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Abstract The ever-growing need for customization cre-
ates a need to maintain software systems in many differ-
ent variants. To avoid having to maintain different copies
of the same model, developers of modeling languages
and tools have recently started to provide implementa-
tion techniques for such variant-rich systems, notably
variability mechanisms, which support implementing
the differences between model variants. Available mech-
anisms either follow the annotative or the compositional
paradigm, each of which have dedicated benefits and
drawbacks. Currently, language and tool designers select
the used variability mechanism often solely based on
intuition. A better empirical understanding of the com-
prehension of variability mechanisms would help them
in improving support for effective modeling.

In this article, we present an empirical assessment
of annotative and compositional variability mechanisms
for three popular types of models. We report and discuss
findings from a family of three experiments with 164
participants in total, in which we studied the impact
of different variability mechanisms during model com-
prehension tasks. We experimented with three model
types commonly found in modeling languages: class dia-
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grams, state machine diagrams, and activity diagrams.
We find that, in two out of three experiments, annotative
technique lead to better developer performance. Use of
the compositional mechanism correlated with impaired
performance. For all three considered tasks, the anno-
tative mechanism was preferred over the compositional
one in all experiments. We present actionable recom-
mendations concerning support of flexible, tasks-specific
solutions, and the transfer of established best practices
from the code domain to models.

Keywords variability mechanisms, model-driven
engineering, software product line engineering,
empirical study

1 Introduction

Variant-rich systems can offer companies major strategic
advantages, such as the ability to deliver tailor-made
software products to their customers. Still, when devel-
oping a variant-rich system, severe challenges may arise
during maintenance, evolution, and analysis, especially
when variants are developed in the naive clone-and-own
approach, that is, by copying and modifying them [65].
The typical solution to these challenges is to manage
variability by using dedicated variability representations,
capturing the differences between the variants [54]. An
important type of variability representation are vari-
ability mechanisms, which are used to avoid duplication
and to promote reuse when implementing variability
in assets such as code, models, and requirements docu-
ments. Over more than three decades, researchers have
developed a plethora of variability mechanisms, albeit
mostly for source code [9,17,86].

As companies begin to streamline their development
workflows for building variant-rich systems, they recog-
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nize a need for variability management in all key devel-
opment artifacts, including models. The use of models is
manifold, ranging from sketches of the system design, to
system blueprints used for verification and code genera-
tion. The car industry is particularly outspoken on their
need for model-level variability mechanisms [36]. For
example, General Motors named support for variation in
UML models as a major requirement [39], and Volkswa-
gen reported large numbers of complex, cloned variants
of Simulink models in their projects [72]. Beyond auto-
motive, the need for model-level variability has been doc-
umented for power electronics, aerospace, railway tech-
nology, traffic control, imaging, and chip modeling [19].

Recognizing this need, researchers have started build-
ing variability mechanisms for models. Variability mech-
anisms are now available both for UML [10,28,74] and
Domain-Specific Modeling Languages (DSMLs1 [5,8,
44,60,81,83,84,90,96]). Building on these results, re-
searchers have started to address advanced problems
such as the migration of a set of “cloned-and-owned”
model variants to a given mechanism [12,56,68,72,93],
and efficient analysis of large sets of model variants [27,
31,62]. Adoption in several industrial DSMLs has demon-
strated the general feasibility of model-level variability
mechanisms in practice [85].

While variability mechanisms for source code are rea-
sonably well understood [17,57,86], language and tool
designers are offered little guidance on selecting the
most effective variability mechanism for their purposes.
In fact, there is a lack of evidence to support the pref-
erence of one mechanism over the other. In line with
previous studies on code-level mechanisms [37,38,49,
57], we argue that comprehensibility is a decisive fac-
tor for the efficiency of a variability mechanism—for
any maintenance and evolution activity (e.g. bugfix-
ing, feature implementations), the developers first need
to understand the existing system. A better empirical
understanding of the comprehension of variability mech-
anisms could support the development of more effective
modeling languages and tools.

To this end, we present an empirical study of variabil-
ity representations in models. We report on a family of
three experiments in which we studied how the choice of
variability mechanism affects performance during model
comprehension tasks. We consider comprehension tasks
for three popular model types2: class diagrams, state ma-
chine diagrams, and activity diagrams. The experiments

1 DSMLs allow modeling software systems from different do-
mains using domain-specific notations.

2 In this paper, we use the terms diagram and model inter-
changeably. In modeling languages such as UML, models can
consist of a single diagram. The difference between such a model
and the contained diagram is then not essential.

are fully randomized, and employ student developers
from three countries. We consider two selected variabil-
ity mechanisms that are representative for the two main
types distinguished in the literature [47]: Annotative
mechanisms maintain an integrated, annotated repre-
sentation of all variants. Examples include preprocessor
macros [76] (for code) and model templates [28] (for
models). Annotative mechanisms are conceptually sim-
ple, but can impair understandability, since they clutter
model or code elements with variability information [57,
76]. Compositional mechanisms allow to compose a set
of smaller sub-models to form a larger model. Exam-
ples include feature-oriented programming [11] (for code)
and model refinement [35] (for models). Compositional
mechanisms are appealing, as they establish a clear sep-
aration of concerns, but they involve a composition step
which might be cognitively challenging. We aimed to
shed light on the impact of these inherent trade-offs.

We focus on three model types used in various mod-
eling languages: class diagrams, state machine diagrams,
and activity diagrams. The diagrams are three com-
monly used types of UML models, popular both in
academia and industry. Class diagrams play a significant
role in domain and system analysis and design. They
are representative for a wide array of visual languages
modeling domain concepts, such as Entity-Relationship
diagrams (ER diagrams, [25]), and they can be used
for generating the architecture of a system [13]. State
machine diagrams model system behavior in terms of
the different states a system exists in. They play an
important role in software verification [6]. Activity di-
agrams also model behavior, but in contrast to state
machine diagrams, they model the interaction between
the user and the system. Both state machine diagrams
and activity diagrams are representative of other behav-
ioral representations such as sequence diagrams (which
model a system in terms of sequential interactions be-
tween actors), and can also be used for code generation
and system verification [41].

We make the following contributions:

– We present our findings on a family of experiments,
each investigating how the choice of variability mech-
anism affects the comprehensibility of different model-
related tasks for three popular model types.

– We present a quantitative analysis of correctness,
the completion time, and subjective assessments of
our participants for six model comprehension tasks.

– We present a qualitative analysis of participant re-
sponses, adding rationale to explain the observed
results.

– Based on our synthesized findings, we propose rec-
ommendations for language and tools developers.
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– We provide a replication package [14] that includes
our experimental material, anonymized responses,
and analysis scripts.

This paper considerably extends our earlier confer-
ence paper [79] that presented the first of our three ex-
periments, focusing on class diagrams (73 participants).
Based on these earlier results, we designed, performed,
and analyzed two follow-up experiments, keeping the
methodological setup of the first experiment, while vary-
ing the considered modeling languages. The results add
nuance and additional insights, while largely confirm-
ing the findings from the first experiment. Based on
the results, we are able to derive conclusion about a
broader class of modeling languages and based on more
observations (from 164 participants).

We present the first empirical study of variability
mechanisms for models that investigates the effect of
different mechanisms in a controlled experiment. While
earlier empirical studies considered the comprehensibil-
ity of code-level variability mechanisms (see Sect. 8),
their generalizability to models is unclear. Code usually
has a tree-like structure and is expressed in textual no-
tations. Modeling languages support the structuring of
models in a graph-like manner and usually have graphi-
cal notations. Since different representations are known
to affect performance during decision-making tasks [89],
specifically, software engineering tasks [3,52], we argue
that the comprehensibility of model variability mecha-
nisms requires a dedicated investigation. In the scope of
models, related work is on experience reports in variabil-
ity modeling (e.g., [5,18,40]) and controlled experiments
outside the scope of variability (e.g., [3,61,66]).

2 Background

There has been a recent surge of interest in dedicated
variability mechanisms for models. Lifting the related
distinction from code-level mechanisms, two main types
are distinguished: Annotative mechanisms represent vari-
ability with an annotated integrated representation of
all variants. Mechanisms in this category are model tem-
plates [28,44,82], union models [7], and the top-down
approach [50]. Compositional mechanisms represent vari-
ability by composing variants from smaller sub-models
(from here referred to as model fragments). Available
approaches mostly differ in their model fragment syntax
and composition semantics. Examples are delta model-
ing [26], model superimposition [10], refinement [35,90],
components [96], and the bottom-up approach [50].

To illustrate the role of both types of mechanisms in
industry, we refer to a recent survey of variability sup-
port in 23 DSMLs [85]. It describes four strategies being

used: First, a model represents one variant (9 languages);
second, elements are reused across models by referencing
(10 languages); third, multi-level modeling is used for
capturing variability (1 language); fourth, elements have
so-called presence conditions (explained shortly, 3 lan-
guages). The first strategy is considered as a baseline in
our experiments. The second and third one are composi-
tional, as they spread differences between variants across
several smaller models. The fourth one is annotative.

We selected the two variability mechanisms for our
experiments based on the following criteria: (M1) The
mechanism has a graphical syntax. (M2) The mechanism
is supported by available tools. (M3) The mechanism
has been described in the scientific literature. The ratio-
nale for M1 was to study variability mechanisms in the
widespread graphical representation of our considered
model types. Support by tools (M2) and available lit-
erature (M3) may contribute to the transfer of existing
research results to industrial practice, and allow practi-
tioners to test the mechanisms in available prototypes.

Based on these criteria, as an annotative mecha-
nism, we identified model templates (implemented in
FeatureMapper [44], SuperMod [74], and Henshin [81]).
For compositional, we identified two existing approaches
fulfilling the criteria: Delta modeling (implemented by
DeltaEcore [75] and SiPL [64]) and model refinements
(implemented by eMoflon [8]). We decided to consider
model refinements, as they implement the compositional
paradigm in the most straightforward way (delta model-
ing supports deletions, which increases its expressiveness,
but requires more complex syntax and semantics).

Example. We illustrate the specific variability mecha-
nisms used in our experiments with a simple example,
inspired by Schaefer [71]. The same example was also
used in the experiment to introduce the variability mech-
anisms to the participants.

The example represents a simple cash desk system
that exists in three similar, but different variants. Fig-
ure 1 depicts the individual variants using separate class
diagrams: Variant var1 consists of a CashDesk with a
KeyBoard and a Display. Variant var2 has addition-
ally exactly one CardReader connected to the CashDesk.
Variant var3 replaces the Keyboard with a Scanner and
makes the CardReader optional (multiplicity 0..1 in-
stead of 1).

CashDesk Keyboard

Display

var1

CashDesk Keyboard

Display

var2

CardReader

1

CashDesk Scanner

Display

var3

CardReader

0..1

Fig. 1 Three variants of a cash desk system
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The depicted representation of listing variants indi-
vidually is used as a baseline in the first of our experi-
ments, referred to as the “enumerative mechanism.” This
solution is frequently applied in practice [85], where it
leads to severe maintenance drawbacks. For example,
a bug found in one of the variants must be fixed in all
variants separately. The goal of the variability mecha-
nisms presented below is to simplify working with such
similar, but distinct variants.
Annotative Variability. The annotative mechanism
considered in our experiments is model templates [28].
Like annotative mechanisms in general, it combines all
model variants into a single model with annotations.
The left-hand side of Fig. 2 shows a model template
for our example: a class diagram that represents the
three variants of the cash desk system. Parts of the class
diagram are annotated with presence conditions, stating
the variants in which the part occurs. For brevity, we
define a presence condition as a list of configuration
options (disjunction). For example, the presence condi-
tion «var1,var2» indicates that the annotated part is
present when either the configuration option var1 or
var2 is selected. The absence of a presence condition
denotes that the part is contained in all variants.

Colors are used in the following way: Elements (classes
and associations) with a black outline occur in all vari-
ants, elements with a grey outline occur in two or more
variants, elements with a colored outline belong to pre-
cisely one variant, whose annotation is also depicted with
the same color. The use of colors to distinguish elements
goes back to the original paper that introduced model
templates [28]. Colors may be crucial for comprehensi-
bility. In the case of code-level variability mechanisms,
Siegmund et al. [37] found that colors support under-
standing of annotative variability. We are interested to
determine if this finding also applies to models.

Individual variants are derived from the combined
model as follows: The user sets one of the configuration
options as active. The concrete model is derived by
removing all those elements whose presence condition
does not contain the configuration option. For example,
selecting the configuration option var1 leads to the
model variant var1 in Fig. 1.
Compositional Variability. The compositional mech-
anism we considered is refinement [8]. Like all compo-
sitional mechanisms, refinement provides (i) a means
of decomposing variants into smaller building blocks,
and (ii) a means of merging building blocks to form
complete variants. This allows for sharing and reuse of
common parts in different variants. The building blocks
are visually shown as a network, as depicted in the
right-hand side of Fig. 2. Commonalities of var1 and
var3, as well as var2 and var3 have been extracted into

CashDesk Scanner

Display
CardReader0..1

Keyboard

«var3» «var3»

«var1,var2»
«var1,var2»

«var2,var3»

«var2,var3» 1

«var3»

«var2»

CashDesk CardReader

CashDesk Scanner

var3

0..1

CashDesk

Display

CashDesk Keyboard

var1

CashDesk CardReader

var2

Fig. 2 Annotative and compositional variability

separate “super” class diagrams. These diagrams have a
dashed border, as they only represent commonalities and
are “abstract” in the sense that they are not complete
variants. Composition of diagrams is denoted using an in-
heritance arrow, e.g., var2 is formed by combining var1,
the elements specified in var2, and the elements in the
common super class of var3 and var2. As the example
demonstrates, multiple super class diagrams (see var3)
and transitive composition (see var2) are possible.

Deriving individual variants is a two-step process.
First, a union of the contents of the variant and all its
transitive parents is computed; this results in a single,
flat class diagram (with no parents). Second, a merge
operator is used to combine elements that should be
the same. For class diagrams, this operator combines all
elements with the same name. The merge operator also
defines how to resolve conflicts: for class diagrams, a
common subtype must exist for nodes to be merged, and
multiplicities of merged edges are combined by taking
the maximum of lower bounds and minimum of upper
bounds. For example, when the variant var1 is selected,
it is merged with its parent (top class diagram with
dashed lines). Building the union of both class diagrams
and merging the cash desk elements leads to the model
variant var1 in Fig. 1.

Considered model types. In our experiment family,
we cover three types of models: class diagrams, state ma-
chine diagrams, and activity diagrams. Our rationale is
three-fold: These model types: (i) are commonly taught
in undergraduate education, allowing our participants
to work with languages they are already familiar with;
(ii) are widely used in industry [53,63], indicating their
representativeness, (iii) together are suited to capture
three essentially different concerns: static structure, dy-
namic behavior from the internal system perspective,
and dynamic behavior in interaction with the user.

In each of these model types, variability can be
implemented using the annotative and compositional
mechanisms illustrated in the example above. We now
discuss each model type and any necessary customiza-
tions required to accommodate the model type in our
considered mechanisms.
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Enter amount

Withdraw money

Eject card

Eject card

Print receipt

[Print receipt 
selected]

[else]
Enter amount

Withdraw money

Eject card

Print receipt

[else]

[Print receipt 
selected]

Fig. 3 Model refinement rule for activity diagrams: ending
activities are overwritten by decision nodes

Class diagrams have a pronounced role in system
design and analysis. In code generation contexts, they
are used to generate data management components (e.g.,
large parts of enterprise web and mobile apps can be
generated from class models [51,59,88]), object-oriented
code in roundtrip engineering scenarios [21], and ample
Model-Driven Engineering (MDE) tooling in modeling
platforms, such as the Eclipse Modeling Framework
(EMF [77]). Class models can be supported via model
templates and model refinement in a straightforward
day, as shown in the example above.

State machine diagrams capture the dynamic behav-
ior of a system, focusing on one of its entities or objects,
in terms of its possible states and the transitions be-
tween the states, based on certain well-defined events.
Like class diagrams, they play an important role in code
generation [23,33]. Expressing variability in state ma-
chine diagrams using model templates is straightforward,
based on assigning presence conditions to states and
transitions. Model refinement can be applied in a similar
way as for class diagrams. One additional complication
arises with hierarchical state machines, where merging
must respect the nesting of states as defined in different
model fragments. In principle, multiple model fragments
can make conflicting contributions to the merge result
(for example, if there is a fragment with state A nesting
a substate B, and another fragment with a state B nest-
ing a substate A). We designed our examples to avoid
such situations.

Activity diagrams, like state machine diagrams, also
capture the dynamic behavior of a software system. How-
ever, in contrast to state machine diagrams, activity
diagrams provide means to model user and user-visible
activities, as well as the flow between them. Activity
diagrams allow modeling overlapping activities (fork),
or activities that need coordination (merge). Expressing
variability in activity diagrams using model templates
is straightforward [67], based on assigning presence con-
ditions to activities. Model refinement can be applied
in a similar way as before. One complication concerns
the merging of flow: if the same activity appears in
different fragments with different subsequent activities,
one needs to define how the arising conflict is resolved.
For our experiments, we defined a conflict-resolution

rule that an actual activity always overrides an ending
node. Figure 3 depicts an example: the left fragment
consists of the functionality of withdraw and the middle
fragment composes the activities for printing receipts.
When merging both fragments, the final activity in the
left fragment is overwritten by the decision node (repre-
sented as a diamond) in the middle fragment. The right
fragment shows the merged form of both fragments.

3 Overview on Our Family of Experiments

We performed a family of three experiments, illustrated
in the high-level overview in Fig. 4. Our experiment fam-
ily consisted of two independent variables: the consid-
ered model type and variability mechanism. The former
was varied between experiments, i.e., each experiment
focused on a single model type. The latter was varied
within each experiment, i.e., each experiment compared
multiple variability mechanisms on the same model type.

We considered three variability mechanisms—anno-
tative, compositional, and enumerative—where the enu-
merative mechanism (a simple listing of all variants)
was considered the baseline. In all three experiments,
we adopted a within-subject design, where each partici-
pant used each considered variability mechanism on all
tasks. We considered three widely used models types—
class diagrams, state machine diagrams, and activity
diagrams—as discussed and motivated in Sect. 2.

In Experiment 1, we considered all three variabil-
ity mechanisms. Based on some important observations
from the experiment 1 (explained shortly), we decided
to not consider the enumerative mechanism in the re-
maining experiments. This allowed us to have a more
in-depth comparison and reflection of annotative and
compositional variability in experiments 2 and 3, based
on more intricate tasks.

In every experiment, our participants worked with
example models from certain domains, derived from the
literature and our experiences. To avoid learning effects
based on answers of previously completed tasks, we var-
ied the considered example domain for each variability
mechanism. Consequently, the number of considered
domains in each experiment matched the number of
variability mechanisms: three in Experiment 1, two in
Experiment 2 and Experiment 3.

Prior to the experiments, as a preparatory study, we
conducted a further experiment (explained shortly in
Sect. 4) to shape the design of our materials and tasks.
The goal was to assess the suitability of our experimental
tasks and to derive potential improvements of the setup.

To recruit a significant number of participants, we
involved students as participants, due to their repre-
sentativeness as stand-ins for practitioners [69]. The
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Experiment 1: Class diagrams
3 domains

73  participants
3 variability mechanisms

Task metrics
Correctness Time

[0..6] [min]

Subjective metrics

Understandability 
of mechanism

[1..5]

Difficulty of tasks 
using mechanism

[1..5]

Preferred mechanism per task type
[Annotative, Compositional, 
Enumerative, No preference]

Experiment 2: State diagrams
2 domains

65  participants
2 variability mechanisms

Experiment 3: Activity diagrams
2 domains

26  participants
2 variability mechanisms

Task type 1 
Understanding variants

Task type 2 
Comparing two variants

Task type 3 
Comparing all variants

Task types

Setup:
• Fully randomized design 

(within-subjects)
• Selection of systems 

informed by literature and 
experience

• Three task types, two tasks 
per task type per domain

Observation
(Dependent variables)Model type

Diam Circ
Tri

Variability mechanism

Annotative Compositional

Enumerative

Intervention
(Independent variables)

Fig. 4 Methodology overview

participants came from four different universities in Ger-
many (two universities), Netherlands, and Sweden. We
shortly discuss demographic aspects of our participants.
In each experiment, we randomly divided participants
into n groups (n = number of variability mechanisms).
For subject allocation, we used a Latin square design [57,
58] to ensure that each participant used every distinct
variability mechanism and domain exactly once, as to
avoid learning effects.

To ensure homogeneity, we kept other aspects con-
stant across our experiments as far as possible: training
material, goals and research questions, experimental de-
sign, task types, task metrics, subjective assessments,
analysis, and participant selection. We used different
domains in each experiment, deliberately to make the re-
sults generalizable. We customized the individual tasks
according to the domains, keeping the task types un-
changed. To analyze comprehensibility, we designed
three task types: Understanding variants, comparing
two variants, and comparing all variants. Our detailed
methodology and analysis is described in sections 5
and 6, respectively.

The considered domains were varied between the ex-
periments: In Experiment 1 and Experiment 3, we chose
intuitively understandable examples that inherently lend
themselves towards being expressed with the considered
model type. To this end, we derived the domains by
taking inspiration from literature. The domain choice
in Experiment 3 also incorporated participant feedback
from previous iterations of the experiment. In Exper-
iment 2, we derived two sub-domains from a software
project considered in the course that the participants
were recruited from. This was useful because it allowed
us to conclude that all participants were familiar with
the considered domains.

4 Preparatory Study

We conducted a preparatory study to evaluate our ex-
perimental design and identify possible issues and other
amendable aspects. The study was performed on a pop-
ulation of 28 students (disjoint from the population of
our experiment). The students were familiar with class
models, the model type used in the experiment.

The tasks considered were bug-finding tasks, a typical
task type for assessing the usefulness of visual repre-
sentations [57,80]. Participants were handed a textual
requirement specification, together with design models
implementing the requirements with one of the given
variability mechanisms. The design models contained
a number of deviations from the textual requirements
(bugs), which the participants were asked to identify. We
also asked the participants to suggest potential improve-
ments to the experiment using an open-ended question.

To provide meaningful example domains, we con-
sidered the existing literature. The first example repre-
sented a phone product line with phones being condi-
tionally capable of making incoming and outgoing calls
[10]. The second example represented a project man-
agement system with managers, employees, and tasks
[34]. Students obtained a virtual instruction sheet and
a link to an explanation video for the used variability
mechanisms. The students were asked to complete the
entire questionnaire in 30 minutes.

From this preparatory study we drew three main
conclusions: First, example models with 3 to 4 classes,
and 3 or 4 variants each were too simple to demonstrate
a difference between both mechanisms. This conjuncture
was supported by one participant’s written recommen-
dation to “create [more] complicated examples with 6 or
7 classes and not so easy ones.”
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Second, despite our efforts to provide clear require-
ments, a participant asked us to be “more specific and
less ambiguous with the requirement specifications.” Am-
biguity is an inherent risk to experimental validity since
its effect is hard to quantify (it is unclear how many
participants assume a different understanding than in-
tended). Another, recurrent comment was that reading
the descriptions was tiring, threatening the completion
rate. Therefore, we decided to switch the nature of the
used tasks in the main experiment to comprehension
tasks that do not rely on additional artifacts.

Third, the provided instruction video was viewed as
redundant, as it showed only information that was avail-
able on the instruction sheet. In the actual experiments,
we decided to omit the instruction video.

5 Methodology

In this section, we present the detailed experimental
methodology for our family of three experiments, each of
which is focusing on one model type. Our experimental
materials and data, including the raw data, are publicly
available via our replication package [14].

5.1 Experimental Setup

As explained in Sect. 3, to ensure uniformity, we reused
some components of our experiment in all three execu-
tions: goals and research questions, training material,
task types, task metrics, subjective assessment, quanti-
tative feedback, and data analysis. In this section, we
elaborate these common components of our experiments.
Research Questions. Our goal was to study the ef-
fect of variability mechanisms on model comprehension.
Towards this goal, we formulated and investigated the
following research questions:

RQ1 To what extent do variability mechanisms
impact the efficiency of model comprehension?

We studied the effect of annotative and compositional
mechanisms on the ability to solve model comprehension
tasks correctly and quickly.

RQ2 How are variability mechanisms perceived
during comprehension tasks?

We studied the perceived understandability and diffi-
culty to complete model comprehension tasks depending
on the used variability compositional mechanism, based
on subjective assessments.

RQ3 How are participant preferences for vari-
ability mechanisms distributed over different task
types?

We elicited qualitative and quantitative data about the
participants’ subjective preferences by asking them to
choose a preferred mechanism and explain the choice.
Experimental Design. We applied a cross-over trial,
a variant of the within-subject design [45], in which all
participants are sequentially exposed to each treatment.
The treatments in our case were the use of the differ-
ent variability mechanisms during comprehension tasks.
The main benefit of the chosen design is its efficiency in
enhancing statistically valid conclusions for a given num-
ber of participants. The design also reduces the influence
of confounding factors, such as participant expertise,
because each participant serves as their own control.

A main threat to this kind of study design are learn-
ing effects: during the experiments, participants might
transfer experience gained by solving one task to other
tasks. We mitigated this threat by using a Latin square
design [57,58]. Participants were randomly distributed
across equally sized groups, such that each participant
experimented with each variability mechanism and each
domain once. Each group was assigned one of several
paths through the experiment, based on the different
possible combinations of domains and variability mech-
anisms. For example, consider the three paths for Ex-
periment 1, which included the variability mechanisms
annotative (Ann), compositional (Com), and enumer-
ative (Enu), and three domains d1, d2, and d3 :

– Enu d1→Ann d2→Com d3 (path 1),
– Com d1→Enu d2→Ann d3 (path 2), and
– Ann d1→Com d2→Enu d3 (path 3).

Following our Latin square design, to avoid bias related
to the complexity of the considered domains, the order
of domains was fixed between paths.

Figure 5 shows the design and flow of our question-
naire. Each module corresponded to one element of the
above-mentioned paths, and consisted of one model, its
description, and six tasks. We discuss further threats
and mitigation strategies in Sect. 7.
Training Material. The participants received training
material in the form of handouts elaborating the vari-
ability mechanisms before beginning the experiments
(available in replication package [14], intro documents
in folder material). In the training material, we elabo-
rated the variability mechanisms and presented different
representations of the illustrative example shown in
Sect. 2. We also showed how variants can be derived
by giving valid feature selections (annotative) or com-
posing different sub-models (compositional). We reused
the same training material across all experiments, with
small adjustments. Specifically, we extended the mate-
rial for Experiment 3 (activity diagrams), where the
composition required an extra step, i.e., when merging
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Participant background
• Demographics
• Color-blindness check

Technical background
• Experience with model type
• Experience with
programming

• Experience with variability
mechanisms

Task type 1: Understanding variants
• Task 1
• Task 2
Task type 2: Comparing two variants
• Task 3
• Task 4
Task type 3: Comparing all variants
• Task 5
• Task 6

Subjective assessments
• Understandability (S1)
• Difficulty (S2-S4)

Preferences
• Preferred mechanism per
task type (S5)

• Rationale for preferring (S6)

o Modeli,j
o Domain description n → number of domains = 

number of variability 
mechanisms
i → domain (i < n)
j → variability representation 
(j < n)
Modeli,j → Model of domain i
represented using variability 
mechanism j

Starting time

ending time

Final assessment

n
Preliminary assessment

Module

Fig. 5 Questionnaire design for our experiments, with n=3 for experiment 1, and n=2 for experiments 2 and 3.

two activity diagrams, decision nodes overwrite ending
activities.
Preliminary Assessment. In the questionnaires (avail-
able in replication package [14], folder questionnaires),
before the actual tasks, we asked the students to self-
assess their expertise in three relevant categories using
five-point Likert scales: Model type (the baseline tech-
nology of our experiment), programming (to argue for
the representatives of our findings), and the considered
variability mechanisms (the experimental treatment).
The five-point scale consisted of positive integers from
1–5, 1 representing the lowest value, and 5 representing
the highest. Table 1 shows a summary of participant
self-assessment ratings for the three experiments.
Task types and Tasks. While designing tasks, we
aimed for representativeness. We designed task types
to depict common activities performed by developers
in variant-rich systems. For each domain represented
using a given variability mechanism, participants were
required to perform tasks of three types. Every task type
consisted of two concrete tasks. Below, we discuss the
three task types, provide an argument for their repre-
sentativeness, and give examples for the concrete tasks
per task type.

Task Type 1 (“understanding variants”) required par-
ticipants to map elements of the model (classes, states
or activities) to variants. This task type is inspired by
feature location: a common activity where parts of an
artifact (code or model) implementing a feature has
to be identified. Tasks of this type followed the style:
“Which variants have the elements X and Y? List all such
variants, or write none otherwise.” Consider the Phone
management domain in the first experiment (in the
replication package [14], material/exp1/Ship.pdf ), we
formulated the following task for task type 1: How many
variants have both the classes “Camera” and “Video”?

Task Type 2 (“comparing two variants”) required
participants to differentiate two variants in terms of the
elements they consist of. Specifically, they needed to

list the non-overlapping elements of two given variants.
In practice, such a task is performed to deeply under-
standing how two closely related variants differ. Tasks
of this type followed the style: “How do the two vari-
ants Var1 and Var2 differ? List all differing elements if
there are any.’ As an example, consider the Robocode
domain in the second experiment (see the replication
package [14], material/exp2/Boat.pdf ), where we formu-
lated the following task for task type 2: Which state(s)
does [the robot variant] ”Grizzlyman” have that [variant]
“Toxitonic” doesn’t have? List all such states if there are
more than one.

Task Type 3 (“comparing all variants”) involved a
broader comparison, e.g., listing elements belonging to
all variants. Such a task type is performed when trying
to understand the entire variant space. Tasks of this
type resembled the following style: “Which elements
are included in all variants?” To reduce effort in the
case of larger examples, we specified a pre-selection of
a obvious elements and asked the participants to fill
in the remaining ones. For example, consider the third
experiment with activity diagrams as the featured model
type (replication package [14], material/exp3/Train.pdf ).
We formulated the following task for task type 3:What is
the longest possible path of activities you can have in any
of the products, from a start to an end activity? Please
list all activities that the path consists of (excluding start
and end activities) in order. If there are multiple longest
paths, pick one.

Task types in the questionnaire were represented as
sub-sections of the modules (Fig. 5), where each sub-
section consisted of two tasks. Each task consisted of
one concrete question that the participants were asked
to answer, as illustrated in the previous examples.
Dependent Variables. For measuring efficiency (RQ1),
we elicited two metrics: correctness and completion time.
The correctness of a task type was the aggregate cor-
rectness of its two concrete tasks. For each task, we
evaluated the responses using a scale of 0–1 as follows:
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Correct responses received a score of 1, partially cor-
rect 0.5, and incorrect 0. The responses were evaluated
against oracles that the authors produced. For each task
type per sub-system, the primary and secondary authors
iteratively solved each individual task until they reached
a consensus (which formed the oracle). In majority of
the cases, both the authors had the same responses. As
a margin of error, we also checked if the responses to
one task were consistently different than our oracles.
This was never the case in our experiments.

A response was deemed partially correct if it included
some but not all correct elements, or some correct and
some incorrect ones. The scores of both tasks of a task
type were summed up to obtain the correctness score
in the range 0–2. This resulted in a total of three cor-
rectness scores per participant. For completion time, we
asked the participants to log the starting and ending
times of each module (Fig. 5), which we converted to
the completion time in minutes.

To address RQ2, we asked the participants to assess
the understandability of each mechanism and the diffi-
culty of addressing each task type using each mechanism.
Specifically, we asked the following questions:

(S1) How easy did you find it to understand each
mechanism?

(S2) How difficult was it to answer the questions
on “Understanding variants” (tasks 1 and 2) for each
mechanism?

(S3) How difficult was it to answer the questions
on “Comparing two variants” (tasks 3 and 4) for each
mechanism?

(S4) How difficult was it to answer the questions
on “Comparing all variants” (tasks 5 and 6) for each
mechanism?

Following the common practice for subjective re-
sponses, we captured the response on a 5-point Likert
scale for each mechanism. The points represented in-
creasing levels of difficulty (from 1 easiest to 5 hardest).
We used the same labels for the Likert scales for S1-S4,
specifying explicitly for each question that 1 means very
easy, and 5 means very difficult.

We aimed to investigate two hypotheses: that (i)
all variability mechanisms are perceived to be equally
understandable, and (ii) while performing tasks of each
task type, participants experienced equal difficulty using
all variability mechanisms. For the former, we conducted
a statistical analysis to compare the understandability
of different variability mechanisms included in the exper-
iment. For the latter, we conducted dedicated statistical
analyses to compare difficulty ratings per variability
mechanism given by the participants for each task type.

For RQ3, we asked the participants to specify their
preferred mechanism per task type. To gain deeper in-

sight into the rationale, and complement the quantita-
tive information with qualitative data, we also asked
our participants to elaborate on their choice of pre-
ferred mechanism—a setup inspired by mixed-method
research [20]. We used the following questions:

(S5) Which mechanism do you prefer for each of the
three task types?

(S6) Can you explain your subjective preferences
(intuitively)?

The answer to S5 was specified by selecting one of the
literals Annotative, Compositional, Enumerative, None
for each of the task types. To collect the qualitative data
in S6, we kept S6 open-ended.
Analysis. For hypothesis testing, we used the Wilcoxon
signed-rank test [92] which we applied to the task and
subjective metrics, following recommendations according
to which this test can in fact be applied to Likert-scale
data [32]. We used the standard significance threshold
of 0.05. Two measurements involved multiple compar-
isons (correctness and difficulty; each for 3 different
task types). For these metrics, we applied the Bon-
ferroni correction [1], yielding a corrected significance
threshold of 0.017, obtained by dividing 0.05 by 3. We
employed the A12 score for assessing effect size follow-
ing Vargha and Delaney’s original three interpretations
[87]: A12 ≈ 0.56 = small; A12 ≈ 0.64 = medium; and
A12≈0.71 = large. All tests were executed with R.

For assessing the qualitative data, one of the authors
used inductive coding to tag the participants’ comments
from one of the experiments with relevant keywords.
Afterwards, two other authors verified the tags and sug-
gested improvements in the tags. Based on the discussion
and feedback with the two authors, the author tagged
the comments for the remaining two experiments. The
tags were useful to identify interesting aspects, and their
frequency helped to identify the redundant concerns.
Participants. The participants were recruited from un-
dergraduate and graduate courses at various universities.
Our rationale for recruiting students is their suitabil-
ity as stand-ins for practitioners: students can perform
involving unfamiliar software engineering tools equally
well as practitioners [69]. The students were recruited
from courses with completed previous lectures and home-

Table 1 Technical background of our participants

Exp. Experience with
MType Prog. Ann. Com. Enu.

1 3.47±0.60 3.62±0.74 1.73±0.87 1.86±1.03 1.87±0.93
2 2.84±0.58 3.42±0.74 2.26±0.73 2.52±0.77 -
3 3.39±0.64 4.0±0.46 2.1±0.8 2.3±0.86 -

Ratings on a 5-point Likert scale. 1: lowest 5: highest.
Exp.: Experiment MType: Model type Prog: Program-
ming Ann: Annotative Variability Com: Compositional Vari-
ability Enu: Enumerative Variability
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work assignments on models featuring in the experiment.
Before the experiment, it was pointed out that partic-
ipation in the experiment was entirely voluntary, and
data would be stored anonymously. To encourage par-
ticipation, a gift card raffle was offered as a prize to
interested participants.

5.2 Experiments

We now discuss the individual aspects of our experi-
ments: model types, domains, participant demographics,
and application of the Latin square design.

Experiment 1 was focused on class diagrams. In this
experiment, in addition to the annotative and compo-
sitional mechanisms considered in all experiments, we
included the enumerative mechanism as a baseline for
comparison.

To select the systems, we specified a set of criteria
that a subject system would need to fulfill: (C1 ) The sys-
tem has been introduced in previous literature. (C2 ) The
system comprises several variants. (C3 ) The system has
not been introduced in a context related to a particular
variability mechanism. The rationale of these criteria was
to select systems that represent real variability, rather
than making up artificial examples on the spot. As a
result, we derived variability-enriched class diagrams for
three domains: Simulink, a project management system,
and a phone system. These domains were identified from
literature based on their familiarity to the authors (con-
venience sampling [94]). For the former two domains,
we were aware of several available variants in the liter-
ature. To systematically identify available variants, we
performed database searches in Google Scholar, IEEEx-
plore, and ACM’s Digital Library, with the search strings
“Project Management meta-model” and “Simulink meta-
model.” The considered variants of Phone correspond
to the feature model from the original paper.

Simulink [46] is a block-based modeling language
that is widely applied in the design of embedded and
cyber-physical systems. The absence of an official specifi-
cation has given rise to the emergence of various variants.
The Project Management (PM) [34] product line repre-
sents a family of software systems for project manage-
ment, with concepts such as projects, activities, tasks,
persons, and roles. The Phone product line, introduced
by Benavides et al. [16], represents a family of soft-
ware systems for mobiles phones with various hardware
functionalities, such as different cameras and displays.

For each domain, we designed three class diagrams:
one per variability mechanism. With three mechanisms
(Enu, Ann, com) and three domains (d1, d2, d3 ), follow-
ing a Latin square design [57,58], the paths were:

– Enu d1→Ann d2→Com d3 (path 1),
– Com d1→Enu d2→Ann d3 (path 2), and
– Ann d1→Com d2→Enu d3 (path 3).

We recruited 73 participants, all of which were BSc
students in a German university. The students were
recruited from courses with completed previous lectures
and homework assignments on class models. In line with
our strategy to recruit students familiar with class mod-
els, students expressed an average level of expertise,
amounting to 3.47 (mean) ± 0.60 (standard deviation).
The self-reported programming expertise of 3.62 ± 0.74
was comparable. In contrast, the self-reported exper-
tise in variability mechanisms was considerably lower,
amounting to 1.73 ±0.87 in annotative mechanisms, 1.86
±1.03 in compositional mechanisms, and 1.87 ±0.93 in
enumerative mechanisms. The homogenous experience
of our participants is beneficial for the validity of our
findings, by countering a possible threat related to differ-
ent previous knowledge. In the light of our justification
for selecting students as participants (based on evidence
for their suitability as stand-ins for developers [69]), our
sample is representative for developers with similar ex-
perience levels in modeling and variability mechanisms.

Participants were randomly divided into three groups,
and assigned one of the above-mentioned paths, allowing
them to experiment with each variability mechanism
and each domain once. Each participant was required
to perform three tasks types for the three models, each
represented using a different variability mechanism. At
the end, the participants were asked to provide their
subjective assessments and preferences (S1–S6), and
rationale for their choices.

Experiment 2 considered state machine diagrams as
model type. Both considered domains were based on
the robotics programming game Robocode [43]. The ra-
tionale was that students were involved with Robocode
as a course project and were, therefore, familiar with it.
Moreover, Robocode bots possessed considerable vari-
ability [55], which allowed us to model state machines
that were reasonably complex. Our considered domains
represented two high-level features of Robocode robots,
each using a separate state machine diagram. For each
domain, we designed two state machines: one using the
annotative mechanism, and another one using the com-
positional mechanism.

We recruited 65 students from a Swedish university
(63 Bsc, 2 PhD). Participants were divided into two
groups, and assigned into those randomly. In the pre-
liminary assessment, on average, the participants rated
their experience with state machine diagrams to be
2.846 ±0.587. Participants also gave an average rating
of 3.42 ±0.749 to their programming experience. The
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Table 2 Correctness scores for experiment 1 (class diagrams).

Annotative Compositional Enumerative
Task type Mean Mdn Sdt.dev Mean Mdn Std.ev Mean Mdn St.dev
1: Tracing elements to variants 1.7/2 2.0/2 0.6 1.5/2 2.0/2 0.7 1.7/2 2.0/2 0.6
2: Comparing two variants 1.5/2 1.5/2 0.6 1.5/2 1.5/2 0.6 1.6/2 1.5/2 0.4
3: Comparing all variants 1.6/2 2.0/2 0.7 1.2/2 1.0/2 0.7 1.5/2 2.0/2 0.7
Total 4.8/6 5.0/6 1.3 4.2/6 4.5/6 1.4 4.9/6 5.0/6 1.1

Mdn: Median, St.dev: Standard deviation

Table 3 Correctness scores for experiment 2 (state machine diagrams).

Annotative Compositional Enumerative
Task type Mean Mdn Sdt.dev Mean Mdn Std.ev Mean Mdn St.dev
1: Tracing elements to variants 1.2/2 1.0/2 0.8 1.2/2 1.0/2 0.7 - - -
2: Comparing two variants 1.0/2 1.0/2 0.8 1.1/2 1.0/2 0.8 - - -
3: Comparing all variants 1.2/2 1.0/2 0.8 0.8/2 1.0/2 0.7 - - -
Total 3.4/6 3.0/6 2.0 3.1/6 3.0/6 1.8 - - -

Mdn: Median, St.dev: Standard deviation

Table 4 Correctness scores for experiment 3 (activity diagrams).

Annotative Compositional Enumerative
Task type Mean Mdn Sdt.dev Mean Mdn St.dev Mean Mdn St.dev
1: Tracing elements to variants 1.4/2 1.5/2 0.6 1.2/2 1.0/2 0.6 - - -
2: Comparing two variants 1.4/2 1.5/2 0.6 0.9/2 1.0/2 0.7 - - -
3: Comparing all variants 1.4/2 1.5/2 0.5 0.9/2 1.0/2 0.6 - - -
Total 4.2/6 4.0/6 1.0 3.0/6 3.0/6 1.3 - - -

Mdn: Median, St.dev: Standard deviation

self-reported experience of participants for the two vari-
ability mechanisms was considerably lower: 2.26 ±0.73
for annotative, and 2.52 ±0.77 for compositional. These
ratings are, however, comparable to each other, and do
not indicate any bias towards a particular mechanism.

Following our Latin square design, we exposed both
sub-domains (d1, d2 ) to the groups in the same order,
and reversed the order of the variability mechanism they
were represented with.

– Com d1 →Ann d2 (path 1),
– Ann d1 →Com d2 (path 2).

Experiment 3 was focused on activity diagrams as
model type. We designed activity diagrams for two do-
mains: a Flight reservation system (FRS) and an Email
service provider (ESP). We created them upon our ex-
perience and by taking inspiration from the literature.

The participants in this experiment were 26 MSc
students studying at a Dutch university. Participants
were randomly allocated into two groups. Participants
indicated an average experience of 3.39 ±0.64 with ac-
tivity diagrams, and 4.0 ±0.6 with programming. The
mean scores for experiences with both variability mecha-
nisms were significantly lower: 2.1 ±0.8 and 2.3 ±0.86 for
annotative and compositional mechanisms respectively.
The high ratings for experiences with activity diagrams
and programming can be explained by our participants
being MSc students, who have undergone significant

practice with software design and implementation. The
lower ratings for both variability mechanisms are also
reasonable, since they were not taught in detail in the
course. However, the ratings are close to one another,
reducing any possible biases in the results.

We designed two activity diagrams per domain, each
represented using a different variability mechanism. With
two domains (d1, d2 ), the paths after applying our Latin
square design were:

– Ann d1→Com d2 (path 1).
– Com d1→Ann d2 (path 2),

6 Results

We now present the results from our experiments, struc-
tured along our research questions. For each, we have
one subsection presenting the relevant results from all
three experiments. This supports a direct comparison
of our observations along our two independent variables
(modeling language and variability mechanisms).

6.1 RQ1: Efficiency

In RQ1, we studied the effect of annotative and com-
positional mechanisms on efficiency, that is, the ability
of our participants to solve model comprehension tasks
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Fig. 6 Correctness scores for all three experiments A: Annotative C: Compositional E: Enumerative)

correctly and quickly. To this end, we computed cor-
rectness scores and completion time based on the task
responses, collected in the modules of our questionnaire
(see Fig. 5). As explained in Sect. 5, the correctness
score of a task type ranged between 0 and 2, based on
aggregating the scores for the two questions in each task
type. The completion time was determined by measur-
ing the difference between the starting and ending time
for completing all tasks for one particular variability
mechanism.

Correctness. Tables 2 to 4 provide a high-level overview
of the correctness scores. Each table corresponds to one
experiment and model type, and shows mean scores, me-
dian scores (Mdn), and standard deviations (St.dev) per
task type and variability mechanism. A complementary,
more detailed overview is offered by Figs. 6a to 6c, which
visualize the distribution of scores obtained for each task.

Considering class diagrams (Experiment 1, Table 2),
the participants generally performed equally well with
the annotative and the enumerative mechanisms. In con-
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trast, the use of the compositional mechanism lead to a
noticeable drop in mean performance. Hypothesis test-
ing showed that the difference for compositional to other
types was significant for task types 1 and 3. For type 1,
we found p=0.01 for the comparison to annotative, with
a medium-ranged effect size of A12=0.62 (p=0.02 for
the comparison to enumerative, surpassing the corrected
threshold). For type 3, we found p<0.01 when compar-
ing compositional to both annotative and enumerative,
with medium effect sizes (A12=0.66 and 0.64, respec-
tively). We did not find significant differences between
the mechanisms for type 2. Annotative and enumerative
do not differ significantly in any considered case.

The similar results obtained for annotative variability
and the baseline (enumerative) for this and the following
RQs motivated us to focus in experiments 2 and 3 on
the comparison between annotative and compositional
variability. Our rationale was that by not considering
enumerative, we could allocate more time to annotative
and compositional, which we could use for more involved
questions within the task types that would allow a more
in-depth comparison between these mechanisms.

Consequently, in Experiment 2 and Experiment 3,
we observed lower average correctness scores than in Ex-
periment 1. With state machine diagrams (Experiment
2, Table 3), there were no prominent differences between
the results for annotative and compositional mechanisms
for type 1 (1.2 vs 1.2) and 2 (1.0 vs 1.1). A significant
difference was evident for the most complex task type,
type 3, where annotative outperformed compositional
with a score of 1.2 vs. 0.8. For type 3, hypothesis testing
revealed a significant difference in performance using
annotative and compositional with p=0.01 and medium
effect size (A12=0.61). We did not find significant dif-
ferences between the mechanisms for types 1 and 2. An
explanation is offered by the nature of the considered
examples: Answering the questions was possible with-
out an in-depth understanding of how the composition
operator works. Hence, an inherent disadvantage of the
compositional mechanism does not manifest itself in
these examples. For task type 3, where we find statis-
tically different results, this concern does not apply.

With activity diagrams (Experiment 3, Table 4),
the differences were more pronounced. Participants per-
formed better using annotative mechanism for type 1
(1.4 vs 1.2), type 2 (1.4 vs 0.9) and type 3 (1.4 vs 0.9). Hy-
pothesis testing reveals significant differences for all task
types, with p<0.01 for all types. The effect size of this
comparison was small-to-medium for type 1 (A12=0.59),
medium-to-large for type 2 (A12=0.67) and large for
type 3 (A12=0.76). In the overall performance, the par-
ticipants on average achieved a score 1.3 times higher
with annotative than with compositional mechanism (4.2

vs 3.0). Compared to experiment 2, one noteworthy as-
pect that adds to the explanation of these findings is that
performing the tasks required a better understanding of
the involved composition algorithm, since relevant infor-
mation was spread over several composition fragments.

Annotative outperformed compositional variability on
average in all three experiments. Specifically, the an-
notative mechanism lead to higher correctness scores
on average than the compositional one for all task
types and domains except one. The differences were
significant for six out of nine cases (3 task types and 3
experiments). Compared to the baseline (enumerative
variability, Experiment 1), annotative variability did
not lead to significant performance differences, whereas
compositional variability did.
Completion Time. Table 5 provides an overview of
the completion times of participants for solving all tasks
in all experiments. According to this data, the aver-
age time taken for performing tasks using annotative
mechanism was always less than time taken using other
mechanisms. Figure 7a, Fig. 7b, and Fig. 7c represent the
distribution of completeness times taken by participants
using different variability mechanisms for Experiment 1,
2, and 3 respectively.

In line with the observations about correctness, the
speed of performing tasks was highest in experiment 1,
due to the simpler tasks in each task type, which al-
lowed us to consider the enumerative baseline solution
in addition to annotative and compositional variability.
The participants were fastest on average when using
the annotative mechanism (mean completion time: 6.6
minutes), somewhat faster, but not significantly so than
when using enumerative (7.1 minutes, p=0.12). Partic-
ipants, however, tasks took significantly longer when
using the compositional mechanism (8.8 minutes). The
differences between compositional and both annotative
and enumerative were highly significant with p<0.001.
The effect size was large when comparing compositional
and annotative (A12=0.71) and medium-to-large for
compositional to enumerative (A12=0.67).

In experiment 2, participants took roughly the same
amount of time on average using the annotative and com-
positional mechanisms (10.4 vs 11.3). Hypothesis testing
showed that the difference between times taken using
both mechanisms was not significant (p>0.25). These
observations are in line with the correctness-related ones,
in which only one of the considered task types (the most
difficult one) lead to significant differences.

In experiment 3, participants were faster in per-
forming their tasks on average using the annotative
mechanism than with the compositional one (14.2 vs
16.8 minutes). However, this difference is not significant
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Fig. 7 Completion time in minutes for (a) Experiment 1 (b) Experiment 2 and c) Experiment 3. Y-axis: Variability mechanisms
(A: Annotative C: Compositional E: Enumerative) X-axis: Time taken in minutes

(p>0.38). Contrasted with the significant differences in
the correctness scores for all three task types, we find
that the tendencies of both observations agree, but the
implications for correctness appear to be greater than
those for completion time.

The annotative mechanism lead to the shortest on-
average completion times in all experiments. Partici-
pants took longest to complete the tasks when using
the compositional mechanism. Yet, only in one out of
three experiments, statistical significance was found.
Compared to the baseline (enumerative variability, Ex-
periment 1), annotative variability outperformed the
baseline solution, but not significantly so.

6.2 RQ2: Subjective Perception

We report on the participant’s subjective perceptions of
understandability and difficulty to complete the tasks,
based on our subjective assessment questions (S1–S4
in our questionnaire; see Fig. 5). The questions in this
category were answered on a five-item Likert scale, with
lower scores indicating better results. Table 6.1 gives
an overview of the results, which are refined by the
visualizations in Figs. 8a to 8c. The figures also include
the exact formulations of all questions.

In Experiment 1 (class diagrams, Fig. 8a), enumer-
ative was considered to easiest to understand (mean:
2.2), followed by the annotative mechanism (mean: 2.6).
Compositional mechanism was the hardest to under-

Table 5 Completion times (in minutes) of our participants for
all three experiments.
Exp Mechanism Min Mn Mdn Max St.dev
1 Annotative 3 6.6 6 15 2.6

Compositional 4 8.8 8 17 3.2
Enumerative 3 7.1 6 19 3.1

2 Annotative 3 10.4 10 23 4.3
Compositional 5 11.3 11 22 3.7

3 Annotative 3 14.2 14 28 6.1
Compositional 8 16.8 14 32 6.7

Mn: Mean, Mdn: Median, St.dev: Standard deviation

stand (mean: 3.2). The differences between the under-
standability of all three mechanisms were significant,
with varying effect size measures: for enumerative vs.
annotative, p=0.006 with A12=0.61 (small to medium
effect); for compositional vs. annotative, p=0.004 with
A12=0.66 (medium effect); for enumerative vs. compo-
sitional, p≤0.001, with A12=0.73 (large effect).

The difficulty rating was fully consistent with both
the objective task metrics (RQ1) and the understand-
ability ratings. Regarding difficulty, annotative and enu-
merative were considered to be less difficult than com-
positional for all task types. Comparing the annotative
and enumerative mechanism, the given mean ratings
were approximately equal, amounting to 2.3, 2.5, 2.5
for annotative, and 2.3, 2.2, 2.5 for enumerative. We
did not find statistical significance for this comparison,
reinforcing our decision to not consider enumerative in
the follow-up experiments. In contrast, the mean ratings
for compositional of 3.1, 3.0 and 3.2 were much higher,
indicating lower understandability. In all comparisons
of compositional to another mechanism, we found sig-
nificance. In all cases but one (task type 2, annotative
vs. compositional: p=0.03; A12=0.62), the p-value was
below 0.003 and the effect size between A12=0.65 and
0.69, indicating a medium-to-large effect.

In experiment 2 (state machine diagrams, Fig. 8b),
for understandability, participants gave approximately
similar ratings to both annotative and compositional (3.0
vs. 2.9). The difference was not statistically significant.
Considering difficulty, the mean scores per task type
were identical (2.6, 2.6, 2.9 vs. 2.6, 2.6, 2.9), implying
no statistically significant difference, largely consistent
with the correctness scores and completion times for
the same experiment (RQ1). Still, task type 3 gave rise
to the only case in all our data where subjective as-
sessment and objective performance were not aligned:
the reported difficulty levels do not differ, while the
correctness scores do so with statistical significance.

In experiment 3 (activity diagrams, Fig. 8c), partic-
ipants considered annotative to be notably more under-
standable than compositional (2.7 vs. 3.4). The differ-
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Table 6 Participant perceptions (understandability1 and difficulty2 ratings) for Experiment 1, 2, and 3.

Annotative Compositional Enumerative
Exp Quality Mean Mdn St.dev Mean Mdn St.dev Mean Mdn St.dev
1 Understandability 2.6/5 3/5 1.1 3.2/5 3/5 1.1 2.2/5 2/5 1.2

Difficulty Task type 1 2.3/5 2/5 1.2 3.1/5 3/5 1.2 2.3/5 2/5 1.1
Task type 2 2.5/5 2/5 1.3 3.0/5 3/5 1.3 2.2/5 2/5 1.2
Task type 3 2.5/5 2/5 1.2 3.2/5 3/5 1.3 2.5/5 2/5 1.1

2 Understandability 3.0/5 3/5 1.0 2.9/5 3/5 0.9 - - -
Difficulty Task type 1 2.6/5 3/5 1.0 2.6/5 3/5 1.0 - - -

Task type 2 2.6/5 3/5 0.9 2.6/5 2/5 0.9 - - -
Task type 3 2.9/5 3/5 1.0 2.9/5 3/5 1.0 - - -

3 Understandability 2.7/5 2/5 1.3 3.4/5 3/5 1.1 - - -
Difficulty Task type 1 2.3/5 2/5 1.0 3.2/5 3/5 0.9 - - -

Task type 2 2.5/5 2/5 1.3 3.0/5 3/5 1.3 - - -
Task type 3 2.5/5 2/5 1.2 3.2/5 3/5 1.3 - - -

1 Scores on a 5-point Likert scale with 1: very easy, 5: very hard to understand.
2 Scores on a 5-point Likert scale with 1: very easy, 5: very difficult to perform task.
Mdn: Median, St.dev: Standard deviation

ence was statistically significant (p=0.3), with A12=0.68
(medium-to-large effect size). Concerning difficulty, an-
notative was considered to be easier than compositional
for all task types (2.3, 2.5, 2.5 vs 3.2, 3.0, 3.2). The
difference for type 2 was significant, with p=0.005, and
A12=0.73 (large effect). These observations agreed with
the correctness scores and completion times in RQ1.

The subjective perceptions of our participants largely
agreed with the objective performance measurements:
In two of the three experiments, the found the an-
notative mechanism more understandable and easier
to work than the compositional one. The annotative
mechanism was found (non-significantly) harder to un-
derstand, but equally easy to work with as the baseline
(enumerative variability, Experiment 1).

Table 7 Distribution of preferred mechanisms per task type

Task type Ann. Com. Enu. None
Experiment 1
1 Understanding variants 50.7% 13.7% 34.2% 1.4%
2 Comparing two variants 26.0% 15.1% 57.5% 1.4%
3 Comparing all variants 43.8% 12.3% 42.5% 1.4%
Experiment 2
1 Understanding variants 58.6% 33.8% - 7.6%
2 Comparing two variants 52.3% 41.5% - 6.2%
3 Comparing all variants 46.2% 41.5% - 12.3%
Experiment 3
1 Understanding variants 78.3% 8.7% - 13.0%
2 Comparing two variants 78.3% 21.7% - 0%
3 Comparing all variants 78.3% 17.4% - 4.3%

Ann: Annotative Variability Com: Compositional Variability
Enu: Enumerative Variability

6.3 RQ3: Subjective Preferences

We report on our participants’ preferences, based on
questions S5 and S6 in our questionnaire (see Fig. 5).
In S5, we asked our participants to specify a preferred
mechanism per task type (quantitative data). In S6, we
asked them for textual feedback to explain the rationale
for their preferences (qualitative data). In what follows,
first, we present and discuss the distribution of prefer-
ences (S5), before explaining our observations based on
the provided rationale (S6).

6.3.1 Quantitative Distribution of Subjective
Preferences

Figure 9 and Sect. 6.2 provide an overview of our quan-
titative data: the percentages of selected answers when
asked to specify a preferred variability mechanism per
task type. For Experiment 1, we find that the preferences
varied strongly between the tasks. Annotative was pre-
ferred by most participants for task types 1 and 3, albeit
with only a moderate to slight difference to the enumer-
ative mechanism: 50.7% vs. 34.2% for type 1, and 43.8%
vs. 42.5% for type 3. In contrast, the enumerative mech-
anism was preferred with a large margin for task type 2,
comparing two variants (which are explicitly present in
the enumerative representation). Compositional came in
last in all comparisons, with percentages between 12.3%
and 15.1%. Participants generally expressed a prefer-
ence; the no-preference option was only selected in 1.4%
of all cases. Intuitively, the preference for enumerative
for type 2 is not surprising: in a comparison between
two variants, explicitly representing the variants seems
beneficial. Based on the preference of annotative for
type 1 and 3, we hypothesize that this representation
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is suitable for tasks that require a good overview of all
variants and the ability to trace elements to variants.

For Experiment 2, participants preferences were con-
sistent with their understandability ratings per mech-
anism. Participants preferred annotative over compo-
sitional for all task types: 58.6% vs. 33.8% for type 1,
52.3% vs. 41.5% for type 2, and 46.2% vs. 41.5% for
type 3. The more pronounced preference of annota-
tive for type 1 and 2 can be attributed to the consol-
idated view it offers, making it easier to understand
and compare variants (also confirmed by the subjective
assessments presented shortly). A considerable number
of participants selected the no-preference option, espe-
cially for type 3 (12.3%). While this percentage is higher
than in the other two experiments, one might still find
it surprisingly low: Even though there were hardly any
differences in the subjective assessment of understand-
ability and difficulty (with low standard deviations),
most participants still specified a preference. One could
interpret this finding as supporting a role of personal
inclination or taste in preferring a mechanism.

For Experiment 3, the differences were far more dis-
tinguished. The cleary majority of the participants pre-
ferred annotative over compositional for all task types
(78.3% vs. 8.7% for type 1, 78.3% vs. 21.7% for type 2,
and 78.3% vs. 17.4% for type 3). For type 1, 13% of
the participants chose the no-preference option. The
preferences were consistent with both the correctness
scores and difficulty ratings. These observations are in
line with our previous findings for this experiment, in
which annotative was found easier to use and lead to
better efficiency for all task types.

Compared to compositional, annotative was generally
preferred for all task types, although with varying mar-
gins between the experiments. When also offered the
baseline representation (enumerative, Experiment 1),
the preferences varied between the task types: Annota-
tive was preferred for comparing all variants, and for
tracing elements to variants. Enumerative was largely
preferred for comparing two variants to each other.

6.3.2 Qualitative Explanations of Subjective Preferences

To obtain additional insights, we asked the participants
to explain their preferences intuitively using an open-
ended question. Based on our manual assessment per-
formed on the answers, we discuss the recurring aspects
deemed as relevant by the participants below. Impor-
tantly, some of the reported aspects could be mitigated
when working with proper tool support. Indeed, our
findings might be useful for informing the question of
what improved visualizations should focus on, as we
further discuss in Sect. 6.4.

Conciseness.Models created using the annotative mech-
anism offer a consolidated view, where all variants of
the domain are concisely shown as a single model. Eight
of our participants mentioned this as a benefit: “In the
annotative one you had all the information asked on
the first look; comparing was easy since the different
[variants] were all in the same diagram.” With com-
positional, the models were modular in nature. This
however made the models scattered, and therefore, hard
to deal with. Five of our participants remarked that the
modularity made the models clearer and eased the tasks:
“It [was] easier to conduct direct comparisons between
different products in the [compositional mechanism], due
to its modular nature.” However, the scatteredness of
the models was linked to difficulty in performing tasks:
“[using compositional, you] need to look at a lot of screen-
s/windows.” A related aspect mentioned by four of our
participants was that the co-located presentation of in-
formation made the information readily available, and
helped in performing tasks: “The enumerative shows all
required parts at once and you don’t have to look really
close to see all required parts and connections.”
Understandability. Eight of our participants found
enumerative mechanism easy to understand and work
with: “the enumerative variant is the easiest.” None of
the participants found it difficult to deal with. 26 of our
participants found annotative easier to understand and
follow: “Annotative is simple to understand and just
beautiful.” Two participants remarked that annotative
mechanism was intuitive: “[Annotative] is ... way more
intuitive, it gives a better overview.” In contrast, six par-
ticipants found annotative to be hard to manage, mainly
because of the cluttered models: “The main reason why
I had some challenges with the [annotative] version was
probably because the text was so clustered and hard to
read.” Five of our participants found compositional to
be easier to understand, either because they were al-
ready familiar with the mechanism, or they liked the
modular structure: “It was easier to understand compo-
sitional because of their modularity in my opinion.” 15
of our participants experienced difficulty in understand-
ing the compositional mechanism, mainly because of its
scattered nature: “The compositional one seems more
scrambled, and therefore a bit harder to follow and get
a complete picture of.”
Familiarity. We observed that familiarity is a factor
in preferring one mechanism over the other, if only in a
participant’s initial assessment. Specifically, we observed
two interesting aspects of familiarity. First, participants
preferred mechanisms they had experience with: “Since
I haven’t worked with [annotative] variability before it
was easier to grasp the compositional version.” Second,
once participants experienced with a particular mecha-
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Fig. 8 Subjective perceptions of our participants. Y-axis: Variability mechanisms (A: Annotative C: Compositional E: Enumerative)
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Fig. 9 Preference distributions of our participants in Experiment 1–3 (from left to right)

nism, they changed their preferences along the way: “At
first the annotative was hard (it took a while to under-
stand what the starting state was), but once I understood
it, it was easier to handle than the compositional one.”

Scalability. In their explanation of why they preferred
a particular variability mechanism, several participants
extrapolated from the considered case to more complex
ones, and foresaw potential issues with the scalability of
the notation. "[In enumerative,] although you need more
models/space, you can see everything relatively easy.
However, if you have maybe like 20 variants, enumera-
tive is probably not the way to go.", "last the Enumerative,
the 6 variants were okay but when there are even more
it is to much" [sic], and finally "The problem with the
Compositional was [the] bigger and more complex it gets,
it is harder to understand in a short time".

Efficiency. Participants preferred mechanisms which
they found quicker to work with, based on their subjec-
tive impressions. We observed three relevant dimensions.
First, participants favoured the mechanisms which of-
fered readiness; having readily available information
at one look made the tasks easier. The mechanisms
favoured with this rationale were enumerative and an-
notative: “The enumerative shows all required parts at
once and you don’t have to look really close to see all
required parts and connections,” and “In [compositional],
you have to follow a path to find the differences, where
as with [annotative], you can see it right away.” Sec-
ond, four participants expressed that the additional step
of combining fragments to create variants in composi-
tional was intensive: “Since you do not have to think
about how to compose diagrams I think that annotative
is easier.” Third, the scattered nature of compositional
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models made the tasks repetitive, an aspect two of our
participants found laborious: “The tagged approach of
[annotative] does not require me to mentally jump back
and forth across the diagram like I have to do whilst
using compositional diagrams.”
Labels.When creating models, we deliberately chose la-
bels that differed from the names of the model elements
to make the models reasonably complex. An example
from the Email Service Provider domain is Security,
which was the label used to map the activities encrypt
email and decrypt email. Participants rendered labels
to be useful, especially in annotative models: “the labels
with variant on classes [were] very [helpful].” Labels
in the models with annotative mechanism were even
more favoured, owing to their arrangement, which is
collocated with model elements: “The feature placement
in the annotative mechanism was more localized, making
it feel better to work with.”
Colors. A design choice was to show the feature names
in the annotative representation in distinguished colors,
based on previous recommendations for code-level mech-
anisms [37]. Doing so balances out a disadvantage of
annotative representations: the use of labels increases
information density and visual crowding [91], thus affect-
ing readability. In line with these findings, participants
noted that it was "easier to compare classes in An-
notative because of colors", and that "the colouring of
annotative diagrams make [task type 1] really easy".
Overview. We observed that participants chose mech-
anisms which offered a good overview of the variants.
Overview of variants is partially similar to our task
type 1 (understanding variants), however, it has a broader
relevance to other model-related tasks such as compari-
son. Six of our participants preferred annotative, explain-
ing that it gave a good overview: “It seems easier for me
to ... get a fuller understanding of the system when read-
ing the annotative mechanism.” Two participants pre-
ferred enumerative, and one participant compositional
with this rationale. Two of our participants experienced
difficulty in getting an overview with the compositional
mechanism: “There were many more places to look when
comparing with the compositional mechanism and it be-
came a bit difficult to overview.”
Flow. In both behavioural model types (state machine
diagrams and activity diagrams), participants strongly
preferred annotative, expressing that the flow of the
model made the tasks easier. 11 participants expressed
their preference for annotative: “[It was] easier to under-
stand how everything is connected with the annotative.”
None of the participants found compositional to be
helpful in understanding flow, seven expressing that
compositional made it hard to perform tasks because it

did not support understanding flow: “I felt it was harder
to navigate with the compositional statechart diagram.”
Task specific. Participants’ preferences changed with
task types. One participant commented: “[task type 1
and task type 2] require more memorization about which
features are active and which actions belong to them.
As such, I prefer the compositional mechanism for these
tasks, which is less cluttered and more cleanly displays
only those sub-diagrams that are useful for a particular
product. For the task type 3, it is likely that every feature
will be enabled in at least one product. This means that
you need to form a mental image of the diagram where
all features are enabled. The fact that this is already con-
tained in the annotative diagram is now an advantage.
The compositional mechanism however, does not do this
and as such requires more mental gymnastics in order
to reason about a comparison of all products.”
Additional aspects. Two of our participants experi-
enced uncertainty, both with compositional: “At first
glance Compositional seemed easy but I was never 100%
sure about my answers concerning it.” Two of our par-
ticipants expressed that compositional mechanism as-
sisted them to see only the relevant parts of the models:
“Compositional does the work of ignoring the unimportant
parts for me; the boxes for each feature only contains the
relevant state. .” One participant observed that models
are harder to create with the compositional mechanism:
“compositional based [...] is harder to construct and im-
plement than the annotation based.” Two participants
preferred annotative because it provided less information
to be processed by the brain: “[With compositional] you
need to remember a lot of things, product names and it’s
features [..] Therefore I prefer the annotative notation,
because you have to remember less mandatory features.”
We propose related recommendations in Sect. 6.4.

A main contributing factor to the large preference of
annotative was its conciseness; some inherent disad-
vantages could be balanced out by the use of labels
and colors. Participant gave a variety of additional
explanations, related to understandability, familiar-
ity, scalability, efficiency, ability to provide a good
overview, and understanding of flow.

6.4 Discussion and Recommendations

The objective and subjective differences between vari-
ability mechanisms observed in our study can be consid-
ered by tool and language developers for improving user
experience, an important prerequisite for MDE adop-
tion [2]. We discuss our findings in the light of derived
recommendations.
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Provide flexible, task-oriented representations.
We find that there is no globally preferable variability
mechanism—indeed, the ”best“ mechanism may depend
on the task to be performed. Tool and language devel-
opers can support user performance and satisfaction by
providing multiple representations, tailored to the task
at hand. We propose to consider a spectrum of solu-
tions, each trading off the desirable qualities flexibility
and simplicity: As the most simple, but least flexible
solution, one can augment a given representation with
task-specific, read-only views, e.g., given an annotative
representation, generate individual enumerated variants
(or a subset thereof, see below). A second, more ad-
vanced solution is to make these additional representa-
tions editable, which offers more flexibility, but gives
rise to a new instance of the well-known view-update
problem [29]—-the particular challenge here is to deal
with the implications of layout changes. The third, most
advanced solution is projectional editing [15], in which
developers interact with freely customizable represen-
tations of an underlying structure. Projectional editing
offers the highest degree of flexibility, but poses a learn-
ing threshold to users for adapting to a new editing
paradigm.
Support the simple solution, for appropriate use-
cases. Our participants preferred the simple enumera-
tive solution for a subset of tasks. While being commonly
applied in practice (e.g., in 9 out of 23 cases studied by
Tolvanen et al. [85]), this solution is inherently problem-
atic: In small to moderate product lines, organizations
struggle with the propagation of changes between cloned
variants [72]. In large product lines, considering a dis-
tinct model for each of thousands of variants is simply
infeasible. Instead, we suggest to address use-cases that
involve a clearly defined subset of variants: In staged
configuration processes [30,73], such subsets are derived
by incrementally reducing the variant space, thus ob-
taining partial configurations of the system. Variability
viewpoints [48], which are applied at companies like
Daimler, reduce the variant space based on the per-
spective of a specific stakeholder. To address theses use
cases, we suggest to provide support for selecting and
interacting with a subset of enumerated variants, while
using a proper variability mechanism for maintaining
the overall system.
Use colors, and use them carefully. In line with the
existing literature [37], we find that colors can be helpful
for mitigating the drawbacks of annotative techniques.
However, relying on colors in an unchecked way is unde-
sirable due to the prevalence of color-blindness. Up to 8%
of males and 0.5% of females of Northern European de-
scent are affected by red-green color blindness [22]. A rec-
ommendation for language and tool designers is to avoid

representations that solely rely on color, and to use ded-
icated color-blindness simulators such as Sim Daltonism
(https://michelf.ca/projects/sim-daltonism/) to
check their tools. A further issue with colors might be
scalability, in a situation when there are many variation
points that would need to be shown in different colors.
A mitigation would be to flexibly reassign colors depend-
ing on the current screen focus, but even this approach
would have limitations there is a need for a high number
of annotation colors inside the same screen. Alterna-
tive visualization aids (for example, filtering) could be
combined with coloring and are highly desirable.

Composition: the whole is more than the sum
of its parts. Participants struggled with compositional
mechanisms especially in tasks that required them to
understand how fragments interact with each other. In
the case of behavior modeling (Experiment 2 and 3), the
observed performance differences are more pronounced
when participants had to understand cross-fragment flow
of activities or states. To be able to solve the tasks, they
essentially had to execute the composition algorithm in
their mind. Potentially, this drawback of compositional
mechanisms can be balanced out by providing special
visualizations that illustrate the composition of (subsets
of) fragments. Such visualizations would reduce cogni-
tive load during model comprehension and would also
allow to provide instant feedback upon changes.

Structured overview of recommendations. Based
on our results and the considerations in this section, we
derive a structured overview of recommendations to tool
developers and users, which we outline in Table 8. As the
main factors that should determine the selection of the
variability mechanism, we identify the expected number
of variants and the expected type of tasks. This is because
we saw different optimal (best-perfoming and preferred)
mechanisms depending on the task type, and because
the enumeration of variants, which works particularly
well for comparing two variants, does not scale to large
variant sets. To distinguish small from large variant sets,
we use a size threshold of 10, based on the magnitude
of the variant sets considered in our experiments. For
small large sets, we propose to use either annotative or
enumerative, depending on the tasks most likely to occur.
For large sets, the considerations in the beginning of this
section are particularly relevant: flexible, task-specific
editing support can be used to show the information
currently of interest. This helps to balance out scalability
issues, notably the scalability issue with colors in the
annotative, and the issue with having an overly large
set of variants in the enumerative mechanism.

https://michelf.ca/projects/sim-daltonism/
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Table 8 Overview of recommendations derived from our results.

Expected number of variants Expected type of tasks Recommendation

small
(<10)

large
(≥10)

comparing all variants,
understanding

individual variants

comparing two
variants

• • annotative or enumerative
• • enumerative
• • • annotative or enumerative

• • flexible
• • flexible
• • • flexible

7 Threats to Validity

We discuss the threats to validity of our study, following
the recommendations by Wohlin et al. [94].

External Validity. Our experiment focuses on class
models, state machine diagrams, and activity diagrams,
three ubiquitous model types. We discuss representa-
tiveness and practical relevance in MDE contexts in
Sect. 2. Furthermore, we consider only two variability
mechanisms in our comparison, an annotative and a
compositional one. While studying a broader selection
of modeling languages and mechanisms is left to future
work, the qualitative data presented in Sect. 6.3.2 is
not necessarily specific to these model types and mecha-
nisms, and yields a promising outlook on generalizability.

Another issue is whether our results generalize to
larger systems, specifically, those with more variants
and model elements. Since the number of variants grows
exponentially with the number of features, the enumer-
ative representation will eventually be outperformed by
the other ones. We discuss possible roles for the enumer-
ative representation in larger systems in Sect. 6.4.

Finally, external validity is threatened by our sam-
ple of participants, made up of students with limited
prior experience with variability mechanisms. Student
participants can be representative stand-ins for practi-
tioners in experiments that involve new development
methods [?,?] While considering a broader spectrum
of experience levels would be worthwhile, we arguably
focus on a critical population: In a given organization,
consider the onboarding of a new team member with a
similar experience level to our participants. Poor com-
prehension would pose a major hurdle to becoming
productive, and, therefore, pose a risk for the organi-
zation. As mitigation measures, we established via our
questionnaire that our participants had no unacceptable
advantage of being much more familiar with either com-
positional or annotative variability, and selected subject
domains that were either simple or already known to
the students from previous course units (thus avoiding
potential misunderstandings as a source of error).

Internal Validity.Within-subject designs help to elicit
a representative number of data points to support sta-
tistically valid conclusions. We addressed their draw-
backs as follows: To address learning effects, we applied
counterbalancing. Between the different groups, we dis-
tributed the order of variability mechanisms equally,
while keeping the domain and task order constant. To
balance the assignment of participants to classes, we
randomized the assignment.

To avoid researcher bias in the selection of our exam-
ples, we selected domains that were not used before with
a specific variability mechanism. Studying comprehen-
sion in larger models is desirable, but has some principle
limitations with regard to the amount of information
that participants can be exposed to in the scope of an
experiment (participant fatigue).

A possible source of bias is our choice of subject
domains: a particular domain might have been used in
previous teaching units to explain a particular variabil-
ity mechanism, which would give an unfair advantage
to these mechanism. We intentionally selected domains
that were simple and/or known to the students. How-
ever, to our knowledge, they were not used to teach
particular variability mechanisms. Using our question-
naire, we asked our students to specify their previous
knowledge about variability mechanisms, and did not
find a noteworthy difference between the mechanisms.

Construct Validity. We operationalized comprehen-
sibility with comprehension tasks, arguing for the im-
portance of the considered tasks in Sect. 5. The choice
of tasks was informed by our pre-study, in which we
encountered trade-offs regarding participant fatigue and
confounding factors when using more demanding tasks
(Sect. 4). Since we find significant performance differ-
ences between mechanisms, the difficulty level of our
tasks seems appropriate; however, other tasks might ex-
ist (e.g. understanding a single feature and its context),
and task completion could also be facilitated if users
are supported by specialized tools (e.g. query engines).
Generally, systematic knowledge on the design space of
model comprehension tasks would help to maximize real-
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ism in comprehension experiments, but such knowledge
is currently lacking.

Our setup did not involve tools, representing an
unavoidable trade-off: While having the participants
use a tool environment would have been more realistic,
it would have lead to confounding factors related to
usability obstacles and participants’ familiarity with the
tool. On the other hand, working with a printout that
could be derived from a tool (like in our experiments)
also has some significant commonalities to working with
the tool. We study the question of how well users can
comprehend models in a particular visual representation.
Given that the representation looks the same in the tool
and on printout, we believe that construct validity for
our results and recommendations is established. Notably,
while adequate tool support might be able to mitigate
some issues of particular representations, the developers
of these tools should at least be aware of these issues.

Colors were only used in the annotative representa-
tion, where their usefulness (for distinguishing elements
from different variants) seems more obvious than in the
compositional one (where such elements are already dis-
tinguished by being contained in different modules). A
follow-up study for studying the impact of colors in dif-
ferent representations might provide additional insight.

Subjective measures are generally less reliable than
objective ones. However, previous findings suggest that
they are correlated with objective performance measure-
ments [42]. In fact, we find an agreement between the
subjective and objective measurements performed in our
experiments.
Conclusion Validity. Towards supporting conclusion
validity, we used robust statistical tests. We report ef-
fect sizes and, to deal with threats related to multiple
comparisons, applied a conservative correction to the
considered significance threshold. Threats arising from
random irrelevancies outside the experimental setting
are reduced in experiments 1 and 2, which were admin-
istered with all participants in the same room. Experi-
ment 3, administered during the COVID19 pandemic, is
more prone to such irrelevancies, which, however, would
equally apply to all treatments.

8 Related Work

Annotative vs. Compositional Variability. Anno-
tative approaches are traditionally seen as inherently
problematic. Spencer [76], for example, argues that
#ifdef usage in C as a means to cope with variability
is harmful, leading to convoluted, unreadable, and un-
maintainable code (the infamous "#ifdef hell"). Spencer
appeals to basic principles of good software engineering:

explicit interfaces, information hiding, and encapsula-
tion. Kästner et al. [47] argue that compositional ap-
proaches tend to promise advantages, which, however,
only become manifest under rather specific assumptions.
They emphasize that only empirical research can provide
conclusive evidence.

Aleixo et al. [4] compare both mechanism types in
the context of Software Process Line engineering, i.e.,
applying concepts and tools from SPL engineering to
software processes. They compare two established tools:
EPF Composer, which uses a compositional mechanism,
and GenArch-P, which uses an annotative one. Simi-
lar to our conclusions, they report that the annotative
mechanism performs better, especially with regards to
a criterion the authors call adoption, i.e., how much
knowledge is required to initially apply the mechanism.
Empirical Studies of Variability Mechanisms.Krü-
ger et al. [49] present a comparative experimental study
of two variability mechanisms: decomposition into classes,
and annotations of code sections. They find that annota-
tions have a positive effect on program comprehension,
while the decomposition approach shows no significant
improvement and, in some cases, a negative effect. While
these findings are in line with ours, this study focuses
on Java programs, and compares the considered mecha-
nisms to a different baseline, pure OO code without any
traces of variants. In our case, we considered the frequent
case in industry of copied and reused model variants.

Fenske et al. [38] present an empirical study based
on revision histories from eight open-source systems, in
which they study the effect of #ifdef preprocessors to
maintainability. They analyze maintainability in terms
of change frequency, which is known to be correlated
with error-proneness and change effort. In contrast to
the traditional belief, they find that a negative effect of
#ifdefs to maintainability cannot be confirmed.

Santos et al. [70] study the effect of using two code-
level variability representations: feature-oriented pro-
gramming (FOP) and conditional compilation (CC),
on program comprehension. In their case, they focus
on debugging task–a different scope than in our case.
Specifically, they investigate the impact of FOP and
CC on various maintenance tasks involving bug-finding.
They conclude that there is no significant difference
between the correctness, understanding, and response
time of using both representations.

Feigenspan et al. [37] study the potential of back-
ground colors as an aid to support program comprehen-
sion of source code with #ifdef preprocessors. In three
controlled experiments with varying tasks and program
sizes, they find that background colors contributed to
better program comprehension and were preferred by
the participants. We base the use of color in our ex-
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periments on these findings, and confirm them for the
previously unconsidered case of a model-level variability
mechanism.
Empirical Studies of Model Comprehension. La-
bunets et al. [52] study graphical and tabular models
representations in security risk assessment. In two ex-
periments, they find that participants prefer both repre-
sentations to a similar degree, but perform significantly
better when using the tabular one. The authors build
on cognitive fit theory [89] to explain their findings:
tables represent the data in a more suitable way for the
considered task. Like we do, this study supports the
need for task-tailored representations.

Nugroho [61] studies the effect of level of detail (LoD)
on model comprehension. In an experimental evaluation
with students, the author finds that a more detailed
representation contributes to improved model under-
standing. Ramadan et al. [66] find a positive effect to
comprehension of security and privacy aspects when
graphical annotations are included in the considered
models. Our results are in line with these findings, since
the annotative mechanism includes the names of the as-
sociated variants as one point of additional information.

Acreţoaie et al. [3] empirically assess three model
transformation languages with regard to comprehensibil-
ity. They consider a textual language and two graphical
ones, one of which uses stereotype annotations to specify
change actions in UML diagrams. They observe best
completion times and lowest cognitive load when using
the graphical language with annotations, and best cor-
rectness when using the textual language. Studying this
trade-off further, by studying variability mechanisms
in graphical and textual representations, would be an
interesting extension of our work.
Model-level variability. There are two main research
directions of variability engineering at the model level:
variability modeling and model-level variability mecha-
nisms. The former focuses on the modeling of the prob-
lem space (e.g., features and their relationships); the
latter, which is the scope of this paper, focuses on the
solution space (implementation of variability in domain
models). Regarding variability modeling, there is a num-
ber of experience reports from various domains. Alférez
et al. [5] observe that existing variability modeling ap-
proaches do not suffice to capture a number of aspects
of video domain, including numeric parameters, multi-
features and constraints. They qualitatively compare a
set of 13 approaches based on their ability to support
the above-mentioned aspects, and present a new textual
variability modeling language (VM) for modeling videos.
Berger et al. investigate variability modeling of topo-
logical spaces [18]. They share their experiences from
modeling large-scale fire alarm systems using UML2

class diagrams, and show that class diagrams are an
effective tool to model topological variability to generate
configurator tools. García et al. [40] give an experience
report on the modeling of variability in robotic applica-
tions. They use feature models as a notation for defining
variability of robotic applications in various dimensions,
such as environment, hardware, and mission variability.

Most existing work on model-level variability mech-
anisms focuses either on particular mechanisms (see
Section 2) or the use of such mechanisms for other tasks;
e.g., product line testing [67] and product derivation [95].
Kühn et al. [50] compare two particular approaches to
variability engineering in DSLs along three dimensions–
feasibility, scalability, and sustainability—based on intu-
itive arguments. In summary, the impact of variability
mechanisms on model comprehension has not been inves-
tigated yet in an empirical study. Our study is the first
to use a controlled experiment to produce systematic
evidence on the impact of variability representations on
model comprehension, and as such, can be used to guide
the choice of variability mechanisms when modelling the
static and dynamic structure of product lines.

9 Conclusion

We presented a family of controlled experiments, in
which we studied the effect of the variability mecha-
nisms of two fundamental kinds—annotative and com-
positional mechanisms—on model comprehension. Our
considered model types—class diagrams, state machine
diagrams, and activity diagrams—are among the most
popular and common models used in software engineer-
ing. We conducted the study with student participants
with relevant background knowledge. For models with a
scope and size similar to our examples and for similar
tasks, we can conclude that:

– Annotative variability resulted in better comprehensi-
bility than compositional variability for all task types.

– Compositional mechanism can impair comprehensi-
bility in tasks that require a good overview of all
variants.

– Annotative variability is preferred over the compo-
sitional one by a majority of the participants for all
task types in all model types.

– The preferred variability mechanism depends on the
task at hand.

We presented several recommendations to language
and tool developers. We discuss a spectrum of solutions
for maintaining several task-tailored representations.
Having such solutions is especially important in large
systems where maintaining a separate model per variant
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is infeasible, but developers might still want to interact
with (sets of) variants of interest in a particular task. We
endorse the recommendation to use colors for improving
comprehension in annotative variability, and discuss its
limitations. If a compositional mechanism is desired,
users should be supported with visualizations, instead
of being required to perform composition in their minds.

We envision four directions of future work. First, we
want to understand the effect of tools to model compre-
hension. Second, we wish to systematically explore the
space of typical tasks during model comprehension. Ad-
ditional experiments would allow us to come up with a
catalog of task-specific recommendations for variability
mechanism use. Third, we are interested in broadening
the scope of our experiments to take different mod-
eling languages into account, including textual ones,
which represent a middle ground between traditional
programming languages and graphical modeling lan-
guages, and transformation languages, for which many
different reuse mechanisms have recently been devel-
oped [24,78]. Fourth, further insight from our collected
data could be obtained by performing sub-group anal-
ysis. Questions of interest are the effect of prolonged
interaction of developers with different model types on
their performance for the three task types, and the ef-
fect of mechanisms on the types of errors made by our
participants (e.g., false negatives vs. false positives).
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