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Abstract—Software features are intuitive entities used to ab-
stract and manage the functionalities of a software system, for
instance, in product-line engineering and agile software devel-
opment. Nonetheless, developers rarely make features explicit
in code, which is why they have to perform costly program
comprehension and particularly feature location to (re-)gain
knowledge about the code. In a previous paper, we conducted
an experiment on how explicit feature traces impact developers’
program comprehension by facilitating feature location. We
found that annotating features in code improved program com-
prehension, while decomposing them into classes had a negative
impact. Additionally, but not reported in that paper, we were
concerned with understanding whether the different traces would
impact developers’ memory regarding the code and its features.
To this end, we repeatedly asked our participants questions about
the code on different levels of detail within time periods of two
weeks. Since developers’ memory decays over time, we expected
that our participants would provide fewer correct answers over
time, with differences depending on the feature traces in their
code. Unfortunately, the actual results were inconclusive and up
for interpretation, particularly due to challenges in designing an
experiment on developers’ memory. In this paper, we discuss
our experimental design, the null results, and challenges for
improving the methodology of future studies in this direction.
Index Terms—Feature orientation, traceability, human memory,
program comprehension, psychology

I. INTRODUCTION

The notion of software features is an intuitive abstraction
to specify, document, and communicate the functionalities
of a software system, and thus is established in practice
despite missing a clear definition [4], [6], [8], [20]. Features
are the primary concern of interest in engineering software
product lines—large and complex software platforms [3],
[29] that are usually highly configurable to derive individual
variants. Features in this context are typically associated with
configuring, taking the perspective that features are optional and
represent configuration flags (e.g., as C preprocessor macros
or feature toggles) [26], [34]. So, features are usually made
explicit—they are identified, modeled [15], [27], mapped to
implementation assets, and tested in various configurations
[3], [19], [29]. In contrast, agile methods, such as SCRUM,
XP, or FDD, use features to organize development and to
represent primarily mandatory functionality, for example, in
the product backlog that is essentially a list of features [24].
As such, features are usually not limited to the perspective of
optional and configurable functionality, they can represent any
functionality of a system. Still, while features are recorded,

they are usually not made explicit in code, as opposed to the
product-line perspective.

Adopting the broader perspective of features from agile meth-
ods, while making them explicit as in the product-line perspec-
tive, promises to facilitate program comprehension and extend
automated analyses [2], [5], [9], [13], [16], [35]. To support
this claim, researchers conducted empirical studies on different
techniques for explicit feature traceability. Unfortunately, many
of such studies investigate a single property of a specific trace-
ability technique (e.g., configurability of preprocessor macros),
but do not compare different techniques. For instance, studies
show that developers have problems understanding the config-
urability of the C preprocessor [11], [22], [23], leading to more
bugs and problems using configurator tools [1], [7]. Similarly,
a few controlled experiments have been conducted to compare
C preprocessor macros with background colors [10] or feature-
oriented programming [30], [31]. However, such experiments
focus again on techniques that tangle traceability and configura-
bility, without considering missing or non-configurable traces.

To tackle these problems, we [17] conducted an experiment
in which we compared three different variants of the same
code example with each other: code (i) without traces, (ii) with
feature annotations, and (iii) with decomposed features (see Sec-
tion II for details). Our results showed that feature annotations
had a positive impact on developers’ comprehension of features,
while a decomposition had negative impact on their ability to
localize bugs. Additionally, our experiment included a second
part on the impact of explicit feature traces on developers’
memory that led to null results, and which we did not report,
yet. In this paper, we focus on this second part by describing
its setup and results (Section III) as well as by discussing
challenges for improving future studies in this direction
(Section IV). While our experiment led to null results, we argue
that more studies on developers’ knowledge and comprehension
of features are needed to investigate the hypotheses we derive—
namely, that developers can recall the features of a system and
that feature traces do not impair developers’ memory. This
would support the claim that features are an intuitive notion for
software engineering and that their locations should be traced.

II. EXPLICIT FEATURE TRACES

Design. In the first part of our experiment [17], we investigated
whether explicit feature traces would facilitate developers’
program comprehension. For this purpose, we used a class



of the Mobile Media system [36], which is regularly used as
a subject system for such studies because it provides feature
locations that have been annotated by the original developer.
We used three different variants of that class:

i pure object-oriented code without any feature traces;
ii code with feature annotations in comments that replaced
the originally used preprocessor macros; and
iii decomposed code, for which we modularized the code of
a feature into a separate class, removing all annotations.

Consequently, none of the three variants comprised the config-
urability of the originally used preprocessor macros, untangling
traceability and configurability. Moreover, we could compare
feature traces (ii, iii) to missing traces (i).

We invited 144 personal contacts from various organizations
and countries, and asked them to share the invitation with
interested colleagues. For each participant, we first quantified
their experience level to then assign them randomly to one
of the three code variants, ensuring the same ratio of novices
to experts for each variant. The actual experiment was unsu-
pervised and online, for which we implemented, tested, and
published our own infrastructure. In the first iteration of our
experiment, our participants inspected the code to understand
its behavior. To assess the impact of explicit feature traces
on their comprehension, we asked three questions relating to
the behavior of features, and defined three tasks in which
the participants had to localize bugs. After this iteration, we
collected each participant’s subjective perception on feature
traceability and the usefulness of the traces they worked on.

Results. We received 49 responses for this iteration of our
experiment (e.g., 20 from Turkey, 13 from Germany, 7 from
the USA) and found that the distribution of participants
according to their experience was comparable. Moreover, we
checked and removed responses that took too long or for which
the participants stated interruptions. This way, we mitigated
potential threats to validity of our study. In summary, we found:

« Annotations had a significant positive impact on our par-
ticipants’ comprehension of features and their interactions,
while not impacting their ability to localize bugs.

¢ Decomposing features did not impact our participants’
ability to comprehend features, but they performed signif-
icantly worse on localizing an interaction bug.

o None of the traces led to significant changes in our
participants’ efficiency (i.e., time spent on a task).

o Our participants had a positive perception of using explicit
features traces, as long as they are trustworthy.

These results indicate that particularly annotations may be a
good way to adopt feature traceability in practice. Besides these
results, we were also concerned with understanding whether
feature traces would impact developers’ memory, for which
we extended our experiment as described in the following.

III. THE MEMORY EXPERIMENT

For the extended experiment, our idea was to identify (1)
indicators regarding whether developers can remember a
feature’s functionality (even though its implementation and

behavior may change), and (2) whether feature traceability
could facilitate not only program comprehension, but also
remembering. To this end, we contacted our participants again
to ask questions about the code they worked on, building
on previous works on developers’ memory [14], [21]. In the
following, we discuss the details of this extension.!

Design. After the first iteration (cf. Section II), we sent mails
in three more iterations (each two weeks after a participant’s
last response) to ask our participants to fill in a survey with
comprehension questions about the code (without showing the
code). To investigate whether our participants could correctly re-
member the code, we designed three multiple-choice questions
on code parts they worked on. These questions were concerned
with (number of available/ correct answers in brackets):

o Details of one specific feature and its interactions (4/3);
o Types of bugs that existed in the code (5/2); and
« Causes for these bugs, such as feature interactions (4/1).

In total, a participant could achieve 13 points in each iteration,
and we reduced these points by one whenever (i) a wrong
answer was selected or (ii) a correct answer was not selected.
We did not check whether our participants correctly understood
the answers to these questions in the first iteration (when they
could analyze the code)—since we were more interested in
the evolution of their responses (i.e., changes in the third and
fourth iteration), indicating changing memory.

Unfortunately, but not surprisingly, of the 49 participants
who participated in the first iteration of our experiment,
few responded to the following iterations. In fact, only 19
participants participated in the second iteration (seven for
annotations, five for modules, and seven for no traces). This
dropped even more in the remaining iterations, and only eight
participants responded to all iterations.

Results. In Figure 1, we display the correctness of our
participants during the last three iterations of our experiment.
For each data point, we show how many days after the previous
iteration the questions were answered. Data points that represent
the same participant are connected with lines. Due to the small
number of participants, we cannot conduct statistical tests,
since these would be unreliable. Moreover, we cannot observe
a systematic difference between the code variants, essentially
meaning that we obtained null results regarding our actual goal.
Nonetheless, we derive two hypotheses that we argue are impor-
tant to properly confirm or reject in future studies to better un-
derstand the usability of features and feature traces in software
engineering, as well as their impact on developers’ memory.
Hypothesis 1: Developers are good at remembering features.
Related studies [14], [18], [21] indicate that developers can
remember specific types of knowledge better. For example,
developers forget methodological knowledge much quicker
than domain concepts (which are usually expressed as features
of a system). Since our questions were concerned with features
and bugs, both representing code abstractions, we argue that
developers should be able to remember such knowledge quite
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Fig. 1. Our participants’ ability to answer questions based on their memory over time, separated by the feature traces used in the code.

well. In Figure 1, we can see only a few strong changes in the
correctness of our participants’ answers, with most data points
being in the frame of 60 % to 80 %. Interestingly, increasing
correctness was often connected to participants selecting fewer
wrong answers. So, this hypothesis focuses on the indicators
of previous studies that features are a suitable abstraction to
guide software evolution, since developers may recall them
better than code details.

Hypothesis 2: Feature traces do not impair developers’
memory. We do not observe any substantial changes in
the knowledge about features and bugs over time. While
the patterns of the different groups differ, most participants
performed similarly in the second and in the fourth iteration.
Interestingly, many participants had a drop in correctness in the
third iteration, which we cannot explain without further studies.
In close relation with the first hypothesis, we hypothesize that
feature traces do not impair developers’ ability to remember
features and bugs in code. So, explicit feature traces may not
be helpful for remembering the behavior of a system, but can
guide program comprehension and automated analyses.

IV. LESSONS LEARNED

To support future studies on software evolution and its impact
on developers, we report four closely related challenges we
faced while designing our experiment.

Confounding Factors: Studying program comprehension and
developers’ memory is challenged by confounding factors
and cognitive biases [28], [32]. Moreover, investigating
developers’ memory during software evolution becomes
even more challenging, since the psychological aspects of
memory are also involved. For instance, memory strength
varies among different people, and some recall differ-
ent types of knowledge better than others. Particularly,
memories are not high fidelity recordings that we can
store: Some code-related aspects a developer focused on
during program comprehension will be central (i.e., will be
remembered better), while others will remain as peripheral
details. Central and peripheral aspects will not be the same
for all developers. Moreover, all related code elements,
including sensory elements serving as a primer for code-
related information, are processed in different parts of the
brain. All these different elements are pulled together by
the medial temporal lobe. So, what a developer remembers
is different from what another one remembers. Therefore,
a challenge for conducting studies on developers’ memory
is the identification and mitigation of confounding factors
and cognitive biases.

Measuring Memory: Measuring memory is challenging on
its own [18], [21], for example, how to quantify what a
developers still knows about a system? On what granularity
should we ask questions? What factors or system proper-
ties impact developers’ memory? Arguably, many studies
are needed to properly understand developers’ memory
and the factors influencing it. In psychology, studies on
forgetting often involve a single subject [25]. Therefore,
for software engineering and program comprehension—
involving teams editing the same artifacts and automated
code transformations, a challenge is how to properly
design studies on developers’ memory and its decay.

Motivating Participants: As we can see in Figure 1, partici-
pants dropped out during our study. Most likely, this issue
was connected to general time and motivational issues.
Still, we cannot rule out that the dropout rate was influ-
enced by the technique we used to trace features, seeing
that we faced this problem particularly for feature modules.
For the first iteration, we prepared program comprehension
tasks that require deeper thought processes, which take
place in developers’ working memory. Moreover, the
subject system is closer to industrial software rather than a
small piece of code. As a result, the difficulty of the tasks
may make participants reluctant to continue with the study.
However, understanding the effects of feature traceability
on program comprehension and memory requires a subject
system that is more than a single piece of code and
sophisticated questions. Therefore, a particular challenge
is how to design subject systems and tasks that allow
to answer research questions, while keeping developers
motivated to participate throughout a series of studies.

Improving Validity: A regular question in empirical software
engineering is whether and how to focus on internal
or external validity [33]. Particularly considering the
previous challenges, validity becomes an important and
challenging concern on its own. Consider, for instance,
the evolution of an artifact, such as a piece of code. To
improve internal validity, we would need to ask the same
questions about the code without anyone or any tool
changing it. However, this immediately causes threats of
developers memorizing particularly that artifact, impairing
internal validity. Moreover, artifacts change all the time
in practice, wherefore the external validity would be low.
Therefore, it is an open challenge to define study designs
that would allow us to focus on, or balance between,
internal and external validity.



We remark that we report these four challenges, because we
deemed them most important, arguing on how to improve
experimental designs. Still, studies with human subjects and
particularly on memory face numerous additional threats and
challenges that must be considered.

V. CONCLUSION AND PROSPECTS

In this paper, we reported on the extension of a previous exper-
iment in which we investigated the impact of explicit feature
traces on developers’ memory. Unfortunately, we obtained
null results regarding our actual goal. However, we identified
several challenges and ways to improve studies on developers’
memory and the notion of software features. In this direction,
we suggest the following prospects for future research:

o Improving the Designs of Studies on Developers’ Memory
to tackle the challenges we described in Section IV, and
thus enable us to obtain actual, reliable data.

o Analyzing Developers’ Memory to understand how they
forget what knowledge, enabling us to improve automated
techniques, for instance, for identifying experts [12].

o Studying the Hypotheses we discussed in Section III to
investigate whether program comprehension and remem-
bering are facilitated by using features and feature traces.

o Comparing Notions of Features to understand what
different stakeholders (e.g., testers) consider important
knowledge for a feature, defining what information to
collect, manage, and provide.

o Advancing Feature Traceability, which is a decades-old
problem that can be addressed with lightweight feature
annotations and automated, knowledge-dependent analysis
techniques on those.

Investigating these directions enables us to understand how
developers comprehend and recall information, to define
opportunities for managing software features, and to extend
corresponding automation.
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