
Languages for Specifying Missions of
Robotic Applications

Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio Pelliccione

Abstract Robot-application development is gaining increasing attention both from
the research and industry communities. Robots are complex cyber-physical and 5

safety-critical systems with various dimensions of heterogeneity and variability.
They often integrate modules conceived by developers with different backgrounds.
Programming robotic applications typically requires programming, mathematical
or robotic expertise from end-users. In the near future, multipurpose robots will be
used in tasks of everyday life in environments such as our houses, hotels, airports or 10

museums. It would then be necessary to democratize the specification of missions
that robots should accomplish. In other words, the specification of missions of robotic
applications should be performed via easy-to-use and accessible ways and, at the
same time, the specification should be accurate, unambiguous, and precise. This

Swaib Dragule
Department of Computer Science and Engineering
Chalmers | University of Gothenburg, Sweden
Department of Computer Science,
Makerere University, Kampala, Uganda
e-mail: dragule@chalmers.se

Sergio García Gonzalo
Department of Computer Science and Engineering
Chalmers | University of Gothenburg, Sweden
e-mail: sergio.garcia@gu.se

Thorsten Berger
Department of Computer Science and Engineering
Chalmers | University of Gothenburg, Sweden
e-mail: thorsten.berger@chalmers.se

Patrizio Pelliccione
Department of Information Engineering, Computer Science and Mathematics
University of L’Aquila, L’Aquila, Italy
Department of Computer Science and Engineering
Chalmers | University of Gothenburg, Sweden
e-mail: patrizio.pelliccione@univaq.it

1

dragule@chalmers.se
sergio.garcia@gu.se
thorsten.berger@chalmers.se
patrizio.pelliccione@univaq.it

2 Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio Pelliccione

chapter presents Domain-Specific Languages (DSLs) for robot-mission specification,15

among others profiling them as internal or external, and also giving an overview of
their tooling support. The types of robots supported by the respective languages and
tools are mostly service mobile robots, including ground and flying types.

1 Introduction

Inexpensive and reliable robot hardware—including ground robots, multicopters,20

and robotic arms—is becoming widely available, according to the H2020 Robotics
Multi-Annual Roadmap (MAR).1 As such, robots will soon be deployed in a large
variety of contexts, leading to the presence of robots in everyday life activities in
many domains, including manufacturing, healthcare, agriculture, civil, and logistics.

Robots are complex cyber-physical and safety-critical systems, which challenges25

engineering their software [39, 16]. In addition, the robotics domain is divided into
a large variety of sub-domains, including vertical ones (e.g., drivers, planning, nav-
igation) and horizontal ones (e.g., defense, healthcare, logistics), with a vast amount
of variability [40, 9], further complicating robotics software engineering. Due to
this heterogeneity, a robot typically integrates modules conceived by developers with30

different backgrounds. For instance, electrical engineers design the robot’s hardware,
control engineers develop planning and control algorithms, and software engineers
architect and quality-assure the software system. Coordinating the integration of all
these modules from developers with different backgrounds is one of the major chal-
lenges that characterize the domain of robotics [16, 39]. Further challenges comprise35

identifying stable requirements, defining abstract models to cope with hardware and
software heterogeneity, seamlessly transitioning from prototype testing and debugging
to real systems, and deploying robotic applications in real-world environments.

A core activity when engineering robotics software is defining and implementing
the robot’s behavior. Specifically, in addition to building and integrating modules40

that define the lower-level behavior, the overall behavior of robots needs to be defined.
This behavior, often called a mission, coordinates the lower-level behaviors that are
typically defined in modules realizing the different skills. While this coordination has
traditionally been implemented in plain code [48], this will not be feasible in the near
future, when multipurpose robots will be used in our houses, hotels, hospitals, and so45

on, to accomplish tasks of the everyday life. For these reasons, the use of dedicated
(domain-specific) languages is becoming increasingly popular [24, 33, 82]. These
languages target end-users without robotic, ICT or mathematical expertise, and allow
them to conveniently command and control robots. This trend is also expressed by the
MAR roadmap, given the increasing involvement of robots in our society, especially50

service robots (i.e., robots that perform useful tasks for humans excluding industrial
automation applications2). In fact, the MAR roadmap describes DSLs [93, 82, 55],

1 https://eu-robotics.net/sparc/upload/about/files/H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.

pdf

2 https://www.iso.org/standard/55890.html

https://eu-robotics.net/sparc/upload/about/files/H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf
https://eu-robotics.net/sparc/upload/about/files/H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf
https://www.iso.org/standard/55890.html

Languages for Specifying Missions of Robotic Applications 3

together with model-driven engineering [49, 86, 84, 18, 15], as core technologies
required to achieve a separation of roles in the robotics domain while also improving,
among others, modularity and system integration. 55

The specification ofmission ranges from (i) very intricate and difficult-to-use [47, 5]
logical languages, such as Linear-Temporal Logic or Computation Tree Logic [67, 31,
65, 43, 96], whose instances are directly fed into planners; via (ii) common notations
for specifying behavior, such as Petri nets [94, 97] and state machines [13, 89, 56],
which require low-level and step-by-step descriptions of missions; to (iii) robotics- 60

specific DSLs tailored to the robot at hand [36, 83, 42, 26, 27, 70], which often allow
a more high-level mission specification.

This chapter contributes to the state-of-the-art in mission specifications for robots.
We present an overview of programming languages for robotic applications and
respective IDEs (integrated development environments) in Sec. 2. Thereafter, we 65

present DSLs for mission specification in Sec. 3, including internal and external
DSLs, together with their tooling. In Sec. 4 we discuss how robots are usable in the
everyday life, with specific reference to the PROMISE tool for specifying missions
for multi-robot applications. We put PROMISE into practice by describing a real
mission with PROMISE we realized, together with the rest of the robotic software, 70

including a multi-layer architecture. We conclude and discuss areas for future work
in Sec. 6.

2 Programming Languages and IDEs for Robotic Applications

The software of a robotic application can be conceptually organized into twomain parts:
(i) the software controlling the various modules (written once and embedded into the 75

robot), and (ii) the software that permits the specification and execution of the mission
(potentially changing from mission to mission, especially for multipurpose robots).
Traditionally, these two parts are mixed for robots capable of doing specific tasks,
where the mission specification only involves setting some parameters that are specific
for the environment in which the mission will be executed. In this section, we briefly 80

describe programming languages (Sec. 2.1) and IDEs (Sec. 2.2) used in robotics.

2.1 Programming Languages for Robotic Applications

Many different languages are used for the development of mobile robotic applications.
Starting from the lowest level of abstraction, hardware-description languages (e.g.,
Verilog or VHDL) are mainly used by electronic engineers to “program” the low-level 85

electronics of robots [71]. Hardware-description languages are commonly used to
program field-programmable gate arrays [73], which are devices that make it possible
to develop electronic hardware without having to produce a silicon chip.

4 Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio Pelliccione

At the level of microcontrollers, a widely used option is Arduino3 [53]. It is an
open-source electronics platform that consists of a board with assembled sensors90

(and potentially actuators) that can be controlled using specific software. Software
for Arduino-based applications may be developed using an open-source IDE4,
which supports the languages C and C++, applying a wrapper around programs
written in these languages and using special rules of code structuring. The hardware
manufacturers typically also provide proprietary software, such as RAPID5 technical95

reference manual from ABB and KRL6 reference guide from Kuka.
More powerful machines in terms of computation—including single-board com-

puter solutions such as Raspberry Pi—support Ubuntu distributions and, therefore, the
Robot Operating System (ROS) [60]. ROS [76] is an open-source middleware offering
a framework for structured communication among various robotic components using100

a peer-to-peer connection. ROS currently runs on Unix-based platforms, and software
for ROS is primarily tested on Ubuntu. Therefore, a typical setup for a roboticist
includes a certain version of Ubuntu7 with a certain distribution of ROS.8

Most packages and libraries of ROS are developed using either C++ or Python
so those languages are the most commonly used. However, ROS’s communication105

system is language-agnostic, which enables several languages such as C++, Python,
Octave, Java, and LISP to be used depending on the user’s proficiency. ROS also offers
modularized tool-based microkernel design to aggregate various tools performing
specific tasks such as navigating source code tree, get and set configuration parameters,
and visualize the peer-to-peer connection topology, among others [45, 59].110

ROS has evolved with a number of distributions, supporting more than 20 robotic
systems9, including drones, arm robots, humanoids, and wheeled mobile-base robots.
Among the robot-agnostic middleware, ROS is considered the de facto standard
for robot application development [39], officially supporting more than 140 robots
(including ground mobile robots, drones, cars, and humanoids) [29]. Examples of115

repositories from robotics companies that support the integration of ROS are the one
from Kuka10 or from Aldebaran and Softbank Robotics.11

MATLAB (and its open-source relatives, such as Octave) is a popular option
among engineers for analyzing data and developing control systems. It has also
been used for robotics software development [88], and there even exists a robotics-120

dedicated toolbox.12 The toolbox contains tools that support functionalities ranging
from producing advanced graphs to implementing control systems.

3 https://www.arduino.cc

4 https://arduino.en.softonic.com

5 https://library.e.abb.com/public/688894b98123f87bc1257cc50044e809/Technical%20reference%

20manual_RAPID_3HAC16581-1_revJ_en.pdf

6 http://robot.zaab.org/wp-content/uploads/2014/04/KRL-Reference-Guide-v4_1.pdf

7 https://wiki.ubuntu.com/Releases

8 https://wiki.ros.org/Distributions

9 http://wiki.ros.org/Distributions

10 https://wiki.ros.org/kuka

11 https://wiki.ros.org/Aldebaran

12 https://www.mathworks.com/products/robotics.html

https://www.arduino.cc
https://arduino.en.softonic.com
https://library.e.abb.com/public/688894b98123f87bc1257cc50044e809/Technical%20reference%20manual_RAPID_3HAC16581-1_revJ_en.pdf
https://library.e.abb.com/public/688894b98123f87bc1257cc50044e809/Technical%20reference%20manual_RAPID_3HAC16581-1_revJ_en.pdf
http://robot.zaab.org/wp-content/uploads/2014/04/KRL-Reference-Guide-v4_1.pdf
https://wiki.ubuntu.com/Releases
https://wiki.ros.org/Distributions
http://wiki.ros.org/Distributions
https://wiki.ros.org/kuka
https://wiki.ros.org/Aldebaran
https://www.mathworks.com/products/robotics.html

Languages for Specifying Missions of Robotic Applications 5

Machine learning is another technique applied in the context of robotics, as is
being used in decision making and image recognition. Machine-learning models are
first trained using platforms such as Tensorflow or PyTorch and then implemented 125

as ROS nodes [58]. These training platforms provide dedicated APIs, and they are
commonly Python or C++-based. Finally, image processing is a key functionality in
robotics, and the most used library in this domain is OpenCV13 [20], written in C++.
Its primary interface is written in and uses C++, but there are bindings for Python,
Java, and MATLAB. 130

2.2 IDEs for Developing Robotic Applications

IDEs aid software engineering by providing editing, compilation, interpretation,
debugging, and related automation facilities. They often come with version-control,
refactoring, visual-programming, and multi-language support. The usage of IDEs
improves efficiency in software development and makes it less error-prone. 135

Working with general IDEs, such as Eclipse or Qt Creator, appears to be the most
popular option among roboticists, despite the existence of a few free robotic-centered
IDEs. For many IDEs, there are instructions for configuring towards robotics. For
instance, the ROS community provides configurations for several IDEs including
Eclipse, Netbeans, KDevelop, Emacs, and RoboWare studio, a variant of Microsoft 140

Visual Studio.
Eclipse, in particular with its tooling for model-driven software engineering

(e.g., Eclipse Modeling Framework), has been used to realize DSLs and respective
environments for building robotics applications in a model-driven way. For instance,
Arias et al. [3] offer a complete robotics toolset upon Eclipse to support the engineering 145

from design to code generation, called the ORCCAD model.
Similar to general-purpose IDEs, Robotics IDEs offer facilities for robotics

software engineering, including code editors, robotics libraries, build tools, and
quality-assurance tools (i.e., debuggers, test environments, and simulators). As
opposed to general IDEs, robotics IDEs primarily target building robotic applications, 150

without support for other domains.
Table 1 summarizes all the IDEs with details on target users, languages supported,

and features that go beyond a general IDE. To illustrate one of the IDEs, Fig. 1 shows
a screenshot of the Robot Mesh Studio. The user interface is separated into three
main panes. Pane A shows a description of the current mission—rich-text entered 155

by the developer to describe and illustrate the mission (here, the visual recognition
and lifting of an object by the robot). Pane B shows the actual mission expressed
in an external DSL (with Blockly syntax) provided by the IDE; or alternatively
the generated textual code. Pane C shows help text; or alternatively the interactive
debugger or an overview on the current robot configuration. 160

13 https://opencv.org

https://opencv.org

6 Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio Pelliccione

Table 1 List of Dedicated Robotic IDEs.

Name IDE Details

RobotC [79, 81] C-based educational environment providing two notations, RobotC Graphical
e.g. Fig. 7 and RobotC Natural Language e.g. Listing 4

Robot Mesh Stu-
dio [78]

IDE for programming educational robots from Arduino, Picaxe, Parallax,
and Raspberry Pi micro-controllers. It offers two graphical DSLs: Flowol, a
flowchart-based language, and a Blockly-based language. Texual languages:
C++, Python

VEX Coding Stu-
dio [92, 19]

A robot vendor’s environment for programming educational robot kits. The
IDE offers Scratch-based syntax (VEXcode Blocks) and a text-based syntax
(VEXcode Text).

PICAXE [72, 51] For programming educational PICAXE micro-controller-based robots. It
offers the PICAXE language in three syntaxes: PICAXE BASIC – textual,
PICAXE Blockly – graphical, and PICAXE Flowchart syntax

ROS Development
Studio [2]

An online IDE with ready-to-use tools, such as simulators and AI-based
libraries. The ROS Development Studio supports all robots compatible with
ROS and a variety of languages, such as C++, Python, Java, Matlab, and Lisp.

Microsoft Robotic
Developer Studio
(MRDS) [46]

Microsoft product for hobbyist, academic, and commercial robot application
developers. The IDE supports programming robot applications in Microsoft’s
visual programming language (MVPL) and C#.

MATLAB and
Simulink [74]

IDE offers hardware-agnostic robot control for Arduino and Raspberry Pi
micro-controllers, that can be connected to ROS and ROS2. Code from a
variety of embedded hardware, such as Field Programmable Gate Arrays
(FPGAs), Programmable Logic Controllers (PLCs), and Graphics Processing
Units (GPUs), can be generated to various target languages including C/C++,
VHDL/Verilog, Structured Text, the PLC language, and Compute Unified
Device Architecture (CUDA) language.

Webots [68] An open-source, online IDE simulator that supports a number of robots
and a range of languages such as C, C++, Python, Java, MATLAB, and
ROS-supported languages C, C++, Python, Java, MATLAB.

Robot Task Comman-
der (RTC) [44]

The IDE is meant for automated task planning for robot(s) using one or more
computing devices over a network. It supports humanoid robots programmed
using Python scripting language and RTC visual programming language.

The SmartMDSD
Toolchain [87]

IDE for developing robot systems by providing building blocks that can
be used for composing new systems from existing components. The IDE
applies modeling techniques using tools such as Xtext, Xtend, and Sirius
from Eclipse.

BRICS Integrated De-
velopment Environ-
ment (BRIDE) [11]

IDE for developing editors in robotics based on model-driven engineering
principles. BRIDE incorporates the OROCOS and ROS frameworks. The
ROS version offers features such as graphical modeling of ROS nodes, code
generation in C++ or Python, and generation of launch files.

Universal Robotic
Body Interface
(URBI) [6]

Open-source IDE for programming robot controls, using client-server archi-
tecture. The server manages low-level hardware controls for sensors, camera,
and speakers, and the client sends high-level behavior commands like “walk”
to the server. Languages supported include C++, Urbiscipt scripting language,
Matlab, Java and Lisp.

TeamBots [7, 59] A Java-based environment for developing and executing control systems on
teams of robots and on simulation using the application TBSim. The IDE
provides a set of applications and packages for multi-agent mobile robots.

Pyro [12] An educational IDE that abstracts low-level details, making it suitable for
students learning to program robots using the C++, Java and Python. Pyro
wraps Player/Stage and ARIA, for easy access to its users.

CopellaSim
(VREP) [1]

A Multi-robot IDE, which uses distributed control architecture to model
objects through: embedded script, a plugin, a ROS or BlueZero node, a
remote API client, or a custom solution. The IDE supports programming
using C/C++, Python, Java, Lua, Matlab or Octave.

Languages for Specifying Missions of Robotic Applications 7

Fig. 1 Screenshot of the Robot Mesh Studio IDE [78] with three panes. Pane A provides an rich-text
description of the mission, Pane B the actual mission expressed in a DSL with Blockly syntax,
and Pane C shows help text or alternatively the debugger or an overview on the current robot
configuration.

3 Robot Mission Specification

As robots become an integral part of the everyday life, we need better ways to instruct
robots on the tasks they should accomplish. Mission specification is a process that
relies on a strategy and mechanism that determines the steps a robot takes when
performing a given task [91, 25, 28, 36]. 165

The specification of a robot mission is influenced by the range of tasks the robot
can execute, the end-user of the robot, the number of robots involved, the physical
environment in which the mission will be executed, and the programming languages
provided by the robot manufacturer. Robots performing a specific task are normally
pre-programmed by manufacturers, while those with the ability to do a number of 170

tasks require frequent change of what they do depending on the need at a given
time—calling for flexible ways of specifying missions.

Any mission specified using a DSL should be easily understood by experts in that
domain—e.g., logistics, commerce, health. DSLs are recognised for their ability to
abstract low-level details of robotic implementations and allowing users to specify 175

their concerns from higher levels by using common terms in the domain. This
abstraction further enhances effective communication of concepts with the domain
experts. Due to these reasons, DSLs have been studied and proposed for mission
specification by the community [36, 83, 42, 26, 27, 70].

DSLs typically work based on the underlying formalisms such as state machines, 180

flow charts, and behavior trees [23, 41, 22]. We assume that the reader has already
some knowledge on state machines and flow charts. Before presenting the selected
DSLs we give a brief introduction to behavior trees, which are less widely known.

8 Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio Pelliccione

Table 2 List of DSLs, their notation used and their styles (internal or external DSL)

Name of DSL Notation Style

Choregraphe Visual External
NaoText Textual External
Microsoft Visual Programming Language Visual External
EasyC Textual, Visual External
SMACH Textual Internal
Open Roberta Visual External
FLYAQ Visual External
Aseba Textual, Visual External
LEGO Mindstorms EV3 Visual External
MissionLab Visual External
CABSL Textual Internal
BehaviorTree.CPP Textual External
ROS Behavior Tree Textual Internal
Unreal Engine 4 Behavior Trees Textual External
PROMISE Textual, Visual External

A behavior tree is a hierarchical model in which nodes of the tree are tasks to be
executed [23, 41, 22]. Behavior trees emphasize modularity, coupled with two-way185

control transfer using function calls, unlike one-way (transitions) in finite-state
machines. The modular character in behavior trees makes the reuse of behavior
primitives feasible. Behavior trees have been applied in computing science, robotics,
control systems, and video games.14 Behavior trees consist of control-flow nodes
(namely Parallel, Fallback,Decorator, and Sequence) and executor nodes (i.e., Action190

and Condition). An action node executes a task and returns success or failure, while
the condition node tests if a certain condition is met.

In the following subsections, we describe a selection of internal and external DSLs
for mission specification together with examples. Internal DSLs are extensions of
a general-purpose (i.e., programming) language—often called host language. An195

external DSL is a language with independent syntax, semantics, and other related
language resources, and designed with notation and abstractions suitable to the user
domain.Table 2 shows an overview of these DSLs with the notations supported (visual
or textual), and style (internal or external DSL).

3.1 Internal DSLs200

Internal DSLs follow the host language’s syntax, and their execution is limited to
the host language’s infrastructure. They provide features specific to given end-user
domains, such as robotics engineering, which simplify specification of domain user’s
concerns. In each of the following internal DSLs, we look into the host language, the

14 http://wiki.ros.org/behavior_tree

http://wiki.ros.org/behavior_tree

Languages for Specifying Missions of Robotic Applications 9

developing organization (company), its semantics (compiled/interpreted), features 205

specific to the internal DSL, and the end-user domain the language is targeting.

3.1.1 ROS Behavior Tree

ROS Behavior Tree [22] is an open-source C++ library for creating behavior trees.
The DSL’s aim is to be used by expert robot developers, who are conversant with
the ROS framework and C++ or Python languages. Listing 1 shows sample code for 210

creating a behavior tree.15 It consists of header files and demonstrates how the action
node and the condition node are executed in the behavior tree.
1 #include<actions/actiontestnode.h>
2 #include<conditions/conditiontestnode.h>
3 #include<behaviortree.h>
4 #include<iostream>
5 int main(int argc, char ∗∗argv){
6 ros::init(argc, argv, "BehaviorTree ");
7 try{
8 int Tick Period_millisecond s = 1000;
9 BT::ActionTestNode ∗action1 = new BT::ActionTestNode ("Action1");

10 BT::ConditionTestNode ∗condition1 = new BT::ConditionTestNode ("Condition1");
11 action1−>set_time(5);
12 BT::SequenceNodeWithMemory∗ sequence1= new BT::SequenceNodeWithMemory("seq1");
13

14 condition1−>set_boolean_value(true);
15 sequence1−>AddChild(condition1);
16 sequence1−>AddChild(action1);
17 Execute(sequence1, Tick Period_milliseconds);
18 } catch (BT::BehaviorTreeException& Exception){
19 std::cout<<Exception.what()<<std::endl;
20 }
21 return 0;
22 }

Listing 1 Creation of a new behavior tree using the ROS Behavior Tree DSL.

Selector nodes are used to find and execute the first child that does not fail. A
selector node immediately returns success or running when one of its children returns 215

success or running. Sequence nodes are used to find and execute the first child that
has not yet succeeded. A sequence node returns failure or running when one of its
children returns failure or running. The parallel node ticks its children in parallel
and returns success if M ≤ N children return success, it returns failure if N - M
+ 1 children return failure, and it returns running otherwise. The decorator node 220

manipulates the return status of its child according to the policy defined by the user.
Decorator Retry retries the execution of a node if this fails; and Decorator Negation
inverts the Success/Failure outcome.

15 https://github.com/miccol/ROS-Behavior-Tree

https://github.com/miccol/ROS-Behavior-Tree

10 Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio Pelliccione

3.1.2 SMACH

SMACH [13] is a non-commercial application programming interface written in225

Python, based on hierarchical concurrent state machines. It allows executions to be
controlled by a higher level task-planning system.

The library enables a quick way to create robust robot missions with maintainable
and modular code. The DSL provides integration with ROS for developing robot
applications using state machines. The actionlib library in SMACH provides an230

interface for tasks such as moving the base to a target location, performing a laser scan
and returning the resulting point cloud, and detecting the handle of a door. SMACH
Viewer is a graphical interface that shows a hierarchy of state machines, transitions
between states, active states, and data passed between states. Once a state machine
for a given mission is created, it is executed in the ROS environment.235

Figure 2 shows a state machine for a PR2 robot to recharge, specified in Python.16
Listing 2 demonstrates how to create a state machine, adding states to the state
machine. In the state execution (line 10), “event” depicts the condition to execute
outcome1 if true, outcome2 otherwise.
1 #!/usr/bin/env python
2 import rospy
3 import smach
4 # creating a state
5 class Foo(smach.State):
6 def __init__(self, outcomes=[’outcome1’, ’outcome2’]):
7 # Your state initialization goes here
8 def execute(self, userdata):
9 # Your state execution goes here

10 if event:
11 return ’outcome1’
12 else:
13 return ’outcome2’
14 # Adding states
15 sm = smach.StateMachine(outcomes=[’outcome4’,’outcome5’])
16 with sm:
17 smach.StateMachine.add(’FOO’, Foo(),
18 transitions={’outcome1’:’BAR’,
19 ’outcome2’:’outcome4’})
20 smach.StateMachine.add(’BAR’, Bar(),
21 transitions={’outcome2’:’FOO’})

Listing 2 Creation of a state and adding the state to a state machine in SMACH

240

3.1.3 C-based Agent Behavior Specification Language

The C-based Agent behavior specification language (CABSL) [80] enables the
description of robot behaviors as a hierarchy of finite state machines. The control
program executes behaviors based on the acquired sensor data, which maps the sensor

16 https://wiki.ros.org/smach/Tutorials/Getting%20Started

https://wiki.ros.org/smach/Tutorials/Getting%20Started

Languages for Specifying Missions of Robotic Applications 11

data to actions the robot executes. In a state, when an action is taken, either the state 245

generates an output or calls another state machine. Otherwise, there is a transition
from one state to another state.

An active graph in CABSL is a tree consisting of a set of state machines being
executed. Each state machine can call any other state machine. The language is
implemented and compiled in C++.17 CABSL does not provide the functionality of 250

replacing the behavior on the fly in case acquired sensor data requires a change in
behavior.

The DSL’s textual notation makes it suitable for developers with experience in
using the C language. It has reportedly been used for the Nao robot.

3.2 External DSLs 255

External DSLs have no dependence on the resources of another language. In profiling
the external DSLs, the following information is considered: the developing organiza-
tion (company), its semantics (compiled/interpreted), notation, features specific to

Fig. 2 State machine for a mission that instructs the PR2 robot to charge itself at a standard outlet.

17 https://github.com/bhuman/CABSL

https://github.com/bhuman/CABSL

12 Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio Pelliccione

the external DSL, type of robots the DSL supports, and the domain the language is
targeting.260

3.2.1 NaoText

NaoText [42] is an external DSL developed by the research group QualiTune. The
DSL is a role-based language for specifying collaborative missions for Nao robots
using a textual notation. NaoText uses CPSTextInterpreter, which runs on the Java
runtime environment using Maven to manage dependencies.18265

The code below shows the declaration of a pass action in a soccer game between
Nao robots.19 Some of the domain terms used in specifying the mission in Listing 3
include striker, ballpossesor, and ballseeker.
1 activate for { // (1) player selection
2 BallPossessor p;
3 BallSeeker s;
4 } when { // (2) condition
5 ((p.robotInVision(s)) and
6 !(p as Striker).isGoalShotPossible());
7 }
8 with bindings { // (3) role binding
9 p + Sender; // bind Sender role

10 s + Receiver; // bind Receiver role
11 s − BallSeeker; // unbind BallSeeker role
12 } with settings { // (4) evaluation time settings
13 interval 500; // check every 500ms
14 after 1000; // start after 1s
15 continuously true;
16 }

Listing 3 A snippet of a mission for Pass Action in a soccer game between Nao robots.

3.2.2 EasyC270

EasyC is a commercial product of Intelitek that provides a graphical notation for
programming VEX robots. The DSL auto-generates C code from missions specified
using the drag and drop graphical editor. Experienced C programmers can seamlessly
switch to a fully text-based development environment. This DSL has been enriched
with robotic abstractions such as robot driving—Drive, Turn, Stop or Drive for Time.275

EasyC uses a graphical interface on top of Intelitek’s own C library20, which was
custom made for the VEX Cortex and IQ robot controllers. Figure 3 is a screenshot of
the DSL showing abstractions of the language concepts, a sample mission specified,
and the generated C program.

18 https://github.com/max-leuthaeuser/CPSTextInterpreter

19 http://www.qualitune.org/?page_id=453

20 https://www.slideserve.com/tova/april-27-2006-programming-with-easyc-and-wpilib

https://github.com/max-leuthaeuser/CPSTextInterpreter
http://www.qualitune.org/?page_id=453
https://www.slideserve.com/tova/april-27-2006-programming-with-easyc-and-wpilib

Languages for Specifying Missions of Robotic Applications 13

3.2.3 BehaviorTree.CPP 280

BehaviorTree.CPP [30] is a C++ library for creating behavior trees. It is developed by
a research group at the Eurecat Technology Center. The library provides a flexible
framework to easily specify robot mission as behavior trees that can be loaded at
run-time for execution. The nodes of the tree are either actions the robot can execute
or conditions to be fulfilled before an action is taken. 285

The BehaviorTree.CPP DSL provides mechanisms to monitor, log, and debug
the execution of a tree. The behavior trees for robot missions are executed using the
C++ language run-time environment. Groot21 provides a graphical editor for the C++
library to create and edit behavior trees. The primitives in Groot, built-in nodes, or
custom nodes can be dragged and dropped to build a required behavior tree. Domain 290

terms and expressions such as DetectObject, Grasp, GetMapLocation, and MoveTo,
have been used in the DSL for mobile robots with the ability to move, recognize, and
grasp objects.

3.2.4 Unreal Engine 4 Behavior Trees

The Unreal Engine 4 (UE4) Behavior Tree [8] is a commercial DSL developed and 295

maintained by Epic Games, Inc. Behavior trees define the Unreal AI agent’s processor,
which makes decisions and executes various branches based on the outcome of those
decisions. The Unreal Engine implements behavior trees using the Blackboard tool

Fig. 3 A screenshot showing EasyC DSL: first column presents the language feature abstractions,
second column is the active mission being specified while the last column shows the generated code

21 https://github.com/BehaviorTree/Groot

https://github.com/BehaviorTree/Groot

14 Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio Pelliccione

which acts as the “brain” of the AI character and stores key values that the behavior
tree uses to make its decisions. A behavior tree task is an action the AI character300

can perform, for instance, move to a location or rotate to face an object.22 Some
examples of domain expressions are SetMovementSpeed, LookStraightAhead, and
RapidMoveTo. The DSL has been used for simulation characters in video games,
representing humans, helicopters, and vehicles. The Unreal Engine uses the Unreal
scripting languages with a graphical editor for creating UE4 behavior trees, related305

blackboards for the behavior trees, and tasks—i.e., actions. The scripting languages
are compiled using the UnrealScript Compiler.23

3.2.5 Choregraphe

Choregraphe [75, 69] is a commercial DSL produced and maintained by SoftBank
Robotics for programming Aldebaran robots such as NAO. The language aids users310

to create animations, behaviors, and dialogues for the NAO humanoid robot—meant
for experimentation and research. Choregraphe also offers simulation support for the
NAO robot. The graphical DSL provides a flow-chart-like interface in which end-users
specify missions by connecting boxes to construct a behavior for the robot.24 Boxes
are pre-programmed libraries, which abstract mission primitives. Some of the mission315

primitives include Play Sound, Set Speech Lang, and Speech Reco.

3.2.6 Microsoft Visual Programming Language

The Microsoft Visual Programming Language (MVPL) [46] is a DSL in Microsoft
Robot Development Studio used for programming robotic applications based on
the idea of boxes and arrows. The language concepts (activities) are represented by320

boxes while the arrows connect the boxes to build a program.25 The MVPL data-flow
diagram consists of a connected sequence of activities represented as blocks with
inputs and outputs that can be connected to other activity blocks. A sample program
is shown in Fig. 4. Activities can represent data flow control or processing functions,
or user-defined activities, which the user creates in MVPL.325

3.2.7 Open Roberta

Open Roberta [34, 52, 54] is a web-based educational DSL developed by the
Fraunhofer Institute, which offers free use for individuals, but commercial use for
institutional use. The Blockly-based DSL can be used to program a variety of robots:

22 https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/

BehaviorTreesOverview/index.html

23 https://docs.unrealengine.com/udk/Three/UnrealScriptReference.html

24 http://doc.aldebaran.com/1-14/software/choregraphe/interface.html

25 https://acodez.in/microsoft-robotics-developer-studio/

https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/index.html
https://docs.unrealengine.com/udk/Three/UnrealScriptReference.html
http://doc.aldebaran.com/1-14/software/choregraphe/interface.html
https://acodez.in/microsoft-robotics-developer-studio/

Languages for Specifying Missions of Robotic Applications 15

Lego Mindstorms EV3 and NXT, Calliope mini, micro:bit, Bot’n Roll, NAO, and 330

BOB3. This DSL provides a rich set of behavior abstractions and primitives, which
are mainly categorized into actions (drive, turn, steer, show, play, say), sensors (touch,
ultrasonic, color, infrared, temperature, gyro, timer), control (program control flows),
logic (comparisons, AND, OR, Boolean), math (constants and arithmetic operators),
text, colors, and variables. The specifics of these abstractions vary according to the 335

robot for which the mission is specified. This DSL has a considerable potential in
harnessing end-user programming, since it is a drag and drop graphical language with
syntactic and semantic editor services. The DSL can either be run on the cloud or
installed on a local server. Open Roberta generates Code in Python, Java, Javascript,
and C/C++ depending on the target robot. 340

3.2.8 FLYAQ

FLYAQ [28, 32, 25, 14] is an open-source research prototype developed and main-
tained by a team of researchers that provides an extensible DSL for specifying
missions for a variety of robots, including quadrotors. The monitoring mission
language (MML) allows specification of mission context such as obstacles, flight 345

path (i.e., starting point, action points, ending point), and no-fly zones on a live map.
The executable code is automatically generated to be executed by a robot or a swarm
of robots as shown in Fig. 5. The DSL is suitable for missions such as surveillance,
public order management, and agriculture. The concrete syntax (i.e., the map) used

Fig. 4 A screenshot of the MVPL DSL showing a data flow program to connect to switch on light

16 Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio Pelliccione

NF1

NF2

RT

home

PGT

Fig. 5 Specifying a mission for a drone to hover in given space while avoiding no-fly zones [26].

for specifying the mission context makes the language reachable for end-users. The350

FLYAQ virtual machine provides a ready-to-run version for the end-user.

3.2.9 Aseba

Aseba [90, 63] is a DSL with variants of visual and text syntaxes, created by Mobsya
under Creative Commons Attribution-ShareAlike 3.0 License. The language syntax
variants are the Visual programming language (VPL), a Blockly-based language, a355

Scratch-based language, and the Aseba textual language. VPL provides events and
action-based programming in which, for a given event, there is a corresponding action.
These events are triggered by data from sensor readings. Examples of events are
press button, obstacle detector, ground detector, robot tapped, and hand clap. In turn,
examples of actions are set motor speed, set top or bottom color, and play music. The360

same language concepts can be programmed using the other DSLs of Aseba. Some
common behaviors26 associated with the Thymio robot are: friendly (follow hand and
react to another Thymio robot), explore (avoid obstacles and stop when the ground is
dark), fearful (goes away when approached and scream when cornered), attentive
(changes color and moves depending on the number of claps detected), investigator365

(follows a black track), and obedience (reacts to button and remote control).

26 https://www.thymio.org/basic-behaviours/

https://www.thymio.org/basic-behaviours/

Languages for Specifying Missions of Robotic Applications 17

Fig. 6 Specifying a loop in LEGO Mindstorms EV3.

3.2.10 LEGOMindstorms EV3

The LEGO Mindstorms EV3 builder [61, 17] makes it possible to create robots
that can do a number of things such as walk, talk, or drive. The graphical DSL
provides a rich set of language constructs categorized into action, flow, sensor, data, 370

and advanced blocks. For instance, the action blocks include move steering block,
display block, and sound block, which can be used for specifying a mission by kids
learning how to program. The DSL is a visual language with blocks connected to
form missions. Figure 6 shows a mission specification in which the robot says “Hello”
once, then “Go” six times, and then “Bravo” once. The sound blocks are used for 375

creating the respective sounds while the flow block—the loop is used for repeating
the “Go” sound. Each block is an icon of the function it executes.

3.2.11 MissionLab

MissionLab [4, 91] was created by the Mobile Robot Laboratory at Georgia Tech
and is a research prototype DSL that facilitates mission specification through a state- 380

machine-based visual language. The DSL uses assemblage and temporal sequencing
constructs to create a temporal chain of behaviors as a mission. The assemblage
construct defines behavior primitives and coordination mechanisms. During mission
specification, the assemblage is instantiated. The temporal sequencing creates states
with perceptual triggers to enable transitions between states. MissionLab provides a 385

graphical editor-based configuration description language (CDL) to specify multi-
agent missions. Missions can be executed on a simulator or on the following wheeled
robots used for smaller commercial applications: ATRV-Jr, Urban Robot, AmigoBot,
Pioneer AT, and Nomad 150 & 200.

3.2.12 RobotC 390

Figure 7 shows a sample program demonstrating how RobotC graphical language is
used to write a robot program that counts and displays the number of times a button
is pressed. The language primitives are in form of blocks, which users drag and drop
to build a program, making it easy for novice programmers write robot missions.

18 Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio Pelliccione

Fig. 7 Screenshot of RobotC Graphical DSL’s click-and-drag command blocks [79].

Listing 4 illustrates the same program in textual version of RobotC Natural language.27395

The expressions preserve the C language syntax while the natural language makes it
easy for novice programmers to comprehend the programs.
1 task main(){
2 int counter = 0; //set the value of variable "counter" to zero
3 while(true) { //loop forever
4 //count the number of times the sensor is pressed
5 if(getTouchValuetouchSensor) == true){
6 counter = counter +1;
7 waitUntil(getTouchValue(touchSensor) == false); // wait for the sensor to no longer be

pressed
8 }
9 displayVariableValue(line1, counter); //display the value of "counter" on line 1

10 }
11 }

Listing 4 Snippet of a program in RobotC Natural Language

4 Making Robots Usable in the Everyday Life400

Mobile robots are increasingly used in everyday life to autonomously realize missions
such as exploring rooms, delivering goods, or following certain paths for surveillance.
The current robotic market is asking for a radical shift in the development of robotic
applications where mission specification is performed by end-users that are not

27 http://www.robotc.net/NaturalLanguage/

http://www.robotc.net/NaturalLanguage/

Languages for Specifying Missions of Robotic Applications 19

highly qualified and specialized in robotics or ICT. To this end, in the context of the 405

Co4Robots EU H2020 project,28 we developed our contribution in two steps.

• First (Sec. 4.1), with the aim of understanding the missions that are currently
expressed in practice, we surveyed the state of the art and formulated and
formalized a catalog of 22 mission specification patterns for mobile robots. We
also provide tooling for instantiating, composing, and compiling the patterns to 410

create mission specifications [66, 67].
• Second (Sec. 4.2), using specification patterns as main building blocks, we
proposed a DSL that enables non-technical users to specify missions for a team
of autonomous robots in a user-friendly and effective way [36, 37].29

4.1 Mission Specification Patterns 415

The proposed patterns provide solutions for recurrent mission-specification problems
for service robots and they focus on robotmovement and on how robots perform actions
within their environment. The first step for creating the catalog of patterns was the
collection and analysis of 245 natural-language mission requirements systematically
retrieved from the robotics literature. From these requirements, we identified recurrent 420

mission-specification problems to which we provided solutions and organized them
as patterns. The patterns provide a formally defined vocabulary that supports robotics
developers in defining mission requirements in an unambiguous way.

The patterns provide a formal and precise description of what robots should
do in terms of movements and actions, and therefore, relying on the usage of the 425

pattern catalog as a common vocabulary, make it possible to mitigate ambiguity in
natural language formulations. Moreover, the patterns also provide validated mission
specifications for recurrent mission requirements, facilitating the creation of correct
mission specifications.

A pattern is described in terms of a structured English formulation, its usage 430

intent, known uses, relationships to other patterns, and, most importantly, a template
mission specification in temporal logics. Since the patterns do not contain an explicit
time or probability, the temporal logics used are LTL and CTL. This catalog might
be extended in many directions, e.g., by considering explicit time, probability, cost,
utility, and other aspects. Patterns, while keeping their roots in a formal language can 435

be used by non-experts as well.
To further support developers in designing missions, we have implemented

the tool PsALM (Pattern bAsed Mission specifier). PsALM allows the user (i) to
specify a mission requirement through a structured English grammar, which uses
patterns as basic building blocks and operators that enable composition of the 440

patterns into complex missions, and (ii) automatically generate specifications from
mission requirements. PsALM also enables the composition of patterns towards

28 http://www.co4robots.eu

29 PROMISE webpage: https://sites.google.com/view/promise-dsl/home

http://www.co4robots.eu
https://sites.google.com/view/promise-dsl/home

20 Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio Pelliccione

the specification of complex missions by the conjunction or disjunction of the
patterns [66].

We thoroughly validated the patterns [67]. We evaluated the benefits of using our445

patterns for designing missions by collecting 441 mission requirements in natural
language: 436 obtained from robotics development environments used by practitioners,
and five defined in collaboration with two well-known robotics companies. Further
information about the theoretical aspects might be found in [67], and about the tool
in [66], while details about the specification of each pattern might be found in the450

website30.

4.2 PROMISE

In order to support the specification of more complex missions with respect to
those that can be specified using the specification patterns, and in order to enable
the specification of missions for multiple robots, we proposed a Domain-Specific455

Language called PROMISE. PROMISE considers the mission specification patterns
as atomic tasks that can be executed by robots and proposes sophisticated composition
operators for describing complex and multi-robot missions. These operators are
inspired by behaviour trees [21, 50] in their style and notation. The DSL is integrated
into a framework,31 which allows the seamless specification and execution of a460

mission. The framework contains:

1. The realization of the language using Eclipse and two plugins for language
workbench, namely Xtext32 and Sirius.33 In this way, mission specification can
be performed through textual and graphical interfaces, which are synchronized.

2. A compiler implemented using Xtend34 for mission code generation.465

3. An interpreter, which parses the mission code and gives the low-level commands
to each robot accordingly.

While the DSL support is provided by a standalone tool and can be integrated
within a variety of frameworks, the current implementation has been integrated with a
software platform [35] that provides a set of functionalities, including motion control,470

collision avoidance, image recognition, SLAM, and planning. This software platform
has been implemented in ROS.

Our DSL has been successfully validated through experimentation with both
simulation and real robots. Footage of the validation through experimentation we
have conducted can be found on the dedicated website. The experimentation led to475

a demonstration of several missions to the Co4Robots consortium, which triggered
important feedback. For instance, an industrial partner from the Bosch Center of

30 Specification Patterns for Robotic Missions webpage: http://roboticpatterns.com
31 https://github.com/SergioGarG/PROMISE_implementation

32 https://www.eclipse.org/Xtext/

33 https://www.eclipse.org/sirius/

34 https://www.eclipse.org/xtend/

http://roboticpatterns.com
https://github.com/SergioGarG/PROMISE_implementation
https://www.eclipse.org/Xtext/
https://www.eclipse.org/sirius/
https://www.eclipse.org/xtend/

Languages for Specifying Missions of Robotic Applications 21

Artificial Intelligence suggested that practitioners from their logistics facilities would
appreciate a response from the tool stating a natural English description of the mission
that had been specified. An example of such a description is provided in Section 5. We 480

targeted specific robots during the experimentation, however, PROMISE is intended to
be robot-agnostic, so it could be integrated with any robot by modifying the interpreter
with the interfaces required for the new robot. The experimentation enabled us to
validate PROMISE from the point of view of expressiveness by measuring the ability
to write missions defined by practitioners, as we will detail in Section 5. 485

Our language and its framework implementation have been also validated in terms
of usability, by measuring the ability of potential end-users in using the DSL for
specifying missions. To this end, we conducted two user studies, where participants
where instructed before the study and then received a set of tasks to be fulfilled
within a given time frame. After the tasks’ completion, the participants were asked 490

to submit their results and to fill in a questionnaire. The first of the studies was
conducted at the University of L’Aquila as an exploratory validation, which triggered
important refinements PROMISE, especially in its implementation. Examples of
refinements are the inclusion of a wizard to help the users in the first steps of mission
specification—e.g., defining the number of robots and locations. 495

The second user study was designed to understand the elements of PROMISE that
could be perceived as error-prone by the participants and to measure how confident
the participants were of their provided solutions. During this study, the participants
had to specify missions using PROMISE from textual descriptions within a time
frame of 30 minutes. Furthermore, the participants were requested to validate their 500

solutions through experimentation using a ROS and Gazebo-based setup in a provided
laptop. All the participants were able to correctly specify their missions within the
given time frame and to validate the results of two thirds of their missions through
simulation. Based on the responses to the questionnaire, the perception from the users
was positive towards the language and its implementation, not considered error-prone. 505

We collected qualitative data from the questionnaire using open-ended questions,
which also triggered refinements in the language and its implementation. Some of
the responses to those open-ended questions remain as future lines of work, as for
example enhancing the feedback offered to the user during mission specification.

Further information regarding PROMISE and the validation procedure we followed 510

during its development might be found in our previous study [36], in a tool paper [37],
and in the DSL’s dedicated webpage.

5 Putting PROMISE into Practice

In the previous section, we introduced the methods and mechanisms we developed
to make robots usable in the everyday life in a descriptive way. In the following, 515

we present an example of a mission and its specification using PROMISE together
with a comprehensive discussion of the context in which it has been defined. This

22 Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio Pelliccione

example originates from our work in the Co4Robots project,35 which aimed at of
developing a full functioning robot that integrates several robotic skills that we have
developed, including navigation, self-localization, and planning. Its focus is on robotic520

applications realized on top of robotic platforms provided by our industrial partners,
including a TIAGo robot36 and an ITA robot37, both in real life and simulation. To
test our developments, when we could not directly access any of these robots, we
used an economic and easy-to-use robot, the Turtlebot 2.38 It does not provide a wide
range of functionalities, but allows easy prototyping, while testing recognition and525

navigation skills before deployment to the production-level robots TIAGo or ITA.
Our example scenario is inspired by a mission proposed for the 2018 edition of

the well-known robotics competition Robocup@Home. We replicated and made
available in PROMISE’s repository several missions proposed in the rules of this
Robocup@Home’18 [64]. Concretely, we use here the restaurant simulation scenario530

as an example. In this scenario, two robots collaborate to help clients in a simulated
restaurant at the same time. The robots are required to ask the customers for their
order and deliver drinks or snacks provided by a barman (i.e., the human operator),
while people walk around. Both robots must work in parallel.

For our project, we have used Python as the development programming language535

since it is one of the most common languages used in robotics together with C++
[39], as discussed in Sec. 2. It is also well-supported by the Robot Operating System
(ROS) [76] middleware. Many libraries, such as for testing or developing dedicated
skills, are also written in Python. As anticipated above, we make use of ROS since it
is the most widespread middleware and it is used by the Turtlebot 2 and TIAGo.540

Next, also influenced by our middleware choice, we have designed a three-layered
software architecture for the software, because it supports the separation of concerns
among processes with different layers of abstraction [35].We have also opted to adhere
to a component-based approach, mostly because ROS enforces the component-based
software development with its clustering of software modules into packages and nodes.545

If properly performed, the step of designing and adhering to a software architecture
simplifies the later integration of robotic skills while promoting their documentation.
As a mainstream IDE, we used Eclipse. In Section 2.2 we present and discuss popular
IDEs that support users in developing robotics software, distinguishing between
mainstream IDEs, such as Eclipse, which are extensible via plugins for various550

robotics aspects, and dedicated robotics IDEs.
Figure 8 shows the representation of the restaurant scenario using the graphical

syntax of PROMISE. The image has been edited with circled numbers to label nodes
and ease the explanation of the mission. In turn, Fig. 9 shows the textual representation
of the same mission. This figure also contains circled numbers, which label the same555

nodes and therefore supports the reader while linking the graphical-textual mapping.

35 http://www.co4robots.eu

36 http://pal-robotics.com/robots/tiago/

37 https://www.bosch-presse.de/pressportal/de/en/current-examples-of-robotics-research-102528.

html

38 https://www.turtlebot.com/turtlebot2

http://www.co4robots.eu
http://pal-robotics.com/robots/tiago/
https://www.bosch-presse.de/pressportal/de/en/current-examples-of-robotics-research-102528.html
https://www.bosch-presse.de/pressportal/de/en/current-examples-of-robotics-research-102528.html
https://www.turtlebot.com/turtlebot2

Languages for Specifying Missions of Robotic Applications 23

1 10

gu
es

t_
ta

bl
e1

:
gu

es
t f

ro
m

 ta
bl

e1
 re

qu
es

ts
 a

tt
en

tio
n;

ta
bl

e1
_a

tt
en

de
d:

 ta
bl

e1
 is

 a
lre

ad
y

be
in

g
at

te
nd

ed
;

ta
bl

e1
_n

ot
_a

tt
en

de
d:

 th
er

e
is

 n
o

ro
bo

t a
tt

en
di

ng
 ta

bl
e1

;
gu

es
t_

ta
bl

e2
:

gu
es

t f
ro

m
 ta

bl
e2

 re
qu

es
ts

 a
tt

en
tio

n;
ta

bl
e2

_a
tt

en
de

d:
 ta

bl
e2

 is
 a

lre
ad

y
be

in
g

at
te

nd
ed

;
ta

bl
e2

_n
ot

_a
tt

en
de

d:
 th

er
e

is
 n

o
ro

bo
t a

tt
en

di
ng

 ta
bl

e2
;

he
lp

: h
el

p
re

qu
es

te
d

by
 u

se
r/

op
er

at
or

;
st

op
:s

to
p

re
qu

es
te

d
by

 u
se

r/
op

er
at

or
.

 E

ve
nt

s

lo
ck

_t
ab

le
1:

 lo
ck

 ta
bl

e
1

to
 o

th
er

 ro
bo

ts
;

lo
ck

_t
ab

le
2:

 lo
ck

 ta
bl

e
2

to
 o

th
er

 ro
bo

ts
;

re
le

as
e_

ta
bl

e1
: r

el
ea

se
 ta

bl
e

1
to

 o
th

er
 ro

bo
ts

;
re

le
as

e_
ta

bl
e2

: r
el

ea
se

 ta
bl

e
2

to
 o

th
er

 ro
bo

ts
;

as
k_

or
de

r:
ro

bo
t r

eq
ue

st
s o

rd
er

;
re

ce
iv

e_
or

de
r:

ro
bo

t r
ec

ei
ve

s a
nd

 p
ar

se
s o

rd
er

;
re

pe
at

_o
rd

er
: r

ob
ot

 re
pe

at
s o

rd
er

;
gr

ab
_b

ev
er

ag
e:

 ro
bo

t g
ra

bs
 a

 b
ev

er
ag

e;

gr
ab

_t
ra

y:
 ro

bo
t t

ak
es

 a
 tr

ay
;

re
le

as
e_

tr
ay

: r
ob

ot
 p

la
ce

s t
he

 tr
ay

.
Ac

tio
ns

st
ar

t:
st

ar
tin

g
po

si
tio

n;
ta

bl
e1

, t
ab

le
2:

 lo
ca

tio
n

of
 b

ot
h

ta
bl

es
;

ki
tc

he
n:

 lo
ca

tio
n

of
 k

itc
he

n
an

d
ba

rm
an

. L
oc

at
io

ns

2
3

4

5

6
7

8
9

11
12

13
14

15
16

19

20

18
17

21

22

23

Fig. 8 Running example specified with the graphical syntax of PROMISE.

Running example: mission defined using PROMISE.
The root of the mission specification, i.e., the operator parallel, is identified by the

24 Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio Pelliccione

8

1

2
3

4

5
6

7

9
10

11
12

13
14

15
16 17

18

8

19
22

20
21

23

Fig. 9 Running example specified with the graphical syntax of PROMISE.

node 1 and specifies that robot1 and robot2 must perform their missions in parallel.
A robot is assigned to each branch associated with this operator, as indicated with560

labels in the edges between 1 and 2 in Fig. 8, and with the name of the assigned
robot (i.e., robot1 and robot2) in Fig. 9. Since the mission for robot2 (22) is a replica
of the one for robot1, we only show the latter for the sake of conciseness.

The operator labeled with 2 is the eventHandler—more information regarding
PROMISE’s operators is available in [36]. It has a default behavior; in our example,565

it forces the robot to wait in location BC0AC (3). This behavior is paused when one of
the events that are assigned to the eventHandler is detected by the robot. The default
robot’s behavior (3) is resumed whenever any of the behaviors triggered by an event
is finished (either succeeding or failing).

Each event is assigned to a child of the eventHandler (as represented in Fig. 8)570

as gray circles and invoked in Fig. 9 by the keyword except. If the event “help” is

Languages for Specifying Missions of Robotic Applications 25

detected, the first operator condition (4) is executed. This operator evaluates its
associated events in order, and if they hold, it triggers the behaviors associated with
them. In this case, the operator condition evaluates whether the request of help comes
from C01;41 or C01;42. 575

In case “guest_table1” holds (i.e., the request of help comes from C01;41), another
operator condition (5) is executed. This operator evaluates whether this table is
already being attended by another robot (“table1_attended”) and in this case, makes
the robot return to the starting position BC0AC. This behavior is encoded by the
instantiation of an operator delegate with a task Visit (6). 580

The next operator condition (5) evaluates “table1_not_attended,” and, if it holds,
the execution of an operator sequence (7) is triggered. This operator executes in
sequence a set of operators. Concretely, the sequence of operators starts with 8 ,
which “locks” C01;41 from the rest of the robotic team by forwarding a message (in
this case, other robots will recognize it with the event “table1_attended’). The robot 585

will then move to C01;41 (9), ask the order (10), and receive and parse it (11). The
robot will then move to :8C2ℎ4= (12) to interact with the barman (i.e., the human
operator). Note that this specific task can be stopped by the user or human operator by
means of the event “stop” (see Fig. 8). Once the robot has reached location :8C2ℎ4=,
it will repeat the order to the barman (13), after which the robot will grab beverages 590

(14) and a tray with the ordered snacks (15). The robot will then return to C01;41
(16) with the order, where it will place the tray (17). The sequence of tasks finishes
with the robot “releasing” the table for other robots, in a similar way as to how it
locked it.

The operator condition 20 is a replica of 5 —see the conditions in the textual 595

representation in Fig. 9 “if guest_table1” and “if guest_table2”—and, therefore, we
do not show its whole graphical representation for the sake of conciseness.

As suggested by an industrial partner after a demonstration to the Co4Robots
consortium, PROMISE prompts a natural English description of the mission once
specified and saved. An excerpt from the description of the example introduced in 600

this section is as follows.

Robot robot1 does by default wait in location start, and if event help occurs,
it will, if event guest_table1 holds, and if event table1_attended holds, visit
(without any specific order) location(s) start. If event table1_not_attended
holds, it will perform action lock_table1 and then visit (without any specific
order) location(s) table1 and then perform action ask_order, and then perform
action receive_order, and then visit (without any specific order) location(s)
kitchen, and then perform action repeat_order, and then perform action
gra_beverage, and then perform action grab_tray, and then visit (without any
specific order) location(s) table1 and then perform action release_tray and
then perform action release_table1.

The mission of the example was modeled through mission specification from a
natural English description, in this case, from the rules of the Robocup@Home’18 [64].

26 Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio Pelliccione

Once the mission wasmodeled, we proceeded to validate it through experimentation in605

an iterative way. The first step we took was simulation,39 for which we used simulated
models of the facilities and robotic models provided by the industrial partners of
Co4Robots for Gazebo [57]. Once the simulation was performed and the mission
specification validated we proceeded with validation in real life. As explained above,
we purchased a Turtlebot2 for experimentation. We validated the same restaurant610

scenario with the Turtlebot in the facilities of the University of Gothenburg.40 The
last step was to conduct a demonstration in presence of the project consortium at the
facilities of PAL Robotics, for which we used a TIAGo robot.41 Through this process,
we demonstrated the ability of PROMISE to specify complex missions from textual
descriptions. We also demonstrated its capability to operate with different robots by615

accordingly modifying the interpreter of its framework—see Section 4.2.
We invite the interested reader to learn more about the validation procedures we

followed during the development of PROMISE in our published studies [36, 38] and
on its dedicated website.

6 Discussion and Perspectives for Future Research620

As discussed in this paper, in the last years there have been many contributions
from the research community to propose domain-specific languages for mission
specification [36, 14], the description of missions in natural language [62], and visual
and end-user-oriented mission environments [95, 10, 77, 70].

The approaches surveyed here greatly contribute to the field, however the mission625

specification-problem still requires solutions able to make robots usable in everyday
life for accomplishing complex missions. Here in the following we highlight the
limitations of current approaches and we devise perspectives for future research. As
stated also in the Multi-Annual Roadmap For Robotics in Europe (MAR) [85], in
order to reduce costs and establish a vibrant component market, there is a need for630

instruments for supporting mission reuse and diversification, as well as coping with
the variability of conditions of application scenarios occurring in real environments.
This is also testified by our findings during our collaboration with practitioners in the
robotic domain: the complexity does not reside in commanding a robot with a set of
tasks but in making the robotic application robust enough to be able to cope with the635

variability that characterises the real environments in which the robots are required
to operate, especially those that involve humans [39].

To the best of our knowledge few approaches try to address the reusability and
variability envisioned by the MAR. PROMISE and the specification patterns are
greatly contributing, however there are some aspects that should be investigated in640

the future. Here in the following we devise important research directions, which we

39 https://www.youtube.com/watch?v=F3BnIEPB8Sk

40 https://www.youtube.com/watch?v=Qr9FqzSrZuk

41 https://www.youtube.com/watch?v=zP1PjGX84Qk

https://www.youtube.com/watch?v=F3BnIEPB8Sk
https://www.youtube.com/watch?v=Qr9FqzSrZuk
https://www.youtube.com/watch?v=zP1PjGX84Qk

Languages for Specifying Missions of Robotic Applications 27

Fig. 10 Mission specification.

identified based on our collaboration with companies in the Co4Robot project and
additional collaborations in the healthcare domain. Specifically, we believe that the
main research directions go in the following directions:

• Reusability: the DSLs we will develop for enabling end-users to specify missions 645

will make use of libraries of tasks and skills. They will also integrate with
libraries produced by other projects and initiatives, like RobMoSys.42

• Variability of the real world: the DSLwill be conceived to enable the specification
of the variability of conditions of complex real-word scenarios.

• Fleet specification of a mission: the end-user that will specify the mission does not 650

need to assign tasks to specific robots, but the mission specification will represent
the “needs" of the end-user and robots will be automatically assigned, and
potentially re-assigned during the mission execution, according to the capabilities
or robots and various quality parameters.

• Human-robot collaboration: the mission specification will include also humans, 655

with two different roles, namely, operators, able to perform actions needed to
successfully accomplish the mission, and patients, which will require actions
from robots.

In order to support what we believe we might need, various libraries of pre-defined
solution schemes that can be reused, instantiated, and composed by means of properly 660

42 https://robmosys.eu

https://robmosys.eu

28 Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio Pelliccione

defined operators need to be implemented. As shown in Fig. 1043 we envision three
different types of libraries organized on two levels, one being application-domain-
independent (specific for service robots), and the other one being domain-specific,
e.g., assistive healthcare, agriculture or smart production.

• Mission specification Movement patterns are pre-defined solutions concerning665

movements of robots, and provide the bridge between a mission requirement
expressed in structured English (subset of English with a well-defined semantics)
and a formulation in temporal logic. An initial result in this direction consists in
the specification patterns described in Section 4.1.

• Library of skills contains the implementation of the modules for enabling the670

robot to do specific actions, like grasp object with constraint, low dexterity, soft
grasping, image recognition, gesture recognition, and so on, that are compliant
with the RobMoSys platform.

• Domain-specific declarative tasks are recurrent combinations of mission-
specifications patterns and skills used to define declarative tasks for domain-675

specific operations. For instance, in the assistive healthcare domain, a declarative
task can be “welcome,” and would require patterns for movements and various
skills such as human recognition, speech recognition, etc. The tasks are declara-
tive since they specify only what the robot is able to do without saying how the
robot will do that. Then, planners will compute how the task will be solved in680

the specific environment according to the capabilities of the robot that will be
allocated to this task.

• Domain-Specific Languages, as for instance PROMISE (Section 4.2), enable
operators who are not required to have expertise in programming nor robotics,
to specify in an easy and correct way the mission they would like the robots to685

safely accomplish. Each domain-specific language will make use of the language
operators that we will define. There will also be specific “dialects" for specializing
the language to the various domains. In this way, healthcare operators will find in
the domain specific language for assistive healthcare concepts that are specific of
the domain, expressed in terms of domain-specific declarative tasks for assistive690

healthcare. The language enables the description of complex and sophisticated
missions, which will also take into account non-functional properties, such as
timing constraints. These properties are captured by composition operators, like
sequence, selector (fallback), or event-handler, which are inspired by Behaviour
trees [21, 50] or by PROMISE.44 The DSL will help healthcare operators (with695

a sort of wizard or recommendation system) to deal with the variability that
characterizes the environments in which missions are executed. This includes
“exceptional” behaviours, such as a robot running out of battery, an unforeseen
obstacle hampering the mission satisfaction, an object falling down from the
hand of the robot, and so on. As testified by MAR [85] and also highlighted in a700

43 We use the same terminology in “Architectural Pattern for Task-Plot Coordination" of
the EU H2020 RobMoSys project: https://robmosys.eu/wiki/general_principles:architectural_
patterns:robotic_behavior

44 The PROMISE DSL has been developed in the context of the EU H2020 project Co4Robots [36].
PROMISE webpage: https://github.com/SergioGarG/PROMISE_implementation

https://robmosys.eu/wiki/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki/general_principles:architectural_patterns:robotic_behavior
https://github.com/SergioGarG/PROMISE_implementation

Languages for Specifying Missions of Robotic Applications 29

recent study [39], one of the most difficult aspect in mission specification is to
deal with the variability of real-world scenarios.

Example of Mission specification. During the day “robot” welcomes newcomers
when the bell “s2” of the door rings. According to the needs of the guests, “robot”
will provide the needed information or ask them to enter the dining room, and if a 705

human intervention is needed, “robot” informs a caregiver. When “robot” is in the
dining room, it acts as a caregiver and interacts with people by calling them to drink
and offering water that “tray” carries. During night, “robot” patrols for security and if
it finds humans in the environment it calls an operator. Robots recharge autonomously
while guaranteeing the welcoming and caregiving service. Notice that the example 710

does not include quality aspects, such as timing constraints, since patterns including
these aspects are not yet available, but they will be developed during the project
execution.
Mission specification: A healthcare operator will specify the mission by means of the
following domain specific macros:Welcome, Security Patrolling, Caregiver, and Call 715

caregiver. The following figure shows the mission specified foreseeing two different
graphical languages, one (a) based on the blockly45 approach, and the other one (b)
using PROMISE’s style [36]. This is just to explain what we mean by graphical and
easy-to-use language for mission specification.

720

Domain specific macros, mission specification patterns, and library of tasks:
Behind the scene, i.e., invisible to the end-users, the macros will be built by
using the mission- specification patterns and the tasks stored in the library. For
instance, welcomingmight be realized by composing the sequenced visit specification 725

pattern46 to reach from the current location of the robot the door (LTL formula: ^
(door_location)), with a delayed action47 when the robot reaches the door to welcome
and activate the speech recognition—LTL formula: �(door_location⇒ ^(welcome)),
where “welcome” is a task in the library of tasks.

45 https://developers.google.com/blockly

46 http://roboticpatterns.com/pattern/sequencedvisit/

47 http://roboticpatterns.com/pattern/delayedreaction/

https://developers.google.com/blockly
http://roboticpatterns.com/pattern/sequencedvisit/
http://roboticpatterns.com/pattern/delayedreaction/

30 Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio Pelliccione

Acknowledgments730

The authors acknowledge financial support from the Centre of EXcellence on
Connected, Geo-Localized and Cybersecure Vehicle (EX-Emerge), funded by Italian
Government under CIPE resolution n. 70/2017 (Aug. 7, 2017). The work is also
supported by the European Research Council under the European Union’s Horizon
2020 research and innovation programme GA No. 694277 and GA No. 731869735

(Co4Robots). More support for this work was from the SIDA Bright 317 project.

References

1. Copella simulator (2020). URL https://www.coppeliarobotics.com/
2. Ros development studio (2020). URL https://www.theconstructsim.com/
rds-ros-development-studio740

3. Arias, S., Boudin, F., Pissard-gibollet, R., Simon, D., Arias, S., Boudin, F., Pissard-gibollet, R.,
Orccad, D.S., Arias, S., Boudin, F., Pissard-gibollet, R., Simon, D.: ORCCAD , robot controller
model and its support using Eclipse Modeling tools (2010)

4. Arkin, R.: Missionlab: Multiagent robotics meets visual programming. Working notes of
Tutorial on Mobile Robot Programming Paradigms, ICRA 15 (2002)745

5. Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A.: Aligning qualitative, real-time,
and probabilistic property specification patterns using a structured English grammar. IEEE
Trans. Software Eng. 41(7), 620–638 (2015)

6. Baillie, J.C.: URBI: towards a universal robotic body interface. pp. 33 – 51 Vol. 1 (2004).
DOI 10.1109/ICHR.2004.1442112750

7. Balch, T.: Teambots 2.0: https://www.cs.cmu.edu/~trb/TeamBots/ (2000)
8. Båtelsson, H.: Behavior trees in the unreal engine: Function and application (2016)
9. Berger, T., Steghöfer, J.P., Ziadi, T., Robin, J., Martinez, J.: The state of adoption and the

challenges of systematic variability management in industry. Empirical Software Engineering
25, 1755–1797 (2020)755

10. Biggs, G., Macdonald, B.: A survey of robot programming systems. In: Proceedings of the
Australasian Conference on Robotics and Automation, CSIRO, p. 27 (2003)

11. Bischoff, R., Guhl, T., Prassler, E., Nowak, W., Kraetzschmar, G., Bruyninckx, H., Soetens,
P., Hägele, M., Pott, A., Breedveld, P., Broenink, J., Brugali, D., Tomatis, N.: BRICS - best
practice in robotics. pp. 1–8 (2010)760

12. Blank, D., Kumar, D., Meeden, L., Yanco, H.: Pyro: A Python-based versatile programming
environment for teaching robotics. Journal on Educational Resources in Computing (JERIC)
3(4), 1–es (2003)

13. Bohren, J., Cousins, S.: The SMACH high-level executive [ROS news]. IEEE Robotics &
Automation Magazine 17(4), 18–20 (2010)765

14. Bozhinoski, D., Di Ruscio, D., Malavolta, I., Pelliccione, P., Tivoli, M.: Flyaq: Enabling
non-expert users to specify and generate missions of autonomous multicopters. In: 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 801–806
(2015)

15. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice. Morgan770

& Claypool (2012)
16. Brugali, D., Agah, A., MacDonald, B., Nesnas, I.A., Smart, W.D.: Trends in robot software

domain engineering. In: Software Engineering for Experimental Robotics, pp. 3–8. Springer
(2007)

17. Burnett, W.: http://www.legoengineering.com/alternative-programming-languages/ (2018)775

https://www.coppeliarobotics.com/
https://www.theconstructsim.com/rds-ros-development-studio
https://www.theconstructsim.com/rds-ros-development-studio
https://www.theconstructsim.com/rds-ros-development-studio
https://www.cs.cmu.edu/~trb/TeamBots/

Languages for Specifying Missions of Robotic Applications 31

18. Bézivin, J.: On the unification power of models. Software and System Modeling 4(2), 171–188
(2005)

19. Caron, D.: competitive robotics the best brings out in students, Tech Directions, v69 n6 p21-23
Jan 2010, https://eric.ed.gov/?id=EJ894879 pp. 21–24 (2010)

20. Cicolani, J.: Beginning Robotics with Raspberry Pi and Arduino: Using Python and OpenCV. 780

Apress (2018)
21. Colledanchise, M.: Behavior trees in robotics. Ph.D. thesis, Royal Institute of Technology,

Stockholm, Sweden (2017)
22. Colledanchise, M., Ögren, P.: How Behavior Trees Modularize Hybrid Control Systems and

Generalize Sequential Behavior Compositions, the Subsumption Architecture, and Decision 785

Trees. IEEE Transactions on Robotics 33(2), 372–389 (2017). DOI 10.1109/TRO.2016.2633567
23. Colledanchise, M., Ögren, P.: Behavior trees in robotics and AI: An introduction. CRC Press

(2018)
24. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: An annotated bibliography.

SIGPLAN Notices 35(6), 26–36 (2000). DOI 10.1145/352029.352035. URL http://doi. 790

acm.org/10.1145/352029.352035
25. Di Ruscio, D., Malavolta, I., Pelliccione, P.: A family of domain-specific languages for specifying

civilian missions of multi-robot systems. CEUR Workshop Proceedings 1319, 16–29 (2014)
26. Di Ruscio, D., Malavolta, I., Pelliccione, P., Tivoli, M.: Automatic generation of detailed flight

plans from high-level mission descriptions. In: International Conference on Model Driven 795

Engineering Languages and Systems, MODELS. ACM (2016)
27. Doherty, P., Heintz, F., Kvarnström, J.: High-level mission specification and planning for

collaborative unmanned aircraft systems using delegation. Unmanned Systems 1(01), 75–119
(2013)

28. Dragule, S., Meyers, B., Pelliccione, P.: A generated property specification language for resilient 800

multirobot missions. In: A. Romanovsky, E.A. Troubitsyna (eds.) Software Engineering for
Resilient Systems, pp. 45–61. Springer International Publishing, Cham (2017)

29. Estefo, P., Simmonds, J., Robbes, R., Fabry, J.: The robot operating system: Package reuse and
community dynamics. Journal of Systems and Software 151, 226–242 (2019)

30. Faconti, D.: Models and Tools to design Robotic Behaviors. Tech. Rep. 732410, Eure- 805

cat Tecnológic, Barcelona Spain (2020). URL https://github.com/BehaviorTree/
BehaviorTree.CPP/blob/master/MOOD2Be_final_report.pdf

31. Finucane, C., Jing, G., Kress-Gazit, H.: LTLMoP: Experimenting with language, temporal logic
and robot control. In: International Conference on Intelligent Robots and Systems (IROS), pp.
1988–1993. IEEE (2010) 810

32. FLYAQ: http://www.flyaq.it/ (2019)
33. Fowler, M., Parsons, R.: Domain-Specific Languages. Addison-Wesley (2011)
34. Fraunhofer IAIS: https://lab.open-roberta.org/ (2019)
35. García, S., Menghi, C., Pelliccione, P., Berger, T., Wohlrab, R.: An architecture for decentralized,

collaborative, and autonomous robots. In: 2018 IEEE International Conference on Software 815

Architecture (ICSA), pp. 75–7509. IEEE (2018)
36. García, S., Pelliccione, P., Menghi, C., Berger, T., Bures, T.: High-level mission specification

for multiple robots. In: Proceedings of the 12th ACM SIGPLAN International Conference on
Software Language Engineering, SLE 2019 (2019)

37. García, S., Pelliccione, P., Menghi, C., Berger, T., Bures, T.: Promise: High-level mission 820

specification for multiple robots. In: 42nd International Conference on Software Engineering
(ICSE 2020 Demos) (2020)

38. García, S., Pelliccione, P., Menghi, C., Berger, T., Bures, T.: Promise: High-level mission
specification for multiple robots (2020)

39. García, S., Strüber, D., Brugali, D., Berger, T., Pelliccione, P.: Robotics software engineering: A 825

perspective from the service robotics domain. In: ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2020)
(2020)

https://eric.ed.gov/?id=EJ894879
http://doi.acm.org/10.1145/352029.352035
http://doi.acm.org/10.1145/352029.352035
http://doi.acm.org/10.1145/352029.352035
https://github.com/BehaviorTree/BehaviorTree.CPP/blob/master/MOOD2Be_final_report.pdf
https://github.com/BehaviorTree/BehaviorTree.CPP/blob/master/MOOD2Be_final_report.pdf
https://github.com/BehaviorTree/BehaviorTree.CPP/blob/master/MOOD2Be_final_report.pdf

32 Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio Pelliccione

40. García, S., Strüber, D., Brugali, D., Di Fava, A., Schillinger, P., Pelliccione, P., Berger, T.:
Variability modeling of service robots: Experiences and challenges. In: Proceedings of the830

13th International Workshop on Variability Modelling of Software-Intensive Systems, pp. 1–6
(2019)

41. Ghzouli, R., Berger, T., Johnsen, E.B., Dragule, S., Wasowski, A.: Behavior trees in action: A
study of robotics applications. In: 13th ACM SIGPLAN International Conference on Software
Language Engineering (SLE) (2020)835

42. Götz, S., Leuthäuser, M., Reimann, J., Schroeter, J., Wende, C., Wilke, C., Aßmann, U.: A
role-based language for collaborative robot applications. In: International Symposium On
Leveraging Applications of Formal Methods, Verification and Validation, pp. 1–15. Springer
(2011)

43. Guo, M., Johansson, K.H., Dimarogonas, D.: Revising motion planning under linear temporal840

logic specifications in partially known workspaces. In: International Conference on Robotics
and Automation (2013)

44. Hart, S., Dinh, P., Yamokoski, J.D., Wightman, B., Radford, N.: Robot task commander:
A framework and ide for robot application development. In: 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1547–1554 (2014)845

45. Hentout, A., Maoudj, A., Bouzouia, B.: A survey of development frameworks for robotics.
In: 2016 8th International Conference on Modelling, Identification and Control (ICMIC), pp.
67–72 (2016)

46. Ho, R.P.Y.: Configuration of robotics solutions in microsoft robotics developer studio, http:
//aunilo.uum.edu.my/Find/Record/sg-ntu-dr.10356-20828 (2009)850

47. Holzmann, G.J.: The logic of bugs. In: Symposium on Foundations of Software Engineering,
SIGSOFT ’02/FSE-10 (2002)

48. Hugues, L., Bredeche, N.: Simbad: an autonomous robot simulation package for education
and research. In: International Conference on Simulation of Adaptive Behavior, pp. 831–842.
Springer (2006)855

49. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assessment of mde
in industry. In: ICSE, pp. 471–480 (2011). http://doi.acm.org/10.1145/1985793.
1985858

50. Isla, D.: Handling complexity in the halo 2 ai. In: In Game Developers Conference (2005)
51. Jarvinen, E.M., Karsikas, A., Hintikka, J.: Children as Innovators in Action–A Study of860

Microcontrollers in Finnish Comprehensive Schools. Journal of Technology Education 18,
37–52 (2007)

52. Jost, B., Ketterl, M., Budde, R., Leimbach, T.: Graphical Programming Environments for
Educational Robots: Open Roberta - Yet Another One? In: 2014 IEEE International Symposium
on Multimedia, pp. 381–386 (2014)865

53. Juang, H.S., Lurrr, K.Y.: Design and control of a two-wheel self-balancing robot using the
arduino microcontroller board. In: 2013 10th IEEE International Conference on Control and
Automation (ICCA), pp. 634–639. IEEE (2013)

54. Ketterl, M., Leimbach, T., Budde, R.: Open Roberta (14), 1–22 (2015). URL https://lab.
open-roberta.org/870

55. Kleppe, A.G.: Software language engineering: creating domain-specific languages using
metamodels. Addison-Wesley (2009)

56. Klotzbücher, M., Bruyninckx, H.: Coordinating robotic tasks and systems with rfsm statecharts
(2012)

57. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot875

simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)(IEEE Cat. No. 04CH37566), vol. 3, pp. 2149–2154. IEEE (2004)

58. Kouzehgar, M., Tamilselvam, Y.K., Heredia, M.V., Elara, M.R.: Self-reconfigurable façade-
cleaning robot equipped with deep-learning-based crack detection based on convolutional
neural networks. Automation in Construction 108, 102959 (2019)880

59. Kramer, J., Scheutz, M.: Development environments for autonomous mobile robots: A survey.
Autonomous Robots 22(2), 101–132 (2007)

http://aunilo.uum.edu.my/Find/Record/sg-ntu-dr.10356-20828
http://aunilo.uum.edu.my/Find/Record/sg-ntu-dr.10356-20828
http://aunilo.uum.edu.my/Find/Record/sg-ntu-dr.10356-20828
http://doi.acm.org/10.1145/1985793.1985858
http://doi.acm.org/10.1145/1985793.1985858
http://doi.acm.org/10.1145/1985793.1985858
https://lab.open-roberta.org/
https://lab.open-roberta.org/
https://lab.open-roberta.org/

Languages for Specifying Missions of Robotic Applications 33

60. Krishna, B.S., Oviya, J., Gowri, S., Varshini, M.: Cloud robotics in industry using Raspberry Pi.
In: 2016 Second International Conference on Science Technology Engineering andManagement
(ICONSTEM), pp. 543–547. IEEE (2016) 885

61. LEGO MINDSTORMS EV3: https://www.lego.com/en-us/mindstorms/downloads/download-
software (2019)

62. Lignos, C., Raman, V., Finucane, C., Marcus, M., Kress-Gazit, H.: Provably correct reactive
control from natural language. Autonomous Robots 38(1), 89–105 (2015)

63. Magnenat, S., Rétornaz, P., Bonani, M., Longchamp, V., Mondada, F.: ASEBA: Amodular archi- 890

tecture for event-based control of complex robots. IEEE/ASME Transactions on Mechatronics
16(2), 321–329 (2011)

64. Matamoros, M., Rascon, C., Hart, J., Holz, D., van Beek, L.: Robocup@home 2018: Rules and
regulations. http://www.robocupathome.org/rules/2018_rulebook.pdf (2018)

65. Menghi, C., García, S., Pelliccione, P., Tumova, J.: Multi-robot LTL planning under uncertainty. 895

In: International Symposium on Formal Methods, pp. 399–417. Springer (2018)
66. Menghi, C., Tsigkanos, C., Berger, T., Pelliccione, P.: PsAlM: Specification of dependable

robotic missions. In: International Conference on Software Engineering (ICSE): Companion
Proceeedings (2019)

67. Menghi, C., Tsigkanos, C., Pelliccione, P., Ghezzi, C., Berger, T.: Specification patterns for 900

robotic missions. IEEE Transactions on Software Engineering, To appear. (2019)
68. Michel, O.: Cyberbotics Ltd. Webots™: professional mobile robot simulation. International

Journal of Advanced Robotic Systems 1(1), 5 (2004)
69. Miskam, M.A., Shamsuddin, S., Yussof, H., Omar, A.R., Muda, M.Z.: Programming platform

for NAO robot in cognitive interaction applications. In: 2014 IEEE International Symposium 905

on Robotics and Manufacturing Automation (ROMA), pp. 141–146. IEEE (2014)
70. Nordmann, A., Hochgeschwender, N., Wigand, D., Wrede, S.: A Survey on Domain-Specific

Modeling and Languages in Robotics. Journal of Software Engineering for Robotics 7(1),
75–99 (2016)

71. Ohkawa, T., Uetake, D., Yokota, T., Ootsu, K., Baba, T.: Reconfigurable and hardwired orb 910

engine on FPGA by java-to-hdl synthesizer for realtime application. ACM SIGARCH Computer
Architecture News 41(5), 77–82 (2014)

72. PICAXE: http://www.picaxe.com/software (2019)
73. Piltan, F., Sulaiman, N., Marhaban, M., Nowzary, A., Tohidian, M.: Design of FPGA based

sliding mode controller for robot manipulator. International Journal of Robotic and Automation 915

2(3), 183–204 (2011)
74. Piltan, F., Yarmahmoudi, M.H., Shamsodini, M., Mazlomian, E., Hosainpour, A.: PUMA-560

robot manipulator position computed torque control methods using Matlab/Simulink and
their integration into graduate nonlinear control and Matlab courses. International Journal of
Robotics and Automation 3(3), 167–191 (2012) 920

75. Pot, E., Monceaux, J., Gelin, R., Maisonnier, B.: Choregraphe: a graphical tool for humanoid
robot programming. In: RO-MAN 2009 - The 18th IEEE International Symposium on Robot
and Human Interactive Communication, pp. 46–51 (2009)

76. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS:
an open-source robot operating system. ICRA workshop on open source software 3(3.2), 5 925

(2009)
77. Robert W. Button, John Kamp, Thomas B. Curtin, J.D.: A Survey of Missions for Unmanned

Undersea Vehicles (2010)
78. Robot Mesh: http://docs.robotmesh.com/ide-project-page (2019)
79. ROBOTC: ROBOTC’s Graphical feature (2019). URL http://www.robotc.net/ 930

graphical/
80. Röfer, T.: CABSL – C-Based agent behavior specification language. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 11175 LNAI, 135–142 (2018). DOI 10.1007/978-3-030-00308-1_11

81. Salcedo, S.L., Idrobo, A.M.O.: New tools and methodologies for programming languages 935

learning using the SCRIBBLER robot and Alice. Proceedings - Frontiers in Education
Conference, FIE pp. 1–6 (2011)

http://www.robocupathome.org/rules/2018_rulebook.pdf
http://www.robotc.net/graphical/
http://www.robotc.net/graphical/
http://www.robotc.net/graphical/

34 Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio Pelliccione

82. Schauss, S., Lämmel, R., Härtel, J., Heinz, M., Klein, K., Härtel, L., Berger, T.: A Chrestomathy
of DSL Implementations. In: 10th ACM SIGPLAN International Conference on Software
Language Engineering (SLE) (2017)940

83. Schwartz, B., Nägele, L., Angerer, A., MacDonald, B.A.: Towards a graphical language for
quadrotor missions. arXiv preprint arXiv:1412.1961 (2014)

84. Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5), 19–25 (2003).
http://csdl.computer.org/comp/mags/so/2003/05/s5019abs.htm

85. SPARC: Robotics 2020 Multi-Annual Roadmap. https://eu-robotics.net/sparc/945

upload/about/files/H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf
(2016)

86. Stahl, T., Völter, M.: Model-Driven Software Development. Wiley (2005)
87. Stampfer, D., Lotz, A., Lutz, M., Schlegel, C.: The SmartMDSD Toolchain: An Integrated

MDSD Workflow and Integrated Development Environment (IDE) for Robotics Software.950

Journal of Software Engineering for Robotics (JOSER) 7, 3–19 (2016)
88. Tamre, M., Hudjakov, R., Shvarts, D., Polder, A., Hiiemaa, M., Juurma, M.: Implementation

of integrated wireless network and MatLab system to control autonomous mobile robot.
International Journal of Innovative Technology and Interdisciplinary Sciences 1(1), 18–25
(2018)955

89. Thomas, U., Hirzinger, G., Rumpe, B., Schulze, C., Wortmann, A.: A new skill based robot
programming language using UML/P Statecharts. In: 2013 IEEE International Conference on
Robotics and Automation, pp. 461–466. IEEE (2013)

90. Thymio: https://www.thymio.org/en:start (2019)
91. Ulam, P., Endo, Y., Wagner, A., Arkin, R.: Integrated mission specification and task allocation960

for robot teams - Design and implementation. In: Proceedings - IEEE International Conference
on Robotics and Automation, pp. 4428–4435 (2007)

92. VEX Robotics: https://www.vexrobotics.com (2019)
93. Voelter, M.: DSL Engineering. Designing, implementing and using domain specific languages

(2013). URL http://www.dslbook.org/965

94. Wang, F.Y., Kyriakopoulos, K.J., Tsolkas, A., Saridis, G.N.: A Petri-net coordination model
for an intelligent mobile robot. IEEE Transactions on Systems, Man, and Cybernetics 21(4),
777–789 (1991)

95. Weintrop, D., Afzal, A., Salac, J., Francis, P., Li, B., Shepherd, D.C., Franklin, D.: Evaluating
coblox: A comparative study of robotics programming environments for adult novices. In:970

Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18,
pp. 366:1–366:12. ACM, New York, NY, USA (2018)

96. Wolff, E.M., Topcu, U., Murray, R.M.: Automaton-guided controller synthesis for nonlinear
systems with temporal logic. In: 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 4332–4339. IEEE (2013)975

97. Ziparo, V.A., Iocchi, L., Nardi, D., Palamara, P.F., Costelha, H.: Petri net plans: a formal
model for representation and execution of multi-robot plans. In: Proceedings of the 7th
international joint conference on Autonomous agents and multiagent systems-Volume 1, pp.
79–86. International Foundation for Autonomous Agents and Multiagent Systems (2008)

http://csdl.computer.org/comp/mags/so/2003/05/s5019abs.htm
https://eu-robotics.net/sparc/upload/about/files/H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf
https://eu-robotics.net/sparc/upload/about/files/H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf
https://eu-robotics.net/sparc/upload/about/files/H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf
http://www.dslbook.org/

	Languages for Specifying Missions of Robotic Applications
	Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio Pelliccione
	Introduction
	Programming Languages and IDEs for Robotic Applications
	Programming Languages for Robotic Applications
	IDEs for Developing Robotic Applications

	Robot Mission Specification
	Internal DSLs
	External DSLs

	Making Robots Usable in the Everyday Life
	Mission Specification Patterns
	PROMISE

	Putting PROMISE into Practice
	Discussion and Perspectives for Future Research
	Acknowledgments
	References
	References

