Fragal. et al.

2013) and change the carried tool (e.g., a thermal cam-

era for transmission line inspection or an RGB camera

for traffic monitoring) (Braga et al. 2012; Czerniejew-
ski et al. 2016; Brown et al. 2007). Different kinematics

structures account for variability in the flight operations,

as for example as taking off from limited runway space

or using a parachute for landing (Ozdemir et al. 2014;

Steiner et al. 2013).

Robot capabilities (e.g., mobility, manipulation, user

interaction) are greatly affected by the available hard-

ware resources (i.e., sensors, actuators) as hardware

variability induces a corresponding variability in the

software implementation of common functionality, such

as perception and motion control. This variability de-

mands for architectural design approaches that promote

flexibility and configuration of the robot control system.

Mission variability is discussed in relation to the spe-

cific purpose and application of the robotic system—e.g.,

cleaning of ship-hull surfaces (Álvarez et al. 2006), home

entertainment (Kimour et al. 2009), and factory logis-

tics (Rollenhagen et al. 2019). A concrete example of mis-

sion variability for UAVs consists of different payloads

that require fine-tuning of flight control parameters. Two

papers (Niemczyk and Geihs 2015; Rollenhagen et al.

2019) mention robotic applications working with hu-

mans, as of rescue robots by Niemczyk and Geihs (2015).

In addition, some papers identify new drivers of

variability. Concretely, the study by Lotz et al. (2013)

identifies variability associated with Quality of Service

(QoS), including non-functional properties like safety.

In this paper, the authors use the example of a robot

running out of battery that might prioritize power con-

sumption over task efficiency to fulfill its mission.

Almost every paper we studied in our SLR addresses

one or more of the drivers of variability we identified.

Sporadically, some papers propose additional drivers

(e.g., variability stemming from QoS). The charac-

teristics of the drivers of variability touched on in the

literature are similar to our findings from industry,

with some exceptions. Furthermore, the literature does

not focus on managing the variability from hardware
customer requirements nor human-robot interaction.

Actionable recommendations for researchers:

The comparison of drivers of variability identified

important research directions in solutions able to

manage the variability from hardware customer

requirements, human-robot interaction, and/or

human-populated environments.

Observation 8 (Comparison in drivers of variability)

5 Variability Management Practices (RQ2)

Each driver of variability entails different challenges and,
therefore, requires special strategies and mechanisms

to manage them. In our study, strategies refer to more

abstract ways of tackling a specific problem (e.g., decou-

pling services provided by a robot from specific sensors),

while mechanisms refer to technical approaches (e.g.,

using behavior trees to define the robotic missions). The

variability drivers studied in this paper are related to

each other, thus, some of the practices applied by com-

panies are cross-cutting, intending to address multiple

variability drivers. For instance, the adaptation rules

used by companies to make their robots adapt to the en-

vironment are also used during mission specification to

define possible robotic behaviors. For each of the three

identified variability drivers, one subsection is devoted

to strategies and mechanisms applied for addressing it.

A final subsection presents results from our SLR and

concludes with an observation of the triangulation of

those results with our interviews’ findings.

5.1 Environment: Strategies

The main strategies we identified for environment vari-

ability management concern (i) an installation pro-

cess, (ii) performing scenario modeling, (iii) conceiv-

ing generic configurations, and (iv) collecting and

analyzing customers’ feedback.

Installation process. Before starting using the

robots they acquired, customers need to follow the so-

called installation process. The installation process is a

Software Variability in Service Robotics 17

well-known term in industry for setting a robot to a new

environment. The term has been already standardized in

the ISO 8373:2012.1 During this process, the robots are

“installed” in the new environment by mapping the area,

setting regions of interest, and creating event-catching

solutions. As anticipated in Sec. 4, the drivers of vari-

ability studied in this paper are sometimes intertwined.

The installation process also concerns the mission driver

since during this process missions can be already defined

by a knowledgeable operator from the company.

Our studied companies provide staff to help the cus-

tomer during the installation process since it cannot be

completely automated and requires specialized knowl-

edge. According to two interviewees, Blue Ocean is work-

ing to simplify the installation process by providing ap-

propriate tools for end-users to perform it by themselves.

The same company has also performed this process re-

motely due to the situation caused by COVID19, which
still requires the involvement of an expert operator.

When shipping their products to customers, the

companies analyzed in this study need to perform

an installation process. This process requires the

involvement of a technical operator from the company,

who “installs” the robot to the desired environment.

The installation process comprehends mapping the

environment, specifying the possible missions to be

performed by the robot, and defining adaptation rules

to features or events from the environment.

Actionable recommendations for practi-

tioners: The importance and complexity of the

installation process might trigger the creation of new

companies focused on offering to customers robotic

solutions that meet their needs. These solutions

could be built by using robots produced by various

companies and customized, adapted, and installed

into the facilities of their customers.

Observation 9 (Installation process)

Scenario modeling. Modeling scenarios is a strat-

egy performed by our studied companies in the first

steps to develop a robotic application. As explained in

Sec. 4.1, the modeling of a scenario encompasses identi-

fying the requirements of a robotic application to cover

certain scenarios and the characteristics and constraints

of the operating environment.

The configuration of the environment starts at

the early stages of robotic application development.

Different operating scenarios entail special hardware

decisions and constraints for the robots; specific

standards apply to them as well. Scenarios need to be

modeled to identify such requirements and constraints.

Actionable recommendations for researchers

and tool providers: There is the need for inno-

vative solutions for scenarios identification and

modeling. On the one side the number of scenarios

should be kept of a reasonable size, on the other

side they should also include corner cases that will

facilitate the validation of proposed solutions.

Observation 10 (Scenario modeling)

Generic configurations. Besides those early-stage

decisions, the studied companies also configure their

robotic applications based on the environment using

configuration files and parameters. These mechanisms

will be further explained in Sec. 5.2. The purpose of mak-

ing configurations tailored to a specific environment is to

maximize the efficiency of robotic applications in certain

scenarios. On the other hand, the studied companies

opt to configure their robotic applications by including

generic values that are given by rules or features of

the environment. The goal is to create generic solutions

that work in most of the scenarios without having to

fine-tune parameters for each context with the overhead

in terms of effort it would entail. For instance, in the

case of configurations made for UVD robots, some val-

ues are given by the regulations of hospitals—i.e., their

most typical operating environment. I9: “The process of

selecting the wheels that we would have to use [...] takes

into account the maximum slope that you would find in

a hospital, and that’s because there is a maximum slope

that someone can climb using a wheelchair.” In the case

of PAL Robotics, the Stockbock robot always works

with the same configuration of parameters, which are

produced during the installation process.

18 Sergio Garćıa et al.

Our studied companies conceive generic configura-

tions for their robots based on the environment. These

configurations must ensure the proper performance of

their robotic applications in most scenarios without

requiring fine-tuning. These approaches are sought

for professional service robots, whose services and

operating environments are mostly pre-defined, as op-

posed to research platforms and multi-purpose robots.

Actionable recommendations for researchers:

There is the need for robust and reliable configuration

mechanisms for research platforms and multi-purpose

robots that need to operate in customer-specific

operating environments.

Observation 11 (Generic configurations)

Customers’ feedback. The feedback from custo-

mers can be used to update the models and knowledge

of the companies of the environments where their robots

operate. These updates may lead to the tuning of exis-
tent configurations or to identify and model new events

that our studied companies use to generate adaptation

rules for their robots. I2: “If we have permission to do

so, we collect the data [from a reported error from the
customer] and then we can reconstruct what happened.

[For instance,] in this situation the laser beam reflected

on a mirror, which caused the crashing of the robot’s

operation. We can integrate this situation into the set

of situations that we tried to handle with a generic set
of parameters.”

5.2 Environment: Mechanisms

In the following, we discuss mechanisms used for making

configurations based on the environment broadly divided

into operator-driven and self-configuration.

5.2.1 Operator-driven configuration

Several mechanisms are applied by both companies to

manage the variability coming from the environment,

mostly to configure the operating scenario and its map

(before run-time) and for the robotic application to

adapt to such an environment (at run-time). Specifi-

cally, in this section we discuss as mechanisms (i) pa-

rameters, (ii) configuration files, (iii) map-editing

tools, and (iv) mechanisms for customers.

Parameters. Both companies make use of parame-

ters to define some aspects of robotic applications for spe-

cific operating scenarios. These parameters are primarily

tuned when launching the required packages to run the

scenario but could be changed during run-time as well.

Some of those parameters are low-level details of certain

algorithms, e.g., the drifting rate of a navigation algo-

rithm, as stated by a PAL Robotics interviewee. Both

companies report on the usage of a tool from the ROS

ecosystem, namely rqt reconfigure.20 The tool per-

mits tuning parameters both before and during run-time.

This mechanism is cross-cutting with hardware vari-

ability (see Sec. 5.4): to promote the reusability of com-

ponents and skills among their platforms, PAL Robotics

uses parameters to configure their codebase (Obs. 21).

Configuration files. Configuration files are used
by both companies to adjust the configuration of their

robots. Commonly used configuration files in ROS are

yaml21 and roslaunch22 files. The first use the well-

known YAML format to easily loading sets of configura-

tion parameters (e.g., from calibration) and the latter is

a tool that allows launching multiple ROS nodes while at

the same time setting parameters on the ROS parameter

server. Configuration files are used by both companies

to launch packages and software components required

for specific scenarios as well as for defining values for pa-

rameters. According to interviewees from PAL Robotics,

configuration files are created in a rather ad hoc way at

the company. I1: “At the end, what we have is a bunch

of configuration systems for each different scenario that

we’ve been in.”

Configuration files are also used as a mechanism

for hardware variability management (Sec. 5.4). Con-

cretely, PAL Robotics makes use of configuration files
to load sets of parameters to make certain skills usable

by different robots. Tuning parameters and loading con-

figuration files are two mechanisms used together at

PAL Robotics to keep a unified, common codebase that

is also configurable. PAL Robotics implements robot-

specific configuration files that are loaded at startup.
These are specific YAML files to robots’ serial numbers

that specify the dependencies and libraries required for

the functioning of each robot (Observations 25, 26).

Both studied companies make use of parameters

to configure their robotic applications based on the
scenarios where they are to operate. Configuration

files are used for setting those parameters and launch

required nodes for specific scenarios.

Actionable recommendations for researchers

and tool providers: In line with Obs. 11, there

is the need of robust and reliable configuration

mechanisms to configure the robots according to the

scenarios where they need to operate.

Observation 12 (Scenario configuration & parameters)

20https://wiki.ros.org/rqt_reconfigure
21https://yaml.org
22http://wiki.ros.org/roslaunch

https://wiki.ros.org/rqt_reconfigure
https://yaml.org
http://wiki.ros.org/roslaunch

Software Variability in Service Robotics 19

Map-editing tools. Both companies model the en-

vironment and provide tools to configure those models.

Blue Ocean provides an application to its customers with

which they can configure the map of the environment by

making map annotations and removing or adding vir-

tual obstacles. It does not require specialized knowledge

from the operator, since the typical customer target

of the company are non-technical operators—e.g., staff

from a hospital. PAL Robotics provides a similar editor

on-demand, which is a rviz23 plugin. The editor adds

functionalities to rviz including downloading and up-
loading maps, changing the active map, as well as defin-

ing virtual obstacles and points and groups of interest.

The companies analyzed in this study provide tools

to configure and customize given models of the

environment by, for instance, adding and removing
restricted areas or defining areas of interest.

Actionable recommendations for researchers

and tool providers: Configuration mechanisms

and tools need to allow fine customization of models

of the environments to the scenarios where robots

need to operate.

Observation 13 (Operator-driven map configuration)

Mechanisms for customers. Generally, configu-

rations based on the environment are to be made either

by the company, the system integrator, or self-tuned by

the robots, especially if the customer is a non-technical

operator. In Blue Ocean, most environment-related con-

figurations are made by an expert practitioner or au-

tonomously by the robots during run-time. However, this

company also allows customers without programming

knowledge to tune some parameters of the environment

model. For instance, the time a UVD robot needs to

stay in every position to consider it disinfected is a pa-

rameter a customer can tune by using a graphical user

interface (GUI) in a tablet. Since PAL Robotics also

provides services to researchers and developers, the com-

pany provides specific interfaces and an API to allow

technical operators to configure their systems.

23http://wiki.ros.org/rviz

In the context of our studied companies, configura-

tions based on the environment are primarily applied

by experts. Yet, these companies may provide the

customer with mechanisms for configuring some

aspects of the environment’s model. The flexibility

and constraints of such mechanisms depend on the

company and the customer’s proficiency.

Actionable recommendations for researchers

and tool providers: With the advent of multi-

purpose robots to be programmed and operated by

non-technical operators, configuration mechanisms

and tools will need to allow non-technical operators to

perform customization of models of the environments

to the scenarios where robots need to operate.

Observation 14 (Mechanisms for customers)

5.2.2 Self-configuration

Since service robots typically operate in open environ-

ments, they must be able to self-configure or adapt

to their operating context. As mechanisms for self-

configuration we identified (i) adaptation rules, (ii) con-

textual navigation, and (iii) in-house tools.

Adaptation rules. Both studied companies con-

ceive adaptation rules that are applied based on condi-

tions that are predefined before execution. Adaptation
rules may also be used for failure detection, recover-

ing after failing (i.e., fallback behaviors), and to define

safety rules that override the running controller. Adap-

tation rules can be defined using systematic mechanisms

(described shortly) or can be also hard-coded into the

robot control system. As stated by an interviewee from

PAL Robotics, a problem related to the generation of

hard-coded rules is that they may grow to a number

difficult to manage after some time.

At PAL Robotics, developers use an in-house variant

of SMACH24 to define finite-state machines (FSMs),

which are the mechanism to define the adaptation rules

and robotic missions at the company. According to

one interviewee from the company, one advantage of

using SMACH is that it allows updating the FSMs

after compilation time. All PAL Robotics interviewees

acknowledge that they are planning to migrate from

FSM to behavior trees for generating robotic missions

and adaptation rules. The main reason they gave is that

behavior trees are easier to understand by humans.

As opposed to PAL Robotics, Blue Ocean currently
uses behavior trees to define adaptation rules and their

robotic missions; for a better understanding of behavior

trees we refer to the work of Colledanchise and Ögren

24http://wiki.ros.org/smach

http://wiki.ros.org/rviz
http://wiki.ros.org/smach

20 Sergio Garćıa et al.

(2018). At Blue Ocean, software components in the lower-

level layers of their architectures are used to monitor

the environment and trigger events (Obs. 1) that may

affect the behavior tree of the robotic application. I9:

“The way that we are following the adaptations now is we

have some software bits that are responsible for watching

the external events, and then they can trigger another

event to have the behavior tree follow another path or

reconfigure using other parameters.”

We elaborate on these mechanisms in Sec. 5.6.

Both studied companies use high-level mechanisms

to define adaptation rules for their robots’ behavior
to phenomena and events that may occur in their

operating environments. Examples are libraries based

on finite-state machines and behavior trees.

Actionable recommendations for researchers

and tool providers: The unpredictability, uncer-

tainty, and uncontrollability of operational environ-

ments increasingly require mechanisms and tools to

enable the safe and trustworthy adaptation of robots.

Observation 15 (Mechanisms for adaptation rules)

Contextual navigation. In point-to-point naviga-

tion, distance or time are the dimensions typically op-
timized. However, in open environments, other factors

like minimum distance to a human due to safety reasons

or due to what is considered socially acceptable must

be considered. The goal of contextual navigation is to

adapt the navigation of the robot to the specific and

instantaneous current context where it is operating (Lu

2014). A contextual navigation solution would load or

unload planning algorithms or configure them based

on the context detected for each instant by the robot.

This approach aims to increase the success rate of the

algorithm. A concrete example given by a Blue Ocean

interviewee is the process of a UVD robot crossing a

door; in that situation, the robot will detect a change

of context and will need to tune some parameters of its

working planner or load a more appropriate planner for

the new task. Within Blue Ocean, the UVD project is

planning to integrate this approach in a near future. The
farm-robot project has already applied this approach

to their robotic applications, which are able to load

and unload appropriate planners when a change in the

context (e.g., indoors or outdoors setting) is detected.

In-house tools. While Blue Ocean partially relies

on standard tools, including the ROS middleware, their

contextual navigation mechanism (see previous para-

graph) is implemented in a custom in-house framework.

The framework allows developers to define navigation

skills by implementing them with available planners and

ROS-provided functionality. Examples of such skills are

covering an area as much as possible, following a line, or

following a certain talking thing. The framework is re-

sponsible for monitoring the context of the robot and for

responding to changes of context (e.g., moving through

a door, or observing that the current room is getting

crowded with people) by exchanging or re-configuring

the used navigation skills.

Contextual navigation is a mechanism that consists

of recognizing the instantaneous current context of
the environment where the robot is operating to adapt

the navigation approach accordingly. This mechanism

is deemed utterly interesting for one of the studied

companies, which works with mobile robots that

operate in dynamic environments.

Actionable recommendations for researchers

and tool providers: Adaptation mechanisms and

tools should profitably interact and collaborate with

contextual navigation mechanisms.

Observation 16 (Contextual navigation)

5.3 Hardware: Strategies

Due to the cyber-physical nature of robots, hardware

massively impacts many phases of their development.

Hardware is typically decided during the design stage
of the robot, but at later stages also influences the soft-

ware skills it may implement. Furthermore, one of our

studied companies made robotic hardware configuration

a company policy for their robots.

Strategies for managing hardware variability in both

studied companies mainly serve two topics, namely de-

veloping robotic skills and hardware customization.

5.3.1 For the development of robotic skills

This section discusses strategies used by companies to de-

velop robotic skills, namely (i) the reuse of resources,

(ii) the collaboration with customers, (iii) itera-

tive development and documentation, (iv) decou-

pling, (v) harmonized interfaces, and (vi) inter-de-

partment communication.

Reuse of resources. Instead of developing skills

from scratch, both companies strive to reuse already

available software components for specific skills when

possible. According to two interviewees, this sometimes

requires modifying the components to specific needs,

especially when reusing packages from the internet. Ex-

amples of such modifications are parameters tuning, as

the distance between the robot’s wheels or the position

of a specific sensor on the chassis of the robot. An in-

terviewee mentions that licensing constraints impeding

the usage of certain resources might exist.

Software Variability in Service Robotics 21

The companies analyzed for this study reuse

community-based software resources. This sometimes

requires tweaking those resources to adapt them to

the company’s requirements. A recurrent impediment

for such reuse is license-related issues.

Actionable recommendations for researchers,

tool providers, and practitioners: Open-source

solutions might remove the impediments created by

licences.
Observation 17 (Reuse of community-based resources)

Collaboration with customers. Regarding skills

reuse, a factor that greatly impacts each company’s

strategy is its target clients—mainly technical opera-

tors for PAL Robotics and non-technical operators for

Blue Ocean (Obs. 6). A consequence of this is that PAL

Robotics can benefit from solutions developed by their

clients if they consent. I4: “One example is the [research

group from] Koblenz University, they use the TIAGo

for the Robocup@Home competition. And they developed

the complete application of the robot, which understands

natural language commands and autonomously navigates

in a domestic environment, opens a fridge, grasps an

object, and brings it back to the initial user. In so they

go even beyond what we have been able to do.” However,

according to the CTO from PAL Robotics, integrating

such solutions into the company’s system is complicated

or sometimes impossible due to the diversity of the used

developing tools I4: “It’s complicated for us to integrate

back all this knowledge and all these functionalities be-

cause sometimes they use the new version of libraries, a

new version of a sensor [...]. So let’s say that because
of the real variability of the use case it is really difficult

for us to inject back all this functionality.”

A possible and interesting outcome of this collabo-

ration with customers is the creation of an ecosystem

where solutions from both the company and customers

must conform to given rules. This ecosystem, similar to

ROS’s ecosystem but thoroughly tested and documented

so to make it company-complaint would facilitate soft-

ware reuse. This may reduce the overhead caused by

skills and glue code development and provide a new

way to manage their associated variability. Supporting

practitioners to find specific solutions for their concerns

would help to reduce the impact of the “reinvent the

wheel” phenomenon discussed by Garćıa et al. (2020).

Three interviewees from PAL Robotics and one from

Blue Ocean find such an ecosystem valuable for the

development pace in the robotics domain.

The studied company whose main customers are tech-

nical operators integrates into their systems solutions

(e.g., skills, services) developed by their customers

if technically feasible and the customer consents.

This type of collaboration may result in an ecosystem

where companies and developers could collaborate.

Actionable recommendations for researchers,

tool providers, and practitioners: Well-

maintained software ecosystems might facilitate and

promote the collaboration between developers of

various companies and/or research institutes and

academia.
Observation 18 (Collaboration with customers)

Decoupling. Despite the efforts from both compa-

nies to reuse existing resources, they also need to develop

new skills for their robotic applications. Developers from

both companies strive to decouple their software from

hardware. The main goal is that hardware can evolve

without affecting the codebase. As an example, services

are decoupled from specific sensors, so a specific brand

of camera is not required for detecting objects as far

as the camera provides an image stream. One intervie-

wee from Blue Ocean describes the application of the

5Cs method to decouple computation, communication,

configuration, coordination, and composition in their

robotic applications.

Iterative development and documentation. One

interviewee from Blue Ocean states that the skills’ devel-

opment is performed iteratively through a try and error

process. Another interviewee from the same company

declares that this development process is thoroughly

documented, detailing the tasks to perform and the

time expectations.

Harmonized interfaces. To simplify the usage and

development of robotic skills, both studied companies

strive to harmonize the interfaces among their software

components: they put effort into explicitly defining their

interfaces in a way that bridges the heterogeneity of

different software and hardware components. In our in-

terviews, we found three main practices being applied

towards this goal: (i) Relying on software development

paradigms that encourage developers to explicitly think

and reason about interfaces. I6: “That is because of

the service-oriented architecture, which requires to put

focus on the contracts, and that is what we do.” (ii) De-

coupling robotics skills from hardware via minimal in-

terfaces. I4: “If you need to move a robot in a certain

environment, you need to define an interface and some

resources that are the minimum requested by the algo-

rithm for making this possible. But it’s better to make

it decoupled from the hardware because the hardware is

going to evolve.” (iii) Separating the 5C. I1: “One of

22 Sergio Garćıa et al.

the concepts I learned in the past and I promote with

my colleagues is the separation of the 5C: [...] computa-

tion, communication, configuration, coordination, and

composition. This means that, for example, you want

to have your component configurable, and nowadays we

have many ways to do that, your URDF in ROS or you

can have your own XML or json file, you just need to

care and not use any hard-coded value. [...] This gives

you already some flexibility.”

When our studied companies develop software

components they typically follow an iterative de-

velopment process and documentation. To promote

the reusability of components, companies strive to

decouple hardware from software and to harmonize

the interfaces among those components.

Actionable recommendations for researchers

and tool providers: There is the need for design

methodologies and tools promoting software-hardware

decoupling and reusability of software components.

Observation 19 (Decoupling & interfaces’ harmonization)

Inter-department communication. An approach

followed by both companies to promote the development

of robotic skills and their reusability within the com-

pany is the dialogue between departments in charge of

the development of robotic platforms. In the case of

Blue Ocean, to assess whether developing a feature for a

certain robot is feasible, a group of experts consisting of

a brand manager, a project technical leader, a business

owner from another project of the company, and a user-

requirements specialist is assembled. Once the feasibility

of the development is evaluated, a group of developers

that follow SAFe-like25 processes is assigned to the task.

To promote collaboration among the company’s projects,

practitioners at Blue Ocean maintain oral-based commu-

nication, i.e., the architects of each of the robot projects

meet regularly to keep each other synchronized and

updated on development decisions. The company priori-

tizes oral communication over written communication

since the latter gets quickly updated. Collaboration at

the company follows a quick pace and practitioners keep

informed using communication platforms such as Slack.

In the case of PAL Robotics, they hold several types

of meetings. First, they hold weekly Scrum meetings

to which “areas” (i.e., workshops & mechanics & elec-

tronics, software, business) of the company participate

separately. They also have bi-weekly meetings to which

the company’s business units attend separately.

25https://www.scaledagileframework.com

A common practice in our studied companies is to use

reliable libraries and packages for all of their robots.

This reduces development costs by, among other perks,

promoting software reuse. To support this practice,

these companies maintain periodic synchronization

meetings and keep ways of communication among

projects in charge of different robots.

Actionable recommendations for researchers,

tool providers, and practitioners: It would be

valuable to build and maintain reliable libraries and

packages shared among various software producers

and developers. Initiatives like AUTOSAR (Fürst

et al. 2009) in the automotive domain can be

inspirational for the robotic domain.

Observation 20 (Inter-projects communication)

5.3.2 For hardware customization

In some cases, it is desirable to make hardware cus-

tomizable, either because the company wants to provide

such flexibility to customers or to ease possible future

hardware updates.

The points of view of both companies on this topic

are quite different, since, as explained in Sec. 3, the

scope of both companies differs with respect to their

products. Blue Ocean does not aim to support hardware

customization since their products are professional ser-

vice robots whose hardware is fixed once released to the

market. According to two interviewees from Blue Ocean,

this customization is technically possible, but they try

to avoid it to reduce costs and effort I6: “It is technically

feasible. In UVD, we are using camera A. Let’s say, that
then the product goes to the market and then we find out

this camera A is not anymore in production. We can do

camera B, and then we can do everything that is needed

to deploy camera B, but it’s usually very expensive be-

cause it is not about just doing a piece of software, that
is the easy part. We usually have to modify mechanical

parts, covers, which implies new molds and there is a lot

of costs associated with hardware changes.” Instead, they

try to stick to hardware components they know they

work after studying and testing their performance. Spe-

cial cases of customization happen in Blue Ocean at the

product-level. Then, instead of creating variants of the

same product, they create two different products—e.g.,

the company provides two types of GoBe robots.15

On the other hand, PAL Robotics aims to provide

products tailored to their customers by allowing the cus-

tomization of their robots. This is a core policy within

the company that gives rise to variability stemming from

such customization. In this section, we discuss the fol-

lowing strategies identified from the interviews: (i) devel-

https://www.scaledagileframework.com

Software Variability in Service Robotics 23

oping a unified and customizable codebase, (ii) to

harmonize interfaces, and (iii) to provide add-ons.

Unified and customizable codebase. PAL Robo-

tics has invested time to develop a system that allows the

easy integration of new hardware components by creat-

ing a unified codebase. All of their robots have the same

core of code, which hugely simplifies code development

and maintenance. However, they also make assumptions
when developing this code. For instance, when they first

developed TIAGo, they assumed it would only have

one arm, but at the time of releasing TIAGo++26 (i.e.,

a new model of TIAGo with two arms), they had to

revisit the code, which is considered a costly task by the

company. To avoid such problems, the company now de-

velops its code in a parameterizable way to also ease the

reuse of its core code for future robot models. Besides

parameterization, the success of PAL Robotics’ unified

codebase relies on the harmonization of interfaces and

on automatically generating configuration files that deal

with interfaces, libraries, and dependencies.

The parametrization options are maintained in con-

figuration files, in YAML format. I2: “We try to put as

much as possible in configuration files because they are

very easy to see what has changed. They are centralizing
one or a couple of locations, and you can make changes

without recompiling your code, which is a pain. So yeah,

I think they are quite cost effective. The parameter set-

tings can be changed before and during runtime with a

graphical user interface that allows the user to inspect

and change the value of every parameter. In addition,

there is also support for automated parameter-runing at

runtime, especially for those parameters that are gen-

erally heavily affected by environment conditions (e.g.,

temporary drift compensation).”

PAL Robotics interviewees consider that despite the

time and effort it took them to reach the state of ma-

turity of their hardware customization strategies and

mechanisms it hugely simplifies managing hardware-

customization-related variability. Therefore, they con-

sider their current hardware-customization strategies

and mechanisms cost-effective. I1: “Most of the software

is designed in such a way that it’s easy to extend [...]

Quite often, inside our software, you find pieces that are

not yet used but exist just in order to be able to integrate

something new like [...] new planers for navigation [...]

or the whole body control stack.”

Despite the advances made by PAL Robotics to ease

the processes related to hardware customization, there

still exist limitations, mostly related to the time such

customization would take. If a requirement from a cus-

tomer is considered not feasible or not realistic from the

26http://blog.pal-robotics.com/

tiago-bi-manual-robot-research/

company’s point of view, it is communicated to the cus-

tomer. The process for deciding whether a requirement

is feasible or not is not formalized and typically includes

a discussion among developers I2: “We do not have a

formal process but typically it involves discussing inter-

nally with some fellow developers [...] It’s not a formal

process, its common sense and corroboration from your

partners.” Another limitation is related to the physical

connections of sensors and actuators. If, for instance,

a specific camera model requested from a customer re-

quires a voltage supply not provided by the panel of a
robot, the camera cannot be integrated.

Harmonized interfaces. To promote the reusabil-

ity of skills among platforms as well as hardware cus-

tomization and software development, a common prac-

tice applied by both companies is to harmonize interfaces

of software components of their architectures—see the

discussion earlier in this section, in the context of robotic

skills development. This strategy is especially impor-

tant at PAL Robotics, where hardware customization

is one of the main goals. For instance, at PAL Robotics,

robotic hand manipulators—either a five-finger hand

or a gripper—use the same harmonized interface so

they can be easily replaced without modifying the soft-

ware control system of the robot. I5: “At the end of the

day, it’s about having clear interfaces and contracts. [...]

Given these requirements you can build software that is

reusable.”

To ease the reusability of software components that re-

alize hardware capabilities and control hardware com-
ponents, both companies harmonize software inter-

faces. Having a unified codebase also reduces the code

size and simplifies hardware customization through

the parameterization of the software control system.

Actionable recommendations for researchers,

tool providers, and practitioners: Standard

interfaces can facilitate the development of robotic

applications and promote reusability.

Observation 21 (Unify codebases & harmonize interfaces)

Add-ons. One Blue Ocean interviewee indicates

that an alternative they use to hardware customization

is hardware add-ons. For example, a common addition

to their products is dock stations.

5.4 Hardware: Mechanisms

Mechanisms applied by both companies for managing

hardware variability are mainly focused on control sys-

tem design and developing and maintaining inter-usable

skills among robotic platforms.

http://blog.pal-robotics.com/tiago-bi-manual-robot-research/
http://blog.pal-robotics.com/tiago-bi-manual-robot-research/

24 Sergio Garćıa et al.

5.4.1 For control system design

This section discusses the mechanisms used by the

studied companies to design the system in charge of

executing the robots’ behaviors. Concretely, we dis-

cuss (i) software architectures, (ii) middleware,

(iii) ROS control, (iv) standards and safety lay-

ers, and (v) version control.

Software architectures. Robot control systems

are often developed and structured adhering to a soft-

ware architecture (Garćıa et al. 2018; Kortenkamp et al.

2016; Ahmad and Babar 2016). PAL Robotics’s robots

follow a unique reference architecture, which is realized

as a platform that contains the unified codebase of their

robots (Obs. 21). The platform consists of modular and

reusable software components and their interfaces. At

Blue Ocean, each product is developed adhering to a

unique architecture, most commonly being layered and

component-based. A company policy is to reuse as much

software (Obs. 26) and mechanisms as possible, which

may somewhat constraint the architectures.

Middleware. Robotics companies usually rely on

frameworks and middleware to support the building of

their software systems, as found by Garćıa et al. (2020).

According to most of our interviewees, robotics soft-

ware development has been hugely simplified since ROS,

which promotes software engineering best practices like

modularity and reusability. ROS provides an infras-

tructure, drivers for most sensors and actuators, and

hardware abstractions. ROS helps managing variability

stemming from the hardware (providing hardware ab-

stractions and drivers) and the robotic skills, which are

modularized as reusable software components. Part of
the benefits of ROS is not related to the middleware it-

self but to other factors like its community and existing

ecosystem. I6: “To me, ROS middleware is like 10% and

90% of ROS are other things. Like [...] the implementa-

tion that it has of a service-oriented architecture, creat-

ing nodes as packages, all the building infrastructure, and
the community.” A possible outcome of the usage of ROS

at both companies is that they both use Linux-based

operating systems. Ubuntu and ROS distributions27 are

drivers of variability that we studied in the first stage of

our study (Garćıa et al. 2019b). It is worth remarking

that PAL Robotics also uses OROCOS (Bruyninckx

2001) for components with real-time requirements.

ROS control.28 It is a mechanism for ROS users

that helps software development by abstracting hard-

ware details and providing standard interfaces for the

drivers of actuators and sensors, which make controllers

robot-agnostic. This simplifies the variability manage-

27http://wiki.ros.org/Distributions
28https://wiki.ros.org/ros_control

ment of hardware from the robot control system point of

view. I4: “From this, we can abstract the type of model

that we are using, the type of communication bus, the

number of models, the kinematics of the robots because

this is embedded in the robot description file.”

Both studied companies use ROS for robotic appli-

cation development since this middleware promotes

software engineering best practices like modularity

and reusability. Two important aspects of ROS

deemed interesting by the companies, aside from the

middleware itself, are its community and ecosystem.

The ros control package also helps with hardware

abstraction and harmonizing interfaces, which in turn

helps with building robot-agnostic solutions. Other

middleware are also used, like OROCOS, which is
used for the development of software components

with real-time requirements.

Actionable recommendations for researchers,

tool providers, and practitioners: The success

of ROS testifies the need of building and maintaining

reliable libraries and packages, building an ecosystem,

and having standard interfaces (see also Obs. 20 and

Obs. 21).

Observation 22 (Middleware)

Standards and safety layers. Another important

characteristic of robot control systems is that robots

must be designed according to some certifications and

standards. For instance, safety standards have an im-

pact on the embodiment of the robot, since the me-

chanical part, sensors, and hardware must adhere to

specific certifications. The standards also concern the

operating environment; for instance, if the robot must

interact with humans special certifications apply. Com-

panies need then to manage variability stemming from

hardware components or specific robotic skills affected

by safety standards. To manage such variability, both

studied companies integrate safety layers that override

some autonomy aspects of the robot to conform to the

standards and other safety measures I9: “We do have

a safety certified layer that overrides all the autonomy

of the robot in case we detect any danger. Imagine a

Roomba or some of these cleaning robots[...] You have

those drop-off sensors so that the Roomba does not fall

from the stairs. They just override the control algorithm

that’s running the autonomy cleaning procedure.”

http://wiki.ros.org/Distributions
https://wiki.ros.org/ros_control

Software Variability in Service Robotics 25

Robot control systems from both studied companies

must conform to existing certification and standards

for quality assurance and safety reasons, especially

those robots that interact with humans. To manage

the variability of hardware and skills affected by safety

standards, these companies implement safety layers

that override safety-threatening robotic behaviors.

Actionable recommendations for researchers:

We see value in studying similar mechanisms for

robotic applications making use of AI and ML.

Observation 23 (Certification and standards)

Version control. Both companies make use of ver-

sion control mechanisms for code development and main-

tenance of their robot control systems. They both rely

on Git-based mechanisms.

PAL Robotics follows a clone&own strategy, using

a branching policy similar to ROS’s—i.e., developers

create a new branch for each new ROS version. PAL

Robotics developers use a single branch “master” to

simplify maintenance. However, when it is not possible

to keep backward maintainability—if, for instance, in-

terfaces or data of earlier versions cannot be successfully

used by newer versions—the new code must be adapted

and developers in PAL Robotics create a new develop-

ment branch. An example of such adaptation is some

new code to adapt from ROS Indigo to ROS Kinetic.

Then, the branch major version is changed (e.g., from

1.2.3 to 2.0.0). Finally, developers from PAL Robotics

leave the old default branch with the name of the old de-

velopment branch (e.g., “indigo-devel” branch), leaving

it in the state of backward compatible with the newer

branch. Branches are maintained forever and backward-

compatible bug fixes are conducted for all the branches

if possible and necessary.

Blue Ocean uses Bitbucket and the Atlassian uni-

verse and work with a unique combination of ROS

and Ubuntu distributions, that is, ROS Melodic with

Ubuntu 18.04. Blue Ocean maintains a forked reposi-

tory of rosdistro,29 which contains the packages and
dependencies used for specific ROS distributions. The

company customizes the rosdistro repository. For ex-

ample, by substituting the URLs of the repositories for

the software packages of the original ROS distribution

with the URLs of company-developed repositories. To

modify a repository, the company creates a branch and

a pull request, which needs to be approved by one or

two developers. The company uses an in-house tool that

allows choosing specific commits/tags of each of their

software packages from a superbundle generated by the

same tool. The tool extracts the system dependencies

and generates a deb file that contains their customized

29https://github.com/ros/rosdistro

version of ROS. Blue Ocean works with a private ad-

vanced package tool (APT) to which developers pub-

lish the binaries and to which robots have access. Blue

Ocean’s robots then access the APT to retrieve the

software packages required for their operation.

Version control mechanisms based on git are used
by our studied robotic companies for software

development and maintenance of their robot control

systems. Strategies vary for each company, including

clone&own strategies and more systematic approaches

based on platforms.

Actionable recommendations for researchers:

It can be valuable to do an in-depth study in

identifying best practices, lessons learned, and

challenges in version control mechanisms used in

robotics companies.

Observation 24 (Version control)

5.4.2 For inter-usable skills among platforms

Both companies strive to make skills and components

as reusable as possible. The goal is to ease development

efforts by making skills usable by as many robots as

possible within the company. This includes robots that

are developed by different projects I3: “From the be-

ginning, we choose to have the same software layers in

all the robots. So pretty much, once the component is

working in one of the platforms, you can make it work in

another platform right away.” An important case of skill

reuse among projects is navigation. Companies strive to

abstract the locomotion details of each robot: There are

substantial differences between a bipedal or a wheeled

robot. However, there are limitations to the reusability of

software components and skills, being the main reasons:

– The layers of the architecture which are closer to

hardware may differ among robots—i.e., robots pro-

viding different services or operating in different

environments often equip different actuators.

– The robot-specific missions vary among robots that

provide different services. To accomplish such mis-

sions, robots usually perform specialized skills—e.g.,

the PTR robot lifts patients and moves them to dif-

ferent locations, which is completely different from
what a GoBe robot is intended to accomplish.

To deal with these limitations and manage variabil-

ity, both companies make use of different mechanisms.

Namely, we discuss (i) configuration files and pa-

rameters (discussed previously, in Sec. 5.2), (ii) in–

house tools, and (iii) libraries.

In-house tools. At PAL Robotics, practitioners use

an in-house tool that automatically generates configura-

https://github.com/ros/rosdistro

26 Sergio Garćıa et al.

tion files and deploys them within the robot during its

installation (Garćıa et al. 2019b).

To enable the reusability of skills among their

platforms, both companies utilize a combination of

interface harmonization, parametrization, and use

of configuration files. Practitioners may use tools to

generate those configuration files containing specific

parameters, tune and deploy them into the robots.

Actionable recommendations for researchers

and tool providers: There is space for conceiving

and developing reuse mechanisms specifically tailored

to robotics and taking into account solutions currently

adopted.

Observation 25 (Reuse mechanisms)

Libraries. Software modularization is pursued by

both companies to promote their software reusability. It

is accomplished by the studied companies by following a

component-based software development approach, which

is enforced by the usage of ROS. In line with the imple-

mentation of ROS is the usage of libraries and packages,

which in turn promote modularity and reusability in the

robotic applications of both companies. These libraries

are either publicly available (e.g., BehaviorTree.CPP30

and py trees31) or developed in-house. One policy from

Blue Ocean is to make the implementation of packages

and libraries common to all projects within the com-

pany. For instance, libraries and packages concerning

the cognitive layer (i.e., py trees as the mission specifica-

tion mechanism) and the planners are common among

projects. This policy simplifies decision-taking, the har-

monization of interfaces, and variability management

within the company but at the same time may constrain

the design of the robot control systems.

To help to manage hardware variability and enable

reusability of skills, the studied robotic companies

apply various software engineering best practices.

Some of those practices are raising the levels of

abstraction, decoupling hardware and software,

and promoting modularity and reusability by using

reliable, reusable, modular libraries and packages.

Actionable recommendations for researchers,

tool providers, and practitioners: These best

practices might be useful for developing new solutions

to manage reusability and variability.

Observation 26 (Libraries)

30https://behaviortree.github.io/BehaviorTree.CPP
31https://github.com/splintered-reality/py_trees

5.5 Mission: Strategies

Our studied companies apply one strategy to manage

variability in missions, namely generic missions.

Generic missions. Similar to the generic config-

urations discussed in Sec. 5.1 (Obs. 11), interviewees

from both companies detailed their strategy to conceive

generic missions that can be applied to a wide range of

scenarios without requiring major modifications. Nor-

mally, scenarios where professional service robots oper-

ate are quite specific; for instance, a UVD robot’s most

common type of environment is hospitals and therefore

many features of the environment are standardized and

known beforehand—e.g., the maximum slope in the cor-

ridors. An example of a generic mission is the following.

A UVD robot that operates in a hospital idly waits in its

charging dock until it is commanded to disinfect a room.

This mission encodes a set of tasks or sub-goals, includ-

ing navigating from the charging dock to the target room,

going through the room’s door, and interacting with an

operator to ensure that there are no unexpected obsta-

cles that would impede the robot’s operation and that

no human is inside the room while disinfecting. These

generic missions use specific parameter values (e.g., the

robot’s speed while navigating the hospital corridors or

while going through a door) that are used at run-time

by the robot. The goal of these generic missions is to

simplify the mission specification process and avoid pa-
rameter fine-tuning during this process. However, their

conception and lifting their success rate is considered a

challenge by the company, as we will explain in Section 6.

A strategy used by both studied robotics companies to

simplify the process of mission specification and its

related variability management is to conceive generic

missions that ensure a high success rate for a range

of scenarios without requiring major modifications.

These generic missions are developed for professional

service robots, which typically perform specific

services in particular environment types.

Actionable recommendations for researchers,

tool providers, and practitioners: These solu-

tions will probably not work properly in the near

future, when multi-purpose robots to be “programmed”

and operated by non-technical operators will be in-

creasingly needed. As discussed in Obs. 6, this will

require new solutions for mission specification that

enable to easily specify correct and safe missions that

robots need to accomplish.

Observation 27 (Generic missions)

https://behaviortree.github.io/BehaviorTree.CPP
https://github.com/splintered-reality/py_trees

Software Variability in Service Robotics 27

5.6 Mission: Mechanisms

In the following, we detail mechanisms utilized by the

studied companies to manage variability that stems

from robotic missions, concretely: (i) state machines,

(ii) behavior trees, (iii) flowcharts, (iv) task frame-

works, (v) GUIs, and (vi) navigation frameworks.

Finite-state machines (FSMs) are the main mech-

anism that PAL Robotics uses and provides to their

customers to specify missions. Concretely, they make

use of an in-house implementation of SMACH,24 a

Python-based library from ROS’s ecosystem used to

specify robot behaviors using hierarchical state machines.

SMACH is also used to define the adaptation rules for

their robotic applications (Obs. 15).

Different interviewees come to a different assessment

of state machines as a means of implementing variability

in missions. Several PAL Robotics interviewees consider

them user-friendly. While they acknowledge that FSMs
are not suitable for non-technical operators due to their

complexity, they assume their customers to be techni-

cally skilled. PAL Robotics’s CTO considers that FSMs

are hard to comprehend due to their associated learn-

ing curve. Furthermore, they express concern about the

scalability of FSMs, which quickly become very com-

plex when adding conditional and nested states, leading

to increased maintenance costs. A similar concern is

shared by our interviewees from Blue Ocean, describing

situations where a large amount of dynamic variability

needs to be supported. In line with this sentiment, one

engineer at PAL Robotics mentions that state machines

are quite often used for demos and small projects.

Behavior trees are the underlying mechanism used

by Blue Ocean to define missions for their robots. The

company uses either py trees31 or its derivative Behav-

iorTree.CPP,30 both domain-specific languages realized

as libraries based in Python and C++, respectively. Blue

Ocean uses an in-house framework to enforce the trees’

topology and a template for the action providers—e.g.,

GoToPosition. The behavior trees are built using this

framework and are generic for all clients. To customize

their missions, Blue Ocean creates a database for each

customer that contains customer-specific information.

When loaded into the cognition layer of the robots, the

behavior tree can query the customer’s database and

configure itself based on that information.

Compared to FSMs, behavior trees are on a higher

abstraction level, focusing on high-level actions that

are implemented in the code using an asynchronous

request-reply pattern. Interviewees at both considered

companies point out greater flexibility and reuse poten-

tial when using behavior trees for supporting variability.

One interviewee illustrates this in an elaborate example:

I6: “What we are using the most is that we can prune and

inject trees in the run time. For example, in the predefined disin-

fection mode, let’s say we have five disinfection positions where

the robot has to go. Now, let’s say that the robot goes to the first

one and fails the second and third ones: suddenly someone tries

to enter the room, and the disinfection is interrupted. Now, the

operator has to decide what to do. You can repeat all the dis-

infection positions, repeat the failing positions or continue the

disinfection as it was before. We don’t know what is the right an-

swer from the robot’s perspective. The operator might not want

to go back to the other two points, we might know the distance

or we don’t know the urgency of that operator. Maybe a person

is coming, and they need to be in the room right now. We give

the person the option of selecting what to do next. Based on the

selection of the user, then we inject the tree accordingly. We can

reconfigure, prune, and inject trees and sub-trees. That’s why we

prefer to use behavior trees rather than state machines, because

state machines are much stricter.”

Flowcharts. One of the first steps to design a prod-

uct at Blue Ocean is specifying the scenarios (Obs. 10)

that describe the intended operation of the product us-

ing flowcharts, internally known as “technical workflows.”

These workflows also detail the required functionalities
for the different software levels of their robots. This

encompasses from mission specification to the actual

code implementation in low-level layers of software and

its expected behavior in certain contexts. Therefore, this

mechanism is cross-cutting across all the drivers of vari-

ability studied in this paper, and orthogonal to the more

technical mission specification mechanism being used,

such as FSMs or behavior trees. The technical workflows

are used by the company to infer the requirements of a

product, which need then to be evaluated to assess their

business value. Concretely, the mission specification as-

pects of the workflows are defined in collaboration with

the customer, from which the requirements are inferred.

Once the mission workflow of a robot is properly defined,

it is translated into behavior trees.

Task frameworks. PAL Robotics also uses and pro-

vides to their customers a task framework, which is used

to manage the scheduling of simple, highly repetitive

tasks (e.g., going from point A to point B). They also pro-

vide a graphical user interface for the operator to sched-
ule these tasks, including timing and generating maps.

A future goal for PAL Robotics is to develop a task

planner where high-level missions can be easily defined

and which automatically generates a specification based

on a target mechanism, namely behavior trees or state

machines. In this way, the company would avoid hard-

coding the missions, which would enhance its mission-

related variability management while simplifying mission

specification for its customers.

28 Sergio Garćıa et al.

GUIs. Besides the infrastructure provided by the

company, the complexity of behavior trees is still high

for non-technical operators, and therefore this specifi-

cation is hidden from them. Instead, the operator will

be presented with a graphical interface or GUI installed

on a tablet. The GUI presents rather simple informa-

tion to the operator, who just needs to push a button

to start the mission. The operator may also set a few

parameters—e.g., in the case of a UVD robot, the room

to disinfect—to configure the mission to their needs.

Note that non-technical operators are not able to change
the underlying mission-specification mechanism (i.e., a

behavior tree) but rather to configure it.

The studied robotics companies provide a variety of

mechanisms for their customers to specify missions

for their robots. What mechanism is provided to the

customer depends on the customer’s technical skills;

a non-technical operator would rather use simple

but not expressive mechanisms such as GUIs. In

this case, the complexity of the mission specification,

which relies on powerful mechanisms like behavior

trees, is hidden from the customer. On the other

hand, technically skilled customers may prefer

complex but expressive mechanisms like finite-state

machines or behavior trees.

Actionable recommendations for researchers,

tool providers, and practitioners: The mission

specification module should be part of the software

configuration of robots, thus enabling the most

appropriate instrument for the specific customers.

Observation 28 (Mission-specification mechanisms)

Navigation frameworks. Regarding the naviga-
tion aspect of mission specification—inherent to mobile

robots—, both companies use frameworks that are made

common to all their robots. Blue Ocean works with an

in-house solution that implements their custom contex-

tual navigation mechanism (explained in Sect. 5.2.2).

PAL Robotics relies on move base,32 a well-known pack-

age for navigation-related tasks from ROS’s ecosystem.

move base performs a navigation task by combining two

planners: a global and a local one. The global planner

solves a global path-finding problem, whereas the local

planner provides adjustments based on dynamic sensor

input (e.g., collision avoidance). Global and local plan-

ners can be exchanged freely, as long as they implement

the interfaces provided by move base.

32http://wiki.ros.org/move_base

5.7 Variability Management Practices in the Literature

The studied papers aim at promoting the adoption of

effective software engineering methods for developing

robotics software. Papers from Table 6 discuss engi-

neering paradigms such as Model-Driven Engineering

(MDE) (Brugali and Gherardi 2016; Goldsby and Cheng

2008; Silva. et al. 2013), Software Product Line Engi-

neering (Brugali and Hochgeschwender 2018; Lotz et al.

2013), Software Frameworks (Kimour et al. 2009), and

Component-Based Software Engineering (Niemczyk and

Geihs 2015).

A few papers address the interplay of the various

drivers of variability in robotics and propose approaches

for their effective management. Brugali and Valota

(2016) present an MDE approach that allows engineers

to model both variability in robot functionalities (pack-

aged in reusable software components) and in applica-

tion requirements (related to hardware, environment,

and task variability). The HyperFlex tool supports the

automatic configuration of system functionality from a

selection of application requirements. Steck and Schlegel

(2011) developed an MDE approach for runtime au-

tomatic selection of different execution variants of a

robot control system. The proposed approach exploits

several variability models related to component-based

architectures and task plans (i.e., missions).

A limited number of papers do not specifically ad-

dress software variability in robotics, but present general-

purpose variability management approaches that are ex-
emplified using a case study in robotics, as reported by

Kwanwoo Lee et al. (2006) and Olaechea et al. (2018).

Some of the practices applied by the considered
robotic companies to manage variability are rather ad

hoc (e.g., configuration files) or specific to one driver

of variability (e.g., in-house tools). As opposed, most

studies from the literature propose systematic strate-

gies and mechanisms to ease the adoption of effective

software engineering approaches (e.g., model-driven

engineering, software product line engineering) that

are not tailored to any driver of variability. In most

cases, the strategies and mechanisms proposed in the

literature have not been tested in industrial settings.

Actionable recommendations for researchers:

To propose solutions that are adopted in practice,

academics should better study the state of practice

and the actual needs of practitioners, as it has been

done in other fields—e.g., software architecture

description languages (Malavolta et al. 2010). The

current study helps in building this knowledge.

Observation 29 (Comparison in variability management)

http://wiki.ros.org/move_base

Software Variability in Service Robotics 29

Table 6: Variability management in the literature (RQ2)

E1 H2 M3

G
r
o
u
n
d

r
o
b
o
ts

P1 Kwanwoo Lee et al. (2006) •
P2 Álvarez et al. (2006) • • •
P3 Kimour et al. (2009) • • •
P4 Steck and Schlegel (2011) • • •
P5 Lotz et al. (2013) • • •
P6 Brugali and Gherardi (2016) • • •
P7 Brugali and Valota (2016) • • •
P8 Brugali and Hochgeschwender (2017) • • •
P9 Brugali and Hochgeschwender (2018) • • •
P10 Brugali et al. (2018) • • •
P11 Rollenhagen et al. (2019) • • •
P12 Wirkus et al. (2020) •
P13 Seiger et al. (2015) •
P14 Niemczyk and Geihs (2015) • • •
P15 Goldsby and Cheng (2008) •
P16 Saglietti and Meitner (2016) •
P17 Buchmann et al. (2015) •

U
A
V
s

P18 Brown et al. (2007) • • •
P19 Steiner et al. (2013) • •
P20 Silva. et al. (2013) • • •
P21 Fragal. et al. (2013) • • •
P22 Ozdemir et al. (2014) • • •
P24 Czerniejewski et al. (2016) • • •
P25 Feng et al. (2015) •
P26 Braga et al. (2012) • • •
P27 Olaechea et al. (2018) • • •
P28 Brooks and Iagnemma (2009) •
P29 Pant et al. (2015) • • •

1Environment variability 2Hardware variability 3Mission vari-
ability

6 Variability-Related Challenges (RQ3)

We now describe the challenges we identified that prac-

titioners from both studied companies face, structured

into subsections for each driver of variability. We then

present the related findings from our SLR and an ob-

servation that details the triangulation of these findings

with the results from the interviews.

6.1 Environment

Our interviewees discussed a variety of challenges related

to their robots’ operating environments, from which we

identified (i) conceiving generic solutions for var-

ious scenarios, (ii) developing parametric config-

urations, and (iii) the installation process.

Conceiving generic solutions for various sce-

narios. Both companies collect feedback from their cus-

tomers to identify the causes of failures for their robotic

applications. For instance, PAL Robotics records data

from scenarios where their customers reported failures,

which triggers an update in the robots’ software to fix de-

rived issues and make the robots more robust. However,

PAL Robotics practitioners realized that it is intractable

in the long term to manage several configuration files

(typically yaml and launchfiles, see Sec. 5.2) for each

scenario. I2: “These configurations [...] are cost-effective
but they are not cheap either. So you cannot configure ev-

erything because you would have endless parameters for

everything and then you end up with something that no

one knows how to use.” Similarly, a Blue Ocean intervie-

wee claims that trying to cover every possible corner case

of robot operation using adaptation is unfeasible. There-

fore, a goal for both companies is to find the “sweet spot”

where robots succeed their missions without handling

every potential event. This strategy to manage environ-

ment variability (either through configuration files or

adaptation rules) requires of generic solutions that fit

most scenarios and allow robotic applications to accom-

plish their missions with a high success rate. However, ac-

cording to interviewees from both companies, conceiving

such solutions and finding a good balance between per-

formance and error-handling complexity is challenging.

To conceive generic solutions, companies need to first

carefully study the environments where their robots may

operate, which requires several iterations with the cus-

tomer. Then, companies follow different strategies. At

Blue Ocean, developers first describe missions and sce-

narios using workflows in collaboration with customers
(Obs. 28), which they use to specify the context and

events their robots are expected to adapt to. A second

step, common for both companies, is performing several

testing iterations to validate the configuration of the

robotic application and its robustness.

Conceiving generic solutions that only require mini-

mum tuning to grant high success rates is challenging

due to the dynamic environment the robots from the

studied companies operate in. To develop such solu-

tions, the interviewed practitioners need to gain a deep

understanding of the context where their robots will be

deployed. The process may include generating initial

models of the environment and iterative testing.

Actionable recommendations for researchers

and tool providers: There is the need for solutions

that can be easily tuned and adapted to the operational

environment in which the robots will be used.
Observation 30 (Generic solutions)

30 Sergio Garćıa et al.

Developing parametric configurations. Some

scenarios make generic configurations unfeasible, either

due to the scenario’s complexity or uniqueness. For these

scenarios, companies create sets of configuration files

that use parameters (Obs. 12). Companies elicit and

model the parameters needed to adapt their generic

applications from the customers. Also, some environ-

mental features are unique for certain scenarios. For

instance, practitioners from Blue Ocean explain that

hospital rooms are different around the world and that

sizes and shapes of toilets change for every country. Our
studied companies choose to hard-code those special

environmental features into the system, increasing the

complexity of variability management.

When a generic configuration does not fit a certain

scenario, developers from the studied companies

need to adapt such a configuration. This is typically

performed by parameterizing the configurations,

which requires eliciting requirements from customers.
Managing sets of configuration files for each scenario

increases the complexity of environmental variability

for organizations.

Actionable recommendations for researchers

and tool providers: Similar to the stated in
Obs. 30, there is the need for solutions to manage

tune and adapt configuration files in accurate and

easy manners.

Observation 31 (Parametric configurations)

Performing the installation process. Even when

companies are able to provide generic solutions that fit
the customer requirements, the installation process ex-

plained in Sec. 5.1 (Obs. 9) needs to be performed. This
consumes time and resources from organizations. Blue

Ocean interviewees mention that they are working on

APIs that will guide customers through this process,

allowing them to install the robots in their environments

by themselves. From PAL Robotics, two practitioners

mention that their goal and the main challenge in this

regard is to ship robots that are able to adapt to a

known environment. This requires eliciting environmen-

tal features from the customer before shipping the robot

but also dealing with dynamic variability. This remains

an open challenge for PAL Robotics, as documented in
our previous study (Garćıa et al. 2019b).

According to one interviewee from Blue Ocean, the

lack of standardized solutions (e.g., tools and interfaces)

impedes that an operator such as a system integrator

could perform the installation process.

6.2 Hardware

According to our interviewees, there exist many chal-

lenges related to hardware variability in robotics, namely

(i) conceiving generic solutions for different ro-

bots, (ii) hardware-driven assumptions, (iii) achiev-

ing reliability of variant-rich systems, (iv) multi-

ple options for hardware design, (v) lack of stan-

dardized hardware options, (vi) performing inte-

gration, (vii) aligning conventions for hardware,

(viii) trade-offs, (ix) handling real-time compo-

nents, and (x) influence from environment.

Conceiving generic solutions for different ro-

bots. In Sec. 5.1 and 6.1 (Obs. 11, 30), as well as in

Sec. 5.5 (Obs. 27), we discussed how companies strive

to create generic and reusable configurations that have

a high success rate while avoiding continuous configu-

ration. On top of that, to make those configurations of

missions and scenarios truly generic, the studied com-

panies invest resources in making such configurations

robot-agnostic. To achieve that, companies need to raise

the level of abstraction of software components that

realize robotic functionalities (i.e., skills) to make them

usable by different robots within the same company

(Obs. 19, 25, 26). This simplifies variability management,

but, according to one interviewee from PAL Robotics,

complicates software development, as explained below.

Hardware-driven assumptions. Both studied com-

panies strive to reuse their code for their robots’ control

systems and skills as much as possible to simplify devel-
opment and reduce time to market (Obs. 17, 18, 19, 20).

However, assumptions made in the software based on the

hardware design of the robots threaten its reusing. I2:
“If making a single robot to navigate in a crowded envi-

ronment is already a tremendous task, making the same

code work for any kind of robot [..] doesn’t make it sim-
pler. It also limits you by not being able to make certain

assumptions, which makes the code more verbose: you

have to add more code to handle different scenarios.” An

example given by one interviewee from PAL Robotics is

that they developed skills for TIAGo assuming that the

robot has one arm. However, PAL Robotics has recently

released a new model of the robot that has two arms

(TIAGo++26), which required developers to refactor the

code of their robots’ control systems to accommodate

the new hardware design. This was complicated since

the hardware-driven assumptions were not documented
when the code was developed. The lack of documentation

also hinders the maintainability of such code and the in-

tegration of other robotic platforms that may not share

the same assumptions, according to this interviewee.

PAL Robotics’s current strategy to palliate this chal-

lenge is to parametrize their robot control system and

Software Variability in Service Robotics 31

skills to make them flexible to different platforms, as

explained in Sec. 5.3 (Obs. 21, 25).

A strategy for both considered companies to simplify

variability management is to create effective configu-

rations and robotic skills that can be applied to several

robots. This requires raising the level of abstraction

to make them generalizable enough, which results in a

complicated task that involves many iterations of test-

ing. The complexity of developing generic solutions is

exacerbated by assumptions made by these companies

in terms of hardware and capabilities a robot provides—
e.g., an omnidirectional navigation algorithm might

not be usable by a robot with differential locomotion.

Actionable recommendations for researchers

and tool providers: There is the need for variabil-

ity management tools to adapt generic solutions to a

family of robots in an easy and effective way.

Observation 32 (Generic solutions among robots)

Achieving reliability of variant-rich systems.

Building reliable variant-rich systems is one of PAL
Robotics’s most pressing challenges, according to one of

their software engineers. Some of the company’s robots

have more than 40 variants. To ensure a robust operation

of such variant-rich products, PAL Robotics tests inde-

pendently all the low-level features of their system—e.g.,

the different end-effectors a TIAGo may equip, see Fig. 1

and 4. In this way, developers can test the performance

of missions—higher in the abstraction layers—without

conducting separate tests for each variant. I2: “Once you

go higher in the abstraction layers you have to assume

that the lower layers are behaving properly, so when you

are doing a grasping experiment you don’t need to repeat

the same experiment with three different cameras, four

lasers, and one dozen combinations for the arm.”

Ensuring the reliability of variant-rich systems may
exhaust the resources of organizations. To simplify

this process, one of the studied companies conduct

individual tests of their low-level features and assume

their correct behavior when performing higher-level

missions involving many low-level features.

Actionable recommendations for researchers

and tool providers: There is the need for solutions

to validate variant-rich systems thus guaranteeing

the overall system reliability.

Observation 33 (Testing variant-rich systems)

Multiple options for hardware design. One in-

terviewee from each company consider the robot hard-

ware design the most challenging issue to deal with

regarding robotics variability. According to these inter-

viewees, there is a vast supply of electrical components,

sensors, and actuators that could be integrated into

the robot hardware design, which directly impacts the

robot control system and its variability. Managing this

variability becomes challenging when the selection of

components, sensors, and actuators is often decided

upon developers’ personal preferences and backgrounds.

This is exacerbated by the lack of standard options,

which also affects the reliability of the product.

Lack of standardized hardware options. One

interviewee from each company argue that having stan-

dards would immensely simplify the process of integra-

tion at many levels of robotics, ranging from sensors,
via their drivers and necessary software for the robot

control system, to software components that make use

of them. I1: “What a camera does in one way, another

camera does in a completely different way [...] and you

have to rebuild half your software to take into account

the possibility of having one camera or the other.”

Integration. A challenge highlighted by one inter-

viewee from Blue Ocean is the complexity of the inte-

gration of hardware and software components tailored

to robotic capabilities due to the existing variety of elec-

tronics, mechanics, protocols, and software. The vast

supply of hardware and personal preferences complicates

the integration for each development project within the

company if not standardized or harmonized. Similarly,
the integration of software in charge of controlling the

variety of electronics, functionalities, mechanics, and pro-

tocols is also challenging. A robotic software application

is typically developed following a component-based ap-

proach (Obs. 22) (Brugali and Scandurra 2009; Ahmad

and Babar 2016) where each software component may be
developed by a different person—e.g., a control engineer

may have developed the motion control aspects of the

robot while a software engineer carries on with the cogni-

tive layer. These components need to be integrated into

a common platform. This, according to our interviewees,

consumes a high amount of effort. Interviewees from

both companies explain that they rely on ROS for soft-

ware integration since it simplifies this task by providing

standardized interfaces and message types (Obs. 22).

Integrating a wide variety of hardware, electronic,

and software components along with mechanics and

protocols into a complex system as a robot is chal-

lenging. The integration is hindered by an overall lack

of standards, conventions, or harmonized solutions.

Actionable recommendations for researchers,

tool providers, and practitioners: There is the

need for solutions, standards, and conventions able

to facilitate the integration of a wide variety of

hardware, electronic, and software components.

Observation 34 (Integration and lack of standards)

32 Sergio Garćıa et al.

Trade-offs. We noticed a series of trade-offs related

to hardware variability that are perceived as challenges

by our interviewees, which we synthesize in the following.

Costs versus time. Some hardware elections influ-

ence the integration of the whole robot in terms of time,

according to one interviewee from Blue Ocean. For in-

stance, a more expensive sensor could have an existing

ROS driver, which would make the sensor integration

and software development much faster.

Flexibility and costs versus performance and usabil-

ity. Making a robotic application specialized to certain

scenarios could reduce its complexity or improve its suc-

cess rate, as discussed by one interviewee from each

company. However, as discussed in Obs. 11, 27, 30,

and 32, generic solutions help simplifying variability
management, reducing the company’s costs related to

developing, maintaining, and tuning of configuration op-

tions. For instance, to make navigation skills as reusable

as possible, the locomotion mechanisms are abstracted,
and generic or harmonized interfaces are provided. Still,

implementation difficulties may arise if the same in-

terfaces are provided for ground, aerial or underwater

robots, which operate using different parameters—e.g.,

a ground robot does not necessarily need to care about

the aircraft principal axes of yaw, pitch, and roll. Com-

panies try to find a balance between generalization and

performance from tailored solutions.

Our studied companies found trade-offs in their

hardware design, for which they need to find a

balance. Making a robotic application specifically

adapted to a scenario could reduce its complexity or

improve its success rate, but more generic solutions

help to manage the variability from configuration
options. Also, raising the level of abstraction may

promote reusability, but this raise needs to meet

certain levels of performance and usability. Both

companies need also to study costs and integration

time; for instance, a more expensive sensor could

have an existing ROS driver, which could accelerate

its integration into the robot control system.

Actionable recommendations for researchers

and tool providers: There is the need for method-

ologies and tools to facilitate a tradeoff analysis

among cost, efficiency, performance, usability, etc.

of alternative solutions.

Observation 35 (Trade-offs)

Handling real-time components. Achieving real-

time performance of the robot control system is crucial

for robots that operate or collaborate with humans

(Rouxel et al. 2020), as is the case of most service robots

from our studied companies. Since ROS does not handle

real-time, developers at PAL Robotics use OROCOS to

develop and manage real-time constrained components.

Besides the complexity of controlling real-time systems,

PAL Robotics needs also to manage the variability stem-

ming from the usage of two middleware (i.e., ROS and

OROCOS) to develop and control their robot control

systems.

Influence from the environment. The hardware

a robot equips is strongly influenced by the environment

where it is intended to operate (Obs. 2). As an exam-

ple, a robot operating outdoors may incorporate GNSS

sensors to improve its self-localization capabilities, but

the same sensors will not work indoors. Moreover, there

exist LIDAR sensors suitable only for indoor scenarios

and some that also work outdoors. Similarly, a robot

navigating on rough surfaces may experience problems

with sensors using a USB connection, more suitable

for indoor environments, due to vibration. Adapting to

such requirements increases hardware variability and its
management complexity.

6.3 Mission

Challenges our interviewees normally face concerning

robotic missions are (i) mission specification, and
(ii) promoting user friendliness.

Mission specification. Missions for service robots

typically fulfill requirements requested by the customer,

as explained in Sections 4.3 and 5.6. Associating high-

level user requirements from customers to individual

robot configurations is deemed as a challenge by two

interviewees from Blue Ocean.

One interviewee from PAL Robotics and two from

Blue Ocean rate generating the mission that describes

the set of goals a robot must achieve while being able

to deal with the environment as the most important

challenge for robotics variability management. Among

the main issues is the uncertainty present in the envi-

ronments where service robots operate (Obs. 3). That

is, dealing with unexpected events or failure of systems

complicates the specification of missions and managing

their variability.

One interviewee from Blue Ocean highlights the im-

pact of time-sensitive constraints, which also need to

be managed during mission specification. For instance,

timing may vary in a social context where robots need

to move carefully to not harm humans or in an indus-

trial scenario, where timing is intrinsically related to

performance. Related to the context, missions that ful-

fill the specification from customers must meet existing

standards of safety.

PAL Robotics’s CTO states that a high-level tool

that explores the existing skills set of a system and

Software Variability in Service Robotics 33

automatically builds execution graphs that in turn can

self-reconfigure at runtime based on requirements and

the environment would be highly beneficial for their

organization. As an example of reconfiguration, a robot

could lock some arm joints to reduce power consumption

in case that no grasping task is required. Similarly, if a

robot’s motor stops working properly, it may deliberate

whether is more efficient to keep working in a slower

way to finish the mission or to call for a failure.

Missions for professional service robots fulfill the

requirements from customers, which need to be

specified using specialized mechanisms. This entails

difficulties in variability management, for reasons

ranging from misalignment of positions between

the company and the customer, uncertainty in the

environment via possible system failures, and time

constraints to safety standards.

Actionable recommendations for researchers

and tool providers: There is the need for mission

specification languages and tools that ease the
specification of exceptional behaviours in robots,

e.g., triggered by uncertainty in the environment or

potential faults.

Observation 36 (Mission specification)

Promoting user-friendliness. Two interviewees

from each company state that promoting user-friendliness

in their mission specification tools is challenging. The

common goal for both companies of developing an ex-
pressive tool that supports the operator by providing

simple and enough information during mission execution

entails many difficulties related to variability manage-

ment. For non-technical operators, the tool should be
able to provide an easy-to-understand interface and

automatically deal with the variability from the under-

lying mission specification mechanisms (i.e., behavior

trees in Blue Ocean and finite-state machines in PAL

Robotics). That is, the tool should configure such under-

lying mechanisms based on the mission specification and

the setting of parameters specified by the customer. In

summary, the tool should support and keep the user in-

formed while hiding the unnecessarily complex back end

of the tooling. To do so, the studied xcompanies rely on

the specification of generic missions that allow reliable

mission execution in certain scenarios with minimum

configuration (Obs. 27).

Moreover, the companies consider that users should

not be constrained by dealing with operating system dis-

tributions, versions of ROS, or the compiler and libraries.

According to PAL Robotics’s CTO, developing a graph-

ical tool able to generate code without the mentioned

constraints is a future business goal for the company.

Table 7: Variability challenges in the literature (RQ3)

E1 H2 M3

G
r
o
u
n
d

r
o
b
o
ts

P6 Brugali and Gherardi (2016) • • •
P10 Brugali et al. (2018) • • •
P13 Seiger et al. (2015) •

U
A
V
s

P19 Steiner et al. (2013) • •
P22 Ozdemir et al. (2014) • • •
P24 Czerniejewski et al. (2016) • • •
P26 Braga et al. (2012) • • •
P27 Olaechea et al. (2018) • • •
P28 Brooks and Iagnemma (2009) •
P29 Pant et al. (2015) •
P30 Duncan and Murphy (2017) •

1Environment variability 2Hardware variability
3Mission variability

Finally, an interviewee from Blue Ocean states that

they are working on user-friendly tools that will allow

operators to perform mission-related tasks like mapping

the environment and setting regions of interest (Obs. 9).

This would reduce the complexity of variability manage-
ment and the installation process for companies. In the

context of the two studied companies, user-friendliness

alludes to the effort they carry out to make as accessi-

ble and simple as possible their complex products and

processes, especially for non-expert users.

The companies considered in this study make invest-

ments in promoting the user-friendliness of the tools

they provide to their customers. The provided tools

should support the operator during mission specifica-

tion and execution while managing appropriately the

underlying variability of more complex mechanisms

(e.g., behavior trees) and their configuration.

Actionable recommendations for researchers

and tool providers: User-friendly languages and

tools will be increasingly important when multi-

purpose robots will be used in scenarios of everyday

life, possibly operated by non-technical operators.

Observation 37 (User-friendly tools)

6.4 Variability-related challenges in the literature

Only a few papers (11 out of 30) from our SLR discuss

challenges related to the adoption of variability man-

agement approaches in real-world scenarios, as listed

in Table 7. The most significant challenges are related

to the difficulties of (i) recreating in simulation the

complexity found in variable real-world deployments, as

proposed by Czerniejewski et al. (2016); (ii) managing

34 Sergio Garćıa et al.

the combinatorial explosion of product configurations in

UAV product line development, as proposed by Olaechea

et al. (2018), and of testing and certifying them, as might

be found in Braga et al. (2012), Steiner et al. (2013);

and (iii) associating high-level user requirements to indi-

vidual robot configurations, as proposed by Duncan and

Murphy (2017). In addition, (Pant et al. 2015) discuss

how variability related to the type of sensor induces a

variability in the computational cost and accuracy of

robot functionality.

As opposed to the interviews’ findings, where

practitioners discuss concrete challenges from their

experience, few studies from the literature discuss

challenges stemming from variability management.

These studies mention challenges related to the

scalability of the proposed variability management

approach to real-world scenarios.

Actionable recommendations for researchers:

the concrete challenges reported in this study might

help researchers to better understand the needs of

practitioners in variability management.

Observation 38 (Comparison in variability challenges)

7 Discussion

We now discuss and compare our findings among the

interviews and the SLR, specifically: (i) drivers of vari-

ability (Obs. 8), (ii) variability management practices
(Obs. 29), and (iii) variability management challenges

(Obs. 38). We also discuss our finding’s impact and the

possible exploitation of the results of our investigation

by summarizing them, proposing hypotheses for our

observed phenomena, and giving recommendations to

practitioners and researchers.

7.1 Drivers of Variability

Observations. Almost every paper we studied in our

SLR addresses one or more of the drivers of variability

we identified. The characteristics of environment vari-

ability mostly discussed in the literature refer to the

features and changing conditions of the scenarios where

robots operate, similar to some of the findings from our

interviews (Obs. 2). Some papers also mention manag-

ing the variability entailed to perform the same mission

in several environments. According to our interviewees,

this is performed by the studied companies using generic

and parametrizable mission specifications (Obs. 27).

Only two papers of the SLR show evidence of deal-

ing with environments populated by humans. They deal

with human-robot collaboration in disaster scenarios

(Niemczyk and Geihs 2015) and factory automation

(Rollenhagen et al. 2019). As opposed, both of our stud-

ied companies need to manage the variability stemming

from the inclusion of humans to the operating envi-

ronments of their robots (Obs. 3). As opposed to our

interviewees (Obs. 5), the literature does not focus on

variability stemming from hardware-related customer

requirements. Mission variability in the literature is

mostly focused on the variety of missions and scenarios

robots may perform within a concrete domain or set

of scenarios, such as logistics, home entertainment or
cleaning of ship-hull surfaces. Human-robot interaction

is mentioned only in one study from the SLR, while this

topic has been thoroughly discussed in the interviews

(Obs. 7).

Hypotheses. We hypothesize that service robots are

highly change-centric software systems for two main rea-

sons. First, the variability of robotic software artifacts

is driven by the evolution of the underlying technologies

in mechanics, electronics, computer science, and cogni-

tive sciences (Obs. 4 and 5). Second, service robotics

is a research field that pursues ambitious goals, such

as to “expect robots to function on their own with

people and each other under whichever environmental

conditions they happen to find themselves” (Sukhatme

and Matarik, 2002). This means that the variability of

robotic software applications is driven by the complex-

ity of everyday environments (Obs. 1 and 3) and by

the potential uses of service robots for everyday tasks

(Obs. 6). We believe that these two reasons reflect the

different interests of industrial development and aca-

demic research and explain the different emphasis on

the various variability drivers that emerged from the

interviews and from the SLR.

Recommendations. Our analysis revealed that robotic

variability is commonly expressed in fuzzy and ambigu-

ous or project-specific terms, and this makes it hard to

understand what functionality the robotic system being

built must express (Obs. 8). We recommend researchers

work on creating a common ontology to describe the

variability drivers existing in service robotics following

the steps of previous research groups as Olszewska et al.

(2017) and Köster et al. (2016). This would require

collaboration with practitioners who should provide

personal experiences on the topic. This would result

in the definition of a common language for expressing

the variability in robotic technologies and in robotic

requirements that can support robotics engineers in the

development of new service robotic applications. Using

a common ontology and language would promote the

reuse of available technologies for solving common and

recurrent design problems and favor the comparison and

evaluation of robotic systems. With our current study,

Software Variability in Service Robotics 35

we made the first steps toward such an ontology and

the enlargement of the current body-of-knowledge of

variability in service robotics.

7.2 Variability Management Practices

Observations. Most studies from the literature pro-

pose adopting effective software engineering practices to
manage the variability of specific drivers. Examples are

Model-Driven Engineering (MDE), Software Product

Line Engineering (SPLE), Software Frameworks, and

Component-Based Software Engineering (CBSE) (Obs.

29). Findings from our interviews show that companies

also adhere to such software engineering practices, e.g.,

promoting reusability and modularity (Obs. 19, 21, 22,

26). On the other hand, we learned that our studied

companies also developed strategies and mechanisms

tailored to specific drivers of variability, like in-house

tools (e.g., Obs. 25) and configuration files (Obs. 12).

Hypotheses. Systematic approaches and paradigms

such as MDE and SPLE, which have been successfully

implemented in other domains (e.g., automotive, avion-

ics) are not currently used by robotic companies. Our

insights give rise to the hypothesis that one of the chief

reasons is the lack of awareness of such paradigms by

robotics experts, not least due to a general lack of matu-

rity of the robotics software engineering domain (Garćıa

et al. 2020). On the other hand, the field of SPLE still

assumes a low-tech approach, targeting static and fine-

grained variability (Berger et al. 2013, 2014) as opposed

to dynamic variability with late binding. For the latter,

we believe that the problem lies in the lack of means

for managing such features centrally, including tech-

niques for keeping an overview understanding and using

that for centralized and controlled configuration. This

problem is exacerbated by the variety of mechanisms to
implement variability in robotics software; there, various

ad hoc mechanisms exist, but no standardized solution

on how to do that within ROS. For instance, dynamic

features can be realized using parameterization33 or

loadable ROS plugins.34 Static features with binding

time compile-time might need a preprocessor and some

inclusion into the build system; so, while a diversity of

techniques exist, there are no guidelines on which to use

and how in robotics—a call to arms for future research.

Recommendations. Robotic companies make use of

well-known middleware and frameworks to ease soft-

ware development (Obs. 22). The most common ex-

ample is ROS, a middleware that provides a frame-

work and enables certain software engineering practices

33http://wiki.ros.org/Parameter%20Server
34http://wiki.ros.org/pluginlib

(e.g., modularity, reusability) and enforces development

paradigms such as CBSE (Garćıa et al., 2020). In this

light, mainstream middleware used by roboticists should

also integrate means and techniques for planning, design-

ing, and implementing variability. The recommendation

is two-fold: (i) mechanisms comprising techniques to

model the variability with binding times and modes,

and (ii) mechanisms for realizing that variability in the

actual robotics source code. The latter should be ide-

ally integrated into concrete technological support by

middleware, frameworks, or robotic reference architec-
tures (Garćıa et al., 2018, Kramer and Magee, 2007),

but could also be in the form of guidelines, templates,

or design patterns. This would improve current software

development practices and also raise the awareness of

industrial practitioners. We propose as an action for

researchers the study of current middleware and the

identification of paradigms that might benefit develop-

ers and practitioners. Developers and industrial prac-

titioners could use that information to integrate those

paradigms into current mainstream middleware that

meets industrial needs. Industrial practitioners might

share their experiences to conceive, lead by researchers,

guidelines, templates, or design patterns for the system-

atical plan, design, and implementation of variability.

We believe that the community has been taking the

right steps in the last years towards adopting systematic

approaches to manage variability. Promising examples

are the framework extensible via plugins of the official

navigation stack for ROS2 (Macenski et al., 2020) and

initiatives such as RobMoSys35 that are working to ap-

ply model-driven methods and tools to current robotics

software development processes.

7.3 Variability-Related Challenges

Observations. Only few papers from our SLR iden-

tify variability-related challenges in industrial applica-

tions. This is probably due to the fact that most papers

present approaches that have been applied only to re-

search prototypes and not to industrial case studies.

However, we saw commonalities between the most sig-

nificant variability-related challenges proposed in the

literature and some of the challenges stated by our inter-

viewees. The commonalities cover challenges concerning

managing the combinatorial explosion of product config-

urations (Obs. 34) and the association of high-level user

requirements to individual robot configurations (Obs.

36). The most repeated challenge in the SLR concerns

testing (Obs. 33) and certifying (Obs. 23) products and

product configurations.

35https://robmosys.eu

http://wiki.ros.org/Parameter%20Server
http://wiki.ros.org/pluginlib
https://robmosys.eu

36 Sergio Garćıa et al.

Hypotheses. We hypothesize that testing and certifica-

tion are considered among the most pressing challenges

by both the SLR and the interviewees due to the in-

herent complexity of service robots (Foster et al. 2020),

especially those that can be customized. Software prod-

uct line (SPL) testing, part of SPL certification, is still

considered a challenge by the literature due to the vari-

ety of products that can be derived from a single product

line (Braga et al., 2012, Pérez et al., 2009, Engström and

Runeson, 2011). This is especially important for cyber-

physical systems, which integrate hardware and software
components into systems that operate in real-world sce-

narios. This integration needs to be assessed through sys-

tem testing. In this light, we hypothesize that a core issue

related to this challenge is that variability in complex

systems introduces interdependencies among variation

points and features. These interdependencies may lead to

feature interactions, which are often difficult to identify

solely based on the behaviors of the features in isolation.

So, bindings among features need to be modeled and

tested, to verify the absence of incorrect bindings. Until

the features and variation points are bound, complete

integration and system testing cannot be performed.

Recommendations. According to the literature (Braga

et al., 2012), a common approach to validate complex

systems is to test each of its components separately.

This approach is followed by PAL Robotics, as discussed

in Obs. 33. To simplify this approach, robotic compa-

nies might strive to reduce redundant testing and to

reuse test artifacts so to reduce testing effort. We see

the necessity of test automation mechanisms that can

ease software development for companies, as previously

highlighted by Engström and Runeson (2011). These

mechanisms should support developers in performing

large numbers of isolated tests (unit tests) and integra-

tion tests to validate the interaction and bindings of

features. Because service robots operate in real-world

scenarios, the mentioned mechanisms should support

real-world data over prolonged timeframes to evaluate

possible failures and unexpected environmental events.

As a recommendation for researchers, we identify a

need for testing mechanisms that consider real-world

data to perform automated and systematic testing of

variant-rich systems. To achieve this goal, collections

of real-world and industry-based data and scenarios—

which in our opinion should be conducted by industrial

practitioners—are required for generation test cases, as

mentioned by Cleland-Huang et al. (2018). In this light,

automatic test generation (Nebut et al. 2006) could com-

plement the automated testing of variant-rich systems

as a cost-efficient and reliable solution, as discussed by

(Mossige et al. 2014).

Finally, a well-defined SPL simplifies the manage-

ment of variability of complex systems and eases the

definition and reuse of test artifacts (Engström and

Runeson, 2011). Initiatives such as the research incuba-

tor Dronology (Cleland-Huang et al. 2018), if conducted

together with industry, could pave the road towards

flexible, yet well-tested cyber-physical systems.

8 Threats to Validity

We discuss the threats to the validity of our empirical

study, using the standard categorization by Wohlin et al.

(2012).

External Validity. According to Maxwell (1992), gen-

eralizability is the extent to which we can extend our

findings to other situations or cases than the ones we

focused on in this case study. It is important however

to remark that describing particular cases and deriving

insights is the main goal of qualitative research rather

than arriving at generalizable conclusions, as discussed

by Creswell and Creswell (2017). We might have in-

curred a sampling bias since we asked for knowledgeable

practitioners from both studied companies, who may

have a positive attitude toward the topic. Our intervie-

wees work with robotic systems, covering a wide range

of domains, contexts, and backgrounds. They come from

two different companies whose headquarters are located

in two different countries, namely Denmark and Spain.

The practices, characteristics, and challenges we describe

are applicable to service robots in similar domains.

Minimizing potential threats to the external validity

of our study was key for us due to the nature of an SLR,

which aims at being as generalizable as possible. As an

attempt to mitigate this issue we adopted conservative

exclusion criteria that disregarded grey literature papers,

position papers, workshop summaries, and short papers.

Construct Validity. Practitioners in the robotics do-

main come from a variety of backgrounds and, therefore,

might use different terminology (Garćıa et al. 2020),

which was the main threat to construct validity. To

mitigate this threat, we introduced and explained terms

that could lead to confusion, including requirements,

features, variants, and mission during the interviews.

Another potential threat to construct validity is the

misinterpretation of our interviews. To avoid this is-

sue, we made recordings and transcribe all of them,

so we could have a word-by-word analysis. However,

other behavioral aspects from our interviewees such as

gestures, pauses, or irony were not captured in our tran-

scripts. This could lead to some misinterpretation of the

statements. To alleviate this problem we referred to the

recordings to clarify confounding parts in the transcripts.

Software Variability in Service Robotics 37

Internal Validity. A large number of our interviewees

are volunteers, most of whom we did not know person-

ally. According to Wohlin et al. (2012), the selection of

volunteers may threaten internal validity because they

tend to be more motivated and suited for a new task

than the whole population, and therefore they are not

representative of the whole population. As discussed by

Verner et al. (2009), a reduction of this bias to minimize

the effect of confounding factors can be made by increas-

ing the sample of the study, making it more diverse, and

increasing the rates of volunteering. With this aim, we
(i) asked interviewees about practitioner colleagues who

may fit in our selection criteria and might be interested

in our study, (ii) recruited practitioners with a variety

of roles from both companies, and (iii) strove to show

our study as theoretically and practically relevant for

our potential interviewees.

According to Creswell and Creswell (2017), the re-

searcher cannot avoid influencing the setting of an inter-

view. The context of the interview, the way questions

are phrased and possible reactions from the interviewer

might influence the behavior of the interviewee and

subsequent answers. Creswell states that even though

the interviewee is always influenced by the interviewer,

there are things one can do to mitigate such bias. We

strove to formulate the questions in an unbiased fashion
and to identify potentially misleading questions.

Conclusion Validity. A risk of analyzing qualitative

data is the possibility of being biased by the researchers’

background, values, and theories. Also, the analysis of

qualitative data through coding as we performed may

be subject to the researcher’s interpretation. However,

we were not evaluating a solution, method, or tool and
therefore we did not risk being biased in trying to ar-

rive at certain conclusions. To mitigate this bias, we

conducted the qualitative analysis of our data collabo-

ratively, that is, the open coding was performed by two

authors. We also cross-checked and refined the codebook

obtained after the analysis iteratively between two au-

thors. Furthermore, we conducted a workshop among

all the authors to discuss the codebook to align ideas

and concerns and to enhance our study’s validity.

Another potential threat to conclusion validity is

given by the substantial work carried out by a single

researcher during the conduction of the SLR. The poten-

tial bias introduced by this researcher was mitigated by

the inclusion of a second researcher during the selection

of primary studies and data extraction as quality control.

These two researchers held iterative discussions and led

an informal workshop with five of the authors of this

paper to iteratively refactor the data extraction process.

To make a meaningful evaluation of our findings we

discussed them among all authors, including one indus-

trial practitioner. This allowed us to evaluate whether

our findings were in line with industry reality.

9 Related Work

We already compared specific aspects of our study with

related works in the previous sections. Specifically, in

Section 4.4 we make a comparison with the literature on

drivers of variability, in Section 5.7 with the literature

on variability management practices, and in Section 6.4

with the literature on variability-related challenges. In

the current section, we complement the comparison with

a discussion of empirical studies that focus on variabil-

ity management in other domains. Overall, we confirm

some of the variability drivers, variability management
practices, and variability challenges already identified in

other domains, and we add characteristics that are spe-

cific from robotics. In the following, we provide a more

detailed comparison for each of the identified related
works.

Berger et al. (2020) study systematic variability

management techniques and software product line en-

gineering (SPLE) concepts in twelve cases that include

domains such as automotive, aerospace, or railway sys-

tems. The authors use a multiple-case study to identify

challenges to the adoption of systematic variability man-

agement. They claim that hardware is one of the most

significant drivers of variability among their studied in-

dustrial cases and that the automotive domain is the

most advanced in terms of adopting SPLE concepts.

The work also identifies some characteristics of the envi-

ronment driver of variability, however, without putting

much focus on inclusion of humans, as, instead, we do.

The driver of variability that is instead completely miss-

ing is mission. This is not surprising since, currently,

mission is a rather specific driver of variability of the

robotic domain. However, we expect that it will become

increasingly important also for autonomous systems

used in other domains. For example, when autonomous

vehicles will be deployed in the streets of our cities,

we will need to “program” their behavior. Berger et al.

(2020) conclude that one of the main challenges of adopt-

ing SPLE concepts is tool-integrating problems due to

the diversity of tools and artifacts needed for software

development in the studied domains. Also for what con-

cerns challenges, in this work we identified challenges

that are specific of the robotic domain, e.g., related to

the involvement of non-technical operators who might

not be skilled in computer science and/or robotics.

Krüger et al. (2017) identify and categorize relevant

aspects of variability as well as challenges of variability

modeling of cyber-physical systems (CPS). The identifi-

cation of aspects and challenges of variability stems from

38 Sergio Garćıa et al.

Table 8: Mapping of drivers characteristics to management strategies and mechanisms and related challenges.

Driver characteristics Management strategy Management mechanism Related challenges

E
n
v
ir
o
n
m

e
n
t

Scenario & map layouts Scenario modeling Map-editing mechanisms Conceiving generic solutions
Installation process Mechanisms for customers Parametric configurations

Performing the installation
Events Scenario modeling Parameters Conceiving generic solutions

Generic configurations Configuration files Parametric configurations
Installation process Adaptation rules Performing the installation
Customers’ feedback Contextual navigation

In-house tools
Environment features Scenario modeling Parameters Conceiving generic solutions

Generic configurations Configuration files Parametric configurations
Installation process Map-editing tools Performing the installation
Customers’ feedback Adaptation rules

Contextual navigation
Inclusion of humans Scenario modeling Parameters Conceiving generic solutions

Installation process Configuration files Parametric configurations
Customers’ feedback Adaptation rules

Contextual navigation

H
a
r
d
w
a
r
e

Services Reuse resources Software architectures Generic solutions
Collaboration with costumers Middleware Reliability of variant-rich systems
Iterative development Standards and safety layers Integration
Decoupling Version control Trade-offs
Harmonized interfaces Configuration files & parameters Influence from environment
Inter-department communication Libraries
Customizable codebase

Capabilities Reuse resources Software architectures Generic solutions
Collaboration with costumers Middleware Hardware-driven assumptions
Iterative development ROS control Reliability of variant-rich systems
Decoupling Standards and safety layers Integration
Harmonized interfaces Version control Trade-offs
Inter-department communication Configuration files & parameters Handling real-time components
Customizable codebase In-house tools Influence from environment

Libraries
Embodiment Iterative development Software architectures Hardware-driven assumptions

Inter-department communication Middleware Multiple options for hardware
Add-ons Standards and certifications Lack of standardized hardware

Integration
Aligning hardware conventions
Trade-offs
Influence from environment

Customer requirements Reuse resources Software architectures Reliability of variant-rich systems
Collaboration with customers Middleware Lack of standardized hardware
Iterative development ROS control Integration
Decoupling Standards and safety layers Trade-offs
Harmonized interfaces Version control Influence from environment
Inter-department communication Configuration files & parameters
Customizable codebase In-house tools
Add-ons Libraries

M
is
s
io

n

Operator’s expertise Generic missions Finite-state machines Mission specification
Task frameworks Promoting user-friendliness
Behavior trees
GUIs
Navigation frameworks

Human-robot interaction Generic missions Finite-state machines Promoting user-friendliness
Task frameworks
GUIs

Events Generic missions Finite-state machines Mission specification
Fail safely Flowcharts Promoting user-friendliness

Behavior trees
Navigation frameworks

their experience. This work does not explicitly identify

drivers of variability and variability management prac-

tices. For what concerns challenges, the main identified

ones are modeling, interaction, configuration, and qual-

ity. We are very aligned with their findings for what
concerns configuration, which should not be confined

into design-time configuration. We did not find much

emphasis in modeling but instead we found challenges in

integration also intended in the context of iterative devel-

opment that poses some constraints in upfront modeling.

About quality, we indeed found the challenges related

to safety. In particular, we found challenges related to

reliability of variant-rich systems. Finally, as discussed

for the previous work, we identified challenges that are
raised by the involvement of end-users.

The study by Flores et al. (2012) details how Gen-

eral Motors36 applied SPLE to their organization in

36https://www.gm.com

https://www.gm.com

Software Variability in Service Robotics 39

the automotive domain. The authors introduce the chal-

lenges the company faced to apply the SPLE paradigm

to such a big organization, highlighting the complexity

levels of variants. The authors complement the study

by explaining the technical and organizational lessons

learned in an experience report style. Similarly, the

study by Dumitrescu et al. (2013) reports on the au-

thors’ experience in modeling a family of parking brake

systems and discusses the requirements of Renault re-

garding variability management. The authors discuss

modeling techniques and tools to support variability
modeling and present an approach for adopting the prod-

uct line paradigm in systems engineering in the context

of Renault. The paper concludes with the challenges

the authors were confronted with when implementing

their approach. Thomas et al. (2011) also focus on the

implementation of SPLE to the automotive domain.

Concretely, the authors discuss the challenges of a hypo-

thetical introduction of a software product line approach

to the development of automotive-based applications

using the AUTomotive Open System ARchitecture (AU-

TOSAR), proposed by Fürst et al. (2009). These works

do not explicitly identify drivers of variability, as well

as variability management practices. About the chal-

lenges, it is quite difficult to make a comparison with

our work since these papers are mostly reporting some

experiences and the challenges are at a different level of

granularity since are those that the company faced in

applying the SPLE paradigm or in bridging the gap be-

tween product line and systems engineering. Examples

of these challenges are that vehicles are complex, the

organization is very large, huge number of variants, etc.

On a more general note, the study of Chen and Babar

(2010) uses focus groups (Kitzinger 1995) to gather data

about challenges faced by industrial practitioners in vari-

ability management. The authors distinguish between

technical and non-technical challenges and discuss their

results by comparing them with the study by Bosch

et al. (2001). The latter is an experience report where

the authors identify and describe variability issues re-

lated to variability management of software product

lines. As opposed to Chen et al., Bosch et al. discuss

their identified challenges relating them to phases of

a software product line life cycle. These works do not

explicitly discuss drivers of variability and variability

management practices. Our work do not focus much on

non-technical issues. Moreover, our work is tailored to

the robotics domain and reports on challenges that are

specific from the domain, like mission specification and

user-friendliness coming from the need of involving users

without a deep knowledge in computer science and/or

robotics.

On the same note, Chen and Babar (2011) conducted

a systematic literature review of variability management

approaches in software product lines. This work does not

explicitly discuss drivers of variability and challenges. In-

stead, the work collected 91 approaches for dealing with

variability management during different development

phases. We found some relation with our management

strategies and mechanisms.

An interesting conclusion of the work is that the

variability management approaches used in those papers

were not evaluated using scientifically rigorous methods.
Even though we do not investigate this aspect in our

work, considering the findings in (Bozhinoski et al. 2019),

we expect similar results to hold also in robotics. In fact,

Bozhinoski et al. (2019) surveys approaches managing

safety for mobile robotic systems and concludes that

very few of the existing solutions are compliant to stan-

dards37 that specifically target safety aspects, and also

that existing solutions are not yet ready to be used in

everyday life.

10 Conclusion

We presented an empirical study on variability in service

robotics based on the state-of-practice and the state-of-

the-art. We conducted (i) a multiple-case study relying

on a total of eleven interviews with practitioners from

two companies, and (ii) a systematic literature review in

which we considered 213 papers and thoroughly analyzed

30 of them. We triangulated from these two sources as

well as from another source: our own previous experi-

ences. We contribute: (i) characteristics and impacts of

drivers of variability in service robotics, (ii) variability

management practices applied by service robotics com-

panies, (iii) challenges faced by industrial practitioners

as a result of variability in their products, (iv) a discus-

sion of the gap between state-of-practice and state-of-the

art, with formulated hypotheses to explain our observa-

tions. Our results contribute to improving the empirical

understanding of the specific variability-related charac-

teristics and challenges of the service robotic domain.

We hope that these results will support tool builders,

practitioners, and researchers to raise awareness for vari-

ability, devise better tool support, as well as to guide

future research.

Among the findings, we highlight the following four:

37Like IEC61508 - Functional Safety of Electrical/Electron-
ic/Programmable Electronic Safety-related Systems, ISO13855
- Safety of machinery - Positioning of safeguards with respect
to the approach speeds of parts of the human body, ISO13482 -
Robots and robotic devices - Safety requirements for personal
care robots

40 Sergio Garćıa et al.

– Abstraction and customizability: We learned

the challenge for practitioners of balancing raising

the level of abstraction in their robot control sys-

tems and customizing them to specific requirements

and scenarios. While higher levels of abstraction

could ease variability management and integration,

tailored solutions pose great levels of efficiency and ef-

fectiveness. Similarly, for robots to operate in several

scenarios developers need to both realize variability

and integrate robust abstractions. The former repre-

sents what can be planned before the deployment or
execution of the robotic mission, whereas the latter

are meant to deal with unplanned situations that

may occur in the scenarios in which robots operate.

To better understand what practices and tools lie

in any of these two categories, empirically-validated

criteria are needed. This is, however, out of the scope

of this paper and we consider it valuable future work.

– Robustness and variability: Either using vari-

ability mechanisms or robust abstractions, robotic

applications must be able to operate robustly in a va-

riety of scenarios, many of them being only partially

known and controllable. To support the robustness

of their systems, our studied companies make use

of modeling notations, two important ones being

finite-state machines and behavior trees. Behavior

trees are found particularly useful for scaling up to

scenarios with many sources of variability since they

focus on high-level actions that are coordinated in

an asynchronous request-reply pattern.

– Installation process: In the robotic domain, part

of the variability can only be resolved in the in-

stallation phase, e.g., properly mapping the oper-
ational environment, specifying the missions to be

performed and configuring the robots accordingly,

defining adaptation rules of the environment. Until

now this phase is specifically important for profes-

sional robots. In the near future, with the advent of
multi-purpose and more complex robots to be used

in everyday life, the installation process could be

delegated to customers—as nowadays happens with

consumer robots such as vacuum cleaning robots—,

which, in general, will lack knowledge in robotics and

computer science. This will ask for easy way means

to install the robots in the customer environment

and to correctly specify safe missions robots should

perform.

– Standard interfaces and ecosystem: The service

robotics domain needs mature solutions for manag-

ing reusable and modular libraries and packages with

standardized and harmonized interfaces. Decoupling

between hardware and software is a necessary step.

Then, libraries and packages should be organized

in an ecosystem where various companies, research

institutes, and in general developers can find consol-

idated and validated solutions and contribute their

own. In fact, one of our findings is that the reason

behind the success and popularity of ROS might be

found in its community and ecosystem.

Table 8 summarizes our actionable results. It lists

the characteristics of our identified drivers of variability

as well as maps the characteristics to the strategies and
mechanisms used by robotics companies. It can be used

by researchers and practitioners to match their concerns

with actual practices applied by the service robotics

industry to tackle those challenges. Table 8 can also

serve as a template, to be extended by companies, that

may also include their own identified driver character-

istics along with the practices applied to deal with the

challenges associated with them.

Our results give rise to the following future work:

– Consolidate the drivers of variability in service robotics

in a common ontology, acting as a standard.

– Develop better mechanisms for realizing variability

in the actual robot code.

– Define guidelines, templates, and design patterns for
planning, designing, and implementing variability.

– Develop testing techniques that consider real-world

data to perform automated testing of variant-rich

systems by systematically enforcing reducing redun-

dant testing and reusing test artifacts.

– Define a variability-aware development process that
builds on current practices in both academia (inde-

pendent open-source community efforts) and indus-

try (in-house hardware product lines).

Acknowledgements

We are thankful to the interviewees for their collab-

oration. Research supported by the EU H2020 Prog.

under GA No. 731869 (Co4Robots), Wallenberg AI,

Autonomous Systems and Software Program (WASP)

funded by the Knut and Alice Wallenberg Founda-

tion, and the Centre of EXcellence on Connected, Geo-

Localized, and Cybersecure Vehicle (EX-Emerge), funded

by Italian Government under CIPE resolution n. 70/2017

(Aug. 7, 2017).

Funding and/or Conflicts of interests/Compet-

ing interests

The authors declare that they do not have financial

or non-financial interests that are directly or indirectly

related to the work submitted for publication.

Software Variability in Service Robotics 41

References

Ahmad A, Babar MA (2016) Software architectures for

robotic systems: A systematic mapping study. Journal

of Systems and Software 122:16–39

Ajaykumar G, Steele M, Huang CM (2021) A survey

on end-user robot programming. ACM Comput Surv

54(8)

Álvarez B, Sánchez-Palma P, Pastor JA, Ortiz F (2006)

An architectural framework for modeling teleoperated

service robots. Robotica 24(4):411–418

Apel S, Batory D, Kästner C, Saake G (2013a) Feature-

Oriented Software Product Lines. Springer, Berlin

Heidelberg

Apel S, Kolesnikov S, Siegmund N, Kästner C, Garvin B

(2013b) Exploring feature interactions in the wild: the

new feature-interaction challenge. In: Proceedings of

the 5th International Workshop on Feature-Oriented

Software Development, pp 1–8

Apel S, Atlee JM, Baresi L, Zave P (2014) Feature

Interactions: The Next Generation (Dagstuhl Seminar

14281). Dagstuhl Reports 4(7):1–24
Bashroush R, Garba M, Rabiser R, Groher I, Botterweck

G (2017) Case tool support for variability manage-

ment in software product lines. ACM Comput Surv

50(1)

Berger T, Rublack R, Nair D, Atlee JM, Becker M, Czar-

necki K, Wasowski A (2013) A survey of variability

modeling in industrial practice. In: Proceedings of

the Seventh International Workshop on Variability

Modelling of Software-intensive Systems, pp 1–8

Berger T, Pfeiffer RH, Tartler R, Dienst S, Czarnecki

K, Wasowski A, She S (2014) Variability mechanisms

in software ecosystems. Information and Software

Technology 56(11):1520–1535

Berger T, Lettner D, Rubin J, Grünbacher P, Silva A,

Becker M, Chechik M, Czarnecki K (2015) What is a

feature? a qualitative study of features in industrial

software product lines. In: Proceedings of the 19th

International Conference on Software Product Line,
pp 16–25

Berger T, Steghöfer JP, Ziadi T, Robin J, Martinez J

(2020) The state of adoption and the challenges of sys-

tematic variability management in industry. Empirical

Software Engineering 25:1755–1797

Bischoff R, Guhl T, Prassler E, Nowak W, Kraet-

zschmar G, Bruyninckx H, Soetens P, Haegele M,

Pott A, Breedveld P, et al. (2010) Brics-best practice

in robotics. In: ISR 2010 (41st International Sympo-

sium on Robotics) and ROBOTIK 2010 (6th German

Conference on Robotics), VDE, pp 1–8

Bosch J (2004) Preface. In: Proceedings of the 2nd

Groningen Workshop on Software Variability Man-

agement: Software Product Families and Populations,

SVM2004, Groningen, The Netherlands

Bosch J, Florijn G, Greefhorst D, Kuusela J, Obbink JH,

Pohl K (2001) Variability issues in software product

lines. In: International Workshop on Software Product-

Family Engineering, Springer, pp 13–21

Bozhinoski D, Di Ruscio D, Malavolta I, Pelliccione P,

Crnkovic I (2019) Safety for mobile robotic systems: A

systematic mapping study from a software engineering

perspective. Journal of Systems and Software 151:150–

179
Braga RTV, Trindade O, Branco KRLJC, Lee J (2012)

Incorporating certification in feature modelling of an

unmanned aerial vehicle product line. In: Proceed-

ings of the 16th International Software Product Line

Conference - Volume 1, Association for Computing

Machinery, New York, NY, USA, SPLC ’12, pp 249–

258

Brooks CA, Iagnemma K (2009) Visual detection of

novel terrain via two-class classification. In: Proceed-

ings of the 2009 ACM Symposium on Applied Com-

puting, Association for Computing Machinery, New

York, NY, USA, SAC ’09, pp 1145–1150

Brooks RA (1991) Intelligence without reason. In: Pro-

ceedings of the 12th international joint conference on

Artificial intelligence - Volume 1, IJCAI’91

Brown D, Arrowsmith T, Rawashdeh O, Lumpp J (2007)

A Reliable Reconfigurable Bus for Light Unmanned

Aircraft

Brugali D, Gherardi L (2016) HyperFlex: A model driven

toolchain for designing and configuring software con-

trol systems for autonomous robots, Studies in Com-

putational Intelligence, vol 625, Springer, Cham, pp
509–534

Brugali D, Hochgeschwender N (2017) Managing the

functional variability of robotic perception systems. In:

2017 First IEEE International Conference on Robotic

Computing (IRC), pp 277–283
Brugali D, Hochgeschwender N (2018) Software product

line engineering for robotic perception systems. Int J

Semantic Comput 12(1):89–108

Brugali D, Prassler E (2009) Software engineering for

robotics. Robotics & Automation Magazine, IEEE

16(1):9–15

Brugali D, Scandurra P (2009) Component-based

robotic engineering (part i)[tutorial]. Robotics & Au-

tomation Magazine, IEEE 16(4):84–96

Brugali D, Valota M (2016) Software variability com-

position and abstraction in robot control systems. In:

Computational Science and Its Applications - ICCSA

2016 - 16th International Conference, Beijing, China,

July 4-7, 2016, Proceedings, Part IV, Springer, Lec-

ture Notes in Computer Science, vol 9789, pp 358–373

42 Sergio Garćıa et al.

Brugali D, Capilla R, Mirandola R, Trubiani C (2018)

Model-based development of qos-aware reconfigurable

autonomous robotic systems. In: Second IEEE In-

ternational Conference on Robotic Computing, IRC

2018, Laguna Hills, CA, USA, January 31 - February

2, 2018, IEEE Computer Society, pp 129–136

Bruyninckx H (2001) Open robot control software: the

OROCOS project. In: Robotics and Automation, 2001.

Proceedings 2001 ICRA. IEEE International Confer-

ence on, IEEE, vol 3, pp 2523–2528

Buchmann T, Baumgartl J, Henrich D, Westfechtel B
(2015) Robots and their variability – a societal chal-

lenge and a potential solution. In: 2015 IEEE/ACM

5th International Workshop on Product Line Ap-

proaches in Software Engineering, pp 27–30, DOI

10.1109/PLEASE.2015.15

Businge J, Moses O, Nadi S, Berger T (2022) Reuse and

maintenance practices among divergent forks in three

software ecosystems. Empirical Software Engineering

Calder M, Kolberg M, Magill EH, Reiff-Marganiec S

(2003) Feature interaction: a critical review and con-

sidered forecast. Computer Networks 41(1):115–141

Chen L, Babar MA (2010) Variability management in

software product lines: an investigation of contempo-

rary industrial challenges. In: International Confer-

ence on Software Product Lines, Springer, pp 166–180

Chen L, Babar MA (2011) A systematic review of evalua-

tion of variability management approaches in software

product lines. Information and Software Technology

53(4):344–362

Cleland-Huang J, Vierhauser M, Bayley S (2018) Dronol-

ogy: An incubator for cyber-physical systems research.

In: 2018 IEEE/ACM 40th International Conference
on Software Engineering: New Ideas and Emerging

Technologies Results (ICSE-NIER), pp 109–112

Clements PC, Northrop L (2001) Software Product

Lines: Practices and Patterns. SEI Series in Software

Engineering, Addison-Wesley
Colledanchise M, Ögren P (2018) Behavior trees in

robotics and AI: An introduction. CRC Press

Corbin J, Strauss A (2014) Basics of qualitative research:

Techniques and procedures for developing grounded

theory. Sage publications

Corbin JM, Strauss A (1990) Grounded theory research:

Procedures, canons, and evaluative criteria. Qualita-

tive sociology 13(1):3–21

Cornish F, Gillespie A, Zittoun T (2013) Collaborative

analysis of qualitative data. The sage handbook of

qualitative data analysis London: Sage Publications

Ltd pp 79–93

Creswell JW, Creswell JD (2017) Research design: Qual-

itative, quantitative, and mixed methods approaches.

Sage publications

Czarnecki K, Eisenecker UW (2000) Generative

Programming: Methods, Tools, and Applications.

Addison-Wesley, Boston, MA

Czarnecki K, Grünbacher P, Rabiser R, Schmid K, Wa-

sowski A (2012) Cool features and tough decisions:

a comparison of variability modeling approaches. In:

Proceedings of the sixth international workshop on

variability modeling of software-intensive systems, pp

173–182

Czerniejewski A, Cosgrove S, Yan Y, Dantu K, Ko SY,

Ziarek L (2016) Juav: A java based system for un-
manned aerial vehicles. In: Proceedings of the 14th

International Workshop on Java Technologies for Real-

Time and Embedded Systems, Association for Com-

puting Machinery, New York, NY, USA, JTRES ’16

Dragule S, Berger T, Menghi C, Pelliccione P (2021a)

A survey on the design space of end-user oriented lan-

guages for specifying robotic missions. International

Journal of Software and Systems Modeling (SoSYM)

Dragule S, Garcia S, Berger T, Pelliccione P (2021b)

Languages for specifying missions of robotic applica-

tions. In: Cavalcanti A, ad Rob Hierons BD, Timmis J,

Woodcock J (eds) Software Engineering for Robotics,

Springer

Dubinsky Y, Rubin J, Berger T, Duszynski S, Becker M,

Czarnecki K (2013) An exploratory study of cloning

in industrial software product lines. In: 2013 17th

European Conference on Software Maintenance and

Reengineering, IEEE, pp 25–34

Dumitrescu C, Mazo R, Salinesi C, Dauron A (2013)

Bridging the gap between product lines and systems

engineering: an experience in variability management

for automotive model based systems engineering. In:
Proceedings of the 17th International Software Prod-

uct Line Conference, pp 254–263

Duncan BA, Murphy RR (2017) Effects of speed, cyclic-

ity, and dimensionality on distancing, time, and pref-

erence in human-aerial vehicle interactions. ACM
Transactions on Interactive Intelligent Systems (TiiS)

7(3):1–27

Easterbrook S, Singer J, Storey MA, Damian D (2008)

Selecting empirical methods for software engineering

research. In: Guide to advanced empirical software

engineering, Springer, pp 285–311

Engström E, Runeson P (2011) Software product line

testing–a systematic mapping study. Information and

Software Technology 53(1):2–13

Estefo P, Simmonds J, Robbes R, Fabry J (2019) The

robot operating system: package reuse and community

dynamics. Journal of Systems and Software 151:226–

242

Feng L, Wiltsche C, Humphrey L, Topcu U (2015)

Controller synthesis for autonomous systems inter-

Software Variability in Service Robotics 43

acting with human operators. In: Proceedings of the

ACM/IEEE Sixth International Conference on Cyber-

Physical Systems, Association for Computing Machin-

ery, New York, NY, USA, ICCPS ’15, pp 70–79

Flores R, Krueger C, Clements P (2012) Mega-scale

product line engineering at general motors. In: Pro-

ceedings of the 16th International Software Product

Line Conference-Volume 1, pp 259–268

Foster S, Cavalcanti A, Canham S, Woodcock J, Zeyda

F (2020) Unifying theories of reactive design contracts.

Theoretical Computer Science 802:105–140
Fragal VH, Silva RF, Gimenes IMS, Júnior EAO (2013)

Application engineering for embedded systems - trans-

forming sysml specification to simulink within a

product-line based approach. In: Proceedings of the

15th International Conference on Enterprise Infor-

mation Systems - Volume 2: ICEIS, SciTePress, pp

94–101

Franz P, Berger T, Fayaz I, Nadi S, Groshev E (2021)

Configfix: Interactive configuration conflict resolution

for the linux kernel. In: 43rd International Conference

on Software Engineering, Software Engineering in

Practice track (ICSE/SEIP)

Fürst S, Mössinger J, Bunzel S, Weber T, Kirschke-Biller

F, Heitkämper P, Kinkelin G, Nishikawa K, Lange

K (2009) Autosar–a worldwide standard is on the

road. In: 14th International VDI Congress Electronic

Systems for Vehicles, VDI

Garćıa S, Menghi C, Pelliccione P, Berger T, Wohlrab R

(2018) An architecture for decentralized, collaborative,

and autonomous robots. In: 2018 IEEE International

Conference on Software Architecture (ICSA), IEEE

Garćıa S, Pelliccione P, Menghi C, Berger T, Bures T
(2019a) High-level mission specification for multiple

robots. In: Proceedings of the 12th ACM SIGPLAN

International Conference on Software Language Engi-

neering, pp 127–140

Garćıa S, Strüber D, Brugali D, Di Fava A, Schillinger
P, Pelliccione P, Berger T (2019b) Variability model-

ing of service robots: Experiences and challenges. In:

Proceedings of the 13th International Workshop on

Variability Modelling of Software-Intensive Systems,

pp 1–6

Garćıa S, Strüber D, Brugali D, Berger T, Pelliccione P

(2020) Robotics software engineering: A perspective

from the service robotics domain. In: Proceedings

of the 2020 28th ACM Joint Meeting on European

Software Engineering Conference and Symposium on

the Foundations of Software Engineering

Garćıa S, Strüber D, Brugali D, Fava AD, Pelliccione

P, Berger T (2021) Online appendix. https://sites.

google.com/view/variability-robotics/home
Gherardi L (2013) Variability Modeling and Resolution

in Component-based Robotics Systems. PhD thesis,

Università degli Studi di Bergamo

Gherardi L, Brugali D (2014) Modeling and reusing

robotic software architectures: the hyperflex toolchain.

In: 2014 IEEE International Conference on Robotics

and Automation (ICRA), IEEE, pp 6414–6420

Ghzouli R, Berger T, Johnsen EB, Dragule S, Wasowski

A (2020) Behavior trees in action: A study of robotics

applications. In: 13th ACM SIGPLAN International

Conference on Software Language Engineering (SLE)

Goldsby HJ, Cheng BH (2008) Avida-mde: A digital

evolution approach to generating models of adaptive
software behavior. In: Proceedings of the 10th An-

nual Conference on Genetic and Evolutionary Com-

putation, Association for Computing Machinery, New

York, NY, USA, GECCO ’08, pp 1751–1758

Hubaux A, Jannach D, Drescher C, Murta L,

Männistö T, Czarnecki K, Heymans P, Nguyen T,

Zanker M (2012) Unifying software, product config-

uration: A research roadmap. In: Proceedings of the

Workshop on Configuration at ECAI 2012; Montpel-

lier, France, August 27, 2012., CEUR-WS, vol 958,

pp 31–35
IEEE Robots (2020) Types of Robots. https://robots.

ieee.org/learn/types-of-robots/

IFR (2016) Classification of service robots by application
areas. https://ifr.org/img/office/Service_Robots_2016_

Chapter_1_2.pdf

Juarez Dominguez AL (2012) Detection of feature interactions
in automotive active safety features. PhD thesis, University
of Waterloo

Kastner C, Thum T, Saake G, Feigenspan J, Leich T, Wielgorz
F, Apel S (2009) Featureide: A tool framework for feature-
oriented software development. In: Proceedings of the 31st
International Conference on Software Engineering, ICSE’09

Kimour MT, Bessam A, Boudour R (2009) A software ar-
chitecture framework for home service robots. Journal of
computing and information technology 17(2):195–202

Kitchenham B, Charters S (2007) Guidelines for perform-
ing systematic literature reviews in software engineering.
Tech. Rep. EBSE 2007-001, Keele University and Durham
University Joint Report

Kitzinger J (1995) Qualitative research: introducing focus
groups. BMJ 311(7000):299–302

Kortenkamp D, Simmons R, Brugali D (2016) Robotic systems
architectures and programming. In: Springer Handbook of
Robotics, Springer, pp 283–306

Köster N, Wrede S, Cimiano P (2016) An ontology for mod-
elling human machine interaction in smart environments.
In: Proceedings of SAI Intelligent Systems Conference,
Springer, pp 338–350

Kramer J, Magee J (2007) Self-managed systems: an ar-
chitectural challenge. In: Future of Software Engineering
(FOSE’07), IEEE, pp 259–268

Krueger CW (2007) BigLever Software Gears and the 3-tiered
SPL Methodology. In: Companion to the 22nd ACM SIG-
PLAN conference on Object-oriented programming systems
and applications companion, pp 844–845

Krueger J, Berger T (2020) An empirical analysis of the costs
of clone- and platform-oriented software reuse. In: 28th
ACM SIGSOFT International Symposium on the Founda-

https://sites.google.com/view/variability-robotics/home
https://sites.google.com/view/variability-robotics/home
https://robots.ieee.org/learn/types-of-robots/
https://robots.ieee.org/learn/types-of-robots/
https://ifr.org/img/office/Service_Robots_2016_Chapter_1_2.pdf
https://ifr.org/img/office/Service_Robots_2016_Chapter_1_2.pdf

44 Sergio Garćıa et al.

tions of Software Engineering (FSE)
Krüger J, Nielebock S, Krieter S, Diedrich C, Leich T, Saake

G, Zug S, Ortmeier F (2017) Beyond software product
lines: Variability modeling in cyber-physical systems. In:
Proceedings of the 21st International Systems and Software
Product Line Conference-Volume A, pp 237–241

Kwanwoo Lee, Kang KC, Minseong Kim, Sooyong Park (2006)
Combining feature-oriented analysis and aspect-oriented
programming for product line asset development. In: 10th
International Software Product Line Conference (SPLC’06),
IEEE, pp 10–pp

Van der Linden FJ, Schmid K, Rommes E (2007) Software
product lines in action: the best industrial practice in prod-
uct line engineering. Springer Science & Business Media

Logothetis M, Karras GC, Alevizos K, Verginis CK, Roque
P, Roditakis K, Makris A, Garcıa S, Schillinger P, Di Fava
A, et al. (2021) A decentralized framework for efficient
cooperation of heterogeneous robotic agents. IEEE Robotics
and Automation Magazine 28:75–87

Lotz A, Inglés-Romero JF, Vicente-Chicote C, Schlegel C
(2013) Managing run-time variability in robotics software by
modeling functional and non-functional behavior. In: Enter-
prise, Business-Process and Information Systems Modeling,
Springer, pp 441–455

Lu DV (2014) Contextualized robot navigation. PhD thesis,
Washington University in St. Louis

Macenski S, Martin F, White R, Ginés Clavero J (2020) The
marathon 2: A navigation system. In: 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS)

MacQueen KM, McLellan E, Kay K, Milstein B (1998) Code-
book development for team-based qualitative analysis. Cam
Journal 10(2):31–36

Mahmood W, Strüber D, Berger T, Laemmel R, Mukelabai
M (2021) Seamless variability management with the virtual
platform. In: 43rd International Conference on Software
Engineering (ICSE)

Malavolta I, Muccini H, Pelliccione P, Tamburri D (2010)
Providing architectural languages and tools interoperability
through model transformation technologies. IEEE Trans-
actions on Software Engineering 36(1):119–140, DOI
10.1109/TSE.2009.51

Maxwell J (1992) Understanding and validity in qualitative
research. Harvard educational review 62(3):279–301

Menghi C, Tsigkanos C, Berger T, Pelliccione P, Ghezzi C
(2018) Property specification patterns for robotic missions.
In: Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings, pp 434–
435

Menghi C, Tsigkanos C, Pelliccione P, Ghezzi C, Berger T
(2019) Specification patterns for robotic missions. IEEE
Transactions on Software Engineering

Mossige M, Gotlieb A, Meling H (2014) Using cp in auto-
matic test generation for abb robotics’ paint control system.
In: International Conference on Principles and Practice of
Constraint Programming, Springer, pp 25–41

Mourão E, Pimentel JF, Murta L, Kalinowski M, Mendes
E, Wohlin C (2020) On the performance of hybrid search
strategies for systematic literature reviews in software engi-
neering. Information and Software Technology 123:106294

Myers MD, Newman M (2007) The qualitative interview in is
research: Examining the craft. Information and organization
17(1):2–26

Nebut C, Fleurey F, Le Traon Y, Jezequel JM (2006) Auto-
matic test generation: A use case driven approach. IEEE
Transactions on Software Engineering 32(3):140–155

Nešić D, Krüger J, Stănciulescu t, Berger T (2019) Princi-
ples of feature modeling. In: Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering, pp 62–73

Niemczyk S, Geihs K (2015) Adaptive run-time models for
groups of autonomous robots. In: Proceedings of the 10th
International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems, IEEE Press, SEAMS ’15,
pp 127–133

Olaechea R, Atlee J, Legay A, Fahrenberg U (2018) Trace
checking for dynamic software product lines. In: Proceedings
of the 13th International Conference on Software Engineer-
ing for Adaptive and Self-Managing Systems, pp 69–75

Olszewska JI, Barreto M, Bermejo-Alonso J, Carbonera J,
Chibani A, Fiorini S, Goncalves P, Habib M, Khamis A,
Olivares A, et al. (2017) Ontology for autonomous robotics.
In: 2017 26th IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN), IEEE,
pp 189–194

Ozdemir U, Aktas YO, Vuruskan A, Dereli Y, Tarhan AF,
Demirbag K, Erdem A, Kalaycioglu GD, Ozkol I, Inalhan
G (2014) Design of a commercial hybrid vtol uav system.
Springer, vol 74, pp 371–393

Pant YV, Abbas H, Mohta K, Nghiem TX, Devietti J, Mang-
haram R (2015) Co-design of anytime computation and
robust control. In: 2015 IEEE Real-Time Systems Sympo-
sium, pp 43–52, DOI 10.1109/RTSS.2015.12

Pérez B, Polo M, Piatini M (2009) Software product line
testing-a systematic review. In: 4th International Confer-
ence on Software and Data Technologies (ICSoft 2009),
Sofia, Bulgaria

Queiroz PGG, Braga RTV (2014) A critical embedded system
product line model-based approach. In: Reformat M (ed)
The 26th International Conference on Software Engineering
and Knowledge Engineering, Hyatt Regency, Vancouver,
BC, Canada, July 1-3, 2013, Knowledge Systems Institute
Graduate School, pp 71–75

Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs
J, Wheeler R, Ng AY (2009) ROS: an open-source Robot
Operating System. In: ICRA workshop on open source
software, Kobe, Japan, vol 3, p 5

Risler M, von Stryk O (2008) Formal behavior specification
of multi-robot systems using hierarchical state machines
in xabsl. In: AAMAS08-workshop on formal models and
methods for multi-robot systems, Citeseer, pp 12–16

Rollenhagen M, Lutz M, Shaik N, Andrews K, Steinau S,
Reichert M, Schlegel C (2019) Towards flexible process au-
tomation: An approach for flexible service robot adaptation
and allocation. In: Proceedings of the 2019 3rd International
Symposium on Computer Science and Intelligent Control,
pp 1–7

Rouxel B, Schultz UP, Akesson B, Holst J, Jørgensen O, Grelck
C (2020) Prego: a generative methodology for satisfying
real-time requirements on cots-based systems: definition
and experience report. In: Erwig M, Gray J (eds) GPCE
’20: Proceedings of the 19th ACM SIGPLAN International
Conference on Generative Programming: Concepts and
Experiences, Virtual Event, USA, November 16-17, 2020,
ACM, pp 70–83

Rubin J, Czarnecki K, Chechik M (2013) Managing cloned
variants: a framework and experience. In: SPLC

Runeson P, Höst M (2009) Guidelines for conducting and
reporting case study research in software engineering. Em-
pirical software engineering 14(2):131–164

Saglietti F, Meitner M (2016) Model-driven structural and
statistical testing of robot cooperation and reconfiguration.

Software Variability in Service Robotics 45

In: Proceedings of the 3rd Workshop on Model-Driven
Robot Software Engineering, Association for Computing
Machinery, New York, NY, USA, MORSE ’16, pp 17–23

Schillinger P, Bürger M, Dimarogonas DV (2018) Simultane-
ous task allocation and planning for temporal logic goals
in heterogeneous multi-robot systems. The International
Journal of Robotics Research 37(7):818–838

Schillinger P, Garćıa S, Makris A, Roditakis K, Logothetis M,
Alevizos K, Ren W, Tajvar P, Pelliccione P, Argyros A, et al.
(2021) Adaptive heterogeneous multi-robot collaboration
from formal task specifications. Robotics and Autonomous
Systems 145

Seiger R, Seidl C, Aßmann U, Schlegel T (2015) A capability-
based framework for programming small domestic service
robots. In: Proceedings of the 2015 Joint MORSE/VAO
Workshop on Model-Driven Robot Software Engineering
and View-Based Software-Engineering, Association for Com-
puting Machinery, New York, NY, USA, MORSE/VAO ’15,
pp 49–54

Silva RF, Fragal VH, Junior EAO, Gimenes IMS, Oquendo
F (2013) Symples - a sysml-based approach for developing
embedded systems software product lines. In: Proceedings
of the 15th International Conference on Enterprise Infor-
mation Systems - Volume 2: ICEIS,, INSTICC, SciTePress,
pp 257–264

SPARC (2016) Robotics 2020 Multi-Annual Roadmap.
https://eu-robotics.net/sparc/upload/about/files/

H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf

Steck A, Schlegel C (2011) Managing execution variants in task
coordination by exploiting design-time models at run-time.
In: 2011 IEEE/RSJ International Conference on Intelligent

Robots and Systems, IEEE, pp 2064–2069
Steiner E, Masiero P, Bonifácio R (2013) Managing spl vari-

abilities in uav simulink models with pure: variants and
hephaestus. CLEI Electronic Journal 16(1):7–7

Sukhatme GS, Matarik MJ (2002) Introduction. Communica-
tions of the ACM 45(3):30–32, DOI 10.1145/504729.504750

Thomas J, Dziobek C, Hedenetz B (2011) Variability man-
agement in the autosar-based development of applications
for in-vehicle systems. In: Proceedings of the 5th Workshop
on Variability Modeling of Software-Intensive Systems, pp
137–140

Ventre-Dominey J, Gibert G, Bosse-Platiere M, Farnè A,
Dominey P, Pavani F (2019) Embodiment into a robot
increases its acceptability. Scientific Reports 9, DOI 10.
1038/s41598-019-46528-7

Verner JM, Sampson J, Tosic V, Bakar NA, Kitchenham
BA (2009) Guidelines for industrially-based multiple case
studies in software engineering. In: 2009 Third International
Conference on Research Challenges in Information Science,
IEEE, pp 313–324

Vierhauser M, Bayley S, Wyngaard J, Xiong W, Cheng J,
Huseman J, Lutz RR, Cleland-Huang J (2019) Interlocking
safety cases for unmanned autonomous systems in shared
airspaces. IEEE Transactions on Software Engineering

Wirkus M, Arnold S, Berghoefer E (2020) Online reconfigura-
tion of distributed robot control systems for modular robot
behavior implementation. Journal of Intelligent & Robotic
Systems 100(3):1283–1308

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B,
Wesslén A (2012) Experimentation in software engineering.
Springer Science & Business Media

https://eu-robotics.net/sparc/upload/about/files/H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf
https://eu-robotics.net/sparc/upload/about/files/H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf

