TRANSACTIONS ON SOFTWARE ENGINEERING

21

Specification Patterns for Robotic Missions

Claudio Menghi, Christos Tsigkanos, Patrizio Pelliccione, Carlo Ghezzi, and Thorsten Berger

Abstract—Mobile and general-purpose robots increasingly support our everyday life, requiring dependable robotics control software.
Creating such software mainly amounts to implementing their complex behaviors known as missions. Recognizing this need, a large
number of domain-specific specification languages has been proposed. These, in addition to traditional logical languages, allow the use
of formally specified missions for synthesis, verification, simulation or guiding implementation. For instance, the logical language LTL is
commonly used by experts to specify missions as an input for planners, which synthesize the behavior a robot should have. Unfortunately,
domain-specific languages are usually tied to specific robot models, while logical languages such as LTL are difficult to use by
non-experts. We present a catalog of 22 mission specification patterns for mobile robots, together with tooling for instantiating,
composing, and compiling the patterns to create mission specifications. The patterns provide solutions for recurrent specification
problems, each of which detailing the usage intent, known uses, relationships to other patterns, and—most importantly—a template
mission specification in temporal logic. Our tooling produces specifications expressed in the temporal logics LTL and CTL to be used by
planners, simulators or model checkers. The patterns originate from 245 realistic textual mission requirements extracted from the robotics
literature, and they are evaluated upon a total of 441 real-world mission requirements and 1251 mission specifications. Five of these
reflect scenarios we defined with two well-known industrial partners developing human-size robots. We validated our patterns’

correctness with simulators and two different types of real robots.

1 INTRODUCTION

OBILE robots are increasingly used in complex environ-

ments aiming at autonomously realizing missions [9].
The rapid pace of development in robotics hardware and
technology demands software that can sustain this gro-
wth [10], [11], [12], [13]. Even though existing solutions
are not readily usable [14], in the near future robots will
be used for accomplishing tasks of everyday life by end-
users with no expertise and knowledge in computer science,
robotics, mathematics or logics. Providing techniques that
support robotic software development is a major software-
engineering challenge [10], [15]. Indeed, as in the mobile
application domain, where electrical engineers develop low
level hardware components and constructing higher level
software components that are executed on mobile devices
is a software engineering issue, in the robotic domain
robotic engineers develop robots and low level software
primitives that allow controlling and managing these robots
and developing and defining software that uses those low
level primitives is a software engineering issue.

The mission describes the high-level tasks the robotic
software must accomplish [16]. Among the different ways of
describing missions that were proposed in the literature [17],
in this work, we consider declarative specifications [18].
These describe the final outcome the software should
achieve—rather than describing how to achieve it—and
are prominently used in the robotics domain [17]. Precisely
specifying missions and transforming them into a form useful
for automatic processing are among the main challenges in
engineering robotics software [19], [20]. On the one hand,
missions should be defined with a notation that is high-level
and user-friendly [16], [21]. On the other hand, to enable
automatic processing, the notation should be unambiguous
and provide a formal and precise description of what robots
should do in terms of movements and actions [22], [23], [24].

Engineering robotics software typically amounts

to expressing the robotic mission in natural language
(henceforth called mission requirement), and then translating
mission requirements into more precise mission specifications.
The latter are often expressed in a domain-specific language,
many of which have been proposed over the last decades
[17]. These languages are often integrated with development
environments used to generate code that can be executed
within simulators or real robots [25], [26], [27], [28]. However,
these languages are typically bound to specific types of robots
and support a limited number and type of missions. Other
works especially from the robotics domain, advocate the use
of formally specified missions in temporal logics [29], [30],
[31], [32]. Unfortunately, specifying missions using temporal
logic formulae can be too complex and error-prone for
practitioners or engineers. As such, defining robotic missions
is generally challenging, as widely recognized in the software-
engineering and robotics communities [33], [34], [35], [36].
Mission requirements are often ambiguous, hindering pre-
cise and unambiguous specification [36], [37], [38]. Consider
the very simple mission requirement “the robot shall visit the
kitchen and the office.” This can be interpreted as “visit the
kitchen” and also that at some point the robot should “visit
the office” without a specific order between the visit of the
kitchen and the office, or as visit “the kitchen and the office
in order.” Assume that the correct intended behavior requires
that “the kitchen and the office are visited in order,” which
is a common mission specification problem [39], [40]. When
transforming this mission requirement expressed in natural
language into a precise mission specification, an expert
might come up with the following formula in temporal logic:

o1 =F ((r inly) AF(rin lg)),

where 7 in l; and r in [y signify that robot r is in the kitchen
and office, respectively, and F denotes finally. Now, recall that
the actual mission requirement is that the robot reaches the
kitchen before the office. It is important to highlight that the
logical formula still admits that the robot reaches the office

TRANSACTIONS ON SOFTWARE ENGINEERING

before entering the kitchen, which may be an unintended
behavior. In fact, a possible interpretation might also require
that a robot should visit the office after having visited the
kitchen and that the robot absolutely cannot visit the office
before having visited the kitchen. This alternative interpre-
tation requires defining additional behavioral constraints. A
correct formula, among others, is the following:

$2 =1 A ((2(rinl)) U (rinly)),

where U stands for until. Further interpretations are also
possible. This highlights the ambiguity in natural language
requirements formulation, and common mistakes may be
introduced when diverse interpretations are given [24],
[41], [42], [43]. The additional constraint added in the last
interpretation above requires the office to not be visited
before the kitchen, recalling a specification pattern for
temporal logics known as the absence pattern [44]. Rather
than conceiving such specifications recurrently in an ad hoc
way with the risk of introducing mistakes, engineers could
re-use validated solutions to existing mission requirements.

Creating mission specifications that correctly capture
mission requirements is hard and error-prone [33], [34], [35],
[36], also evident from the examples above. The challenge
of defining behavioral properties in logical languages such
as LTL, has been recognized by researchers. While precise
behavioral specifications in logical languages enable reaso-
ning about behavioral properties [45], [46], their specification
is hard and error prone [47], [48]. Practitioners are often
unfamiliar with the specification process as well as with
the intricate syntax and semantics of logical languages [44].
Specification patterns have become a popular solution to
this challenge. For instance, Dwyer et al. [44] introduced
patterns for safety properties, which were later extended by
Grunske [49] and Konrad et al. [50] to address real-time and
probabilistic quality properties, respectively. Autili et al. [51]
consolidated and organized these patterns into a comprehen-
sive catalog. Bianculli et al. [52] applied specification patterns
to the domain of web services. All these patterns provide
template solutions that can be used to specify the respective
properties. However, none of these pattern catalogs focuses
on the robotic domain to solve the mission specification
problem. Our contribution enriches this line of research by
focusing on the new emerging domain of mobile robots,
whose missions need to be expressed in precise terms by
users who are not proficient in formal specifications. It
follows a typical research paradigm in engineering that tries
to replicate, contextualize, and extend an existing useful
method to a different domain, which has its own specificities.

We propose a new set of patterns focusing on robot
movement as one of the major aspects considered in the
robotics domain [53], [54], [55], as well as on how robots
perform actions within their environment. For each pattern
we provide its usage intent, known uses, relationships to
other patterns, and—most importantly—a template mission
specification in temporal logics. The latter relies on LTL and
CTL as the most widely used formal specification languages
in robotics [27], [29], [30], [32], [56], [57], [58], [59], [60], [61],
[62]. The template mission specification can be defined in
multiple languages that may have different expressiveness —
the patterns we provide lie in the intersection of LTL and CTL.
These logical formalisms are sufficiently expressive, since

22

missions that contain explicit time requirements are beyond
the scope of this work, and subject of future investigation.
Our catalog has been produced by analyzing 245 natural-
language mission requirements systematically retrieved from
the robotics literature. From these requirements we identified
recurrent mission specification problems and conceived solu-
tions organized as patterns. Our patterns provide a formally
defined vocabulary that supports robotics developers in
defining mission requirements. Relying on the usage of the
pattern catalog as a common vocabulary allows mitigating
ambiguous natural language formulations [34]. Our patterns
also provide validated mission specifications for recurrent
mission requirements, facilitating the creation of correct
mission specifications.

We implemented the tool PSALM (Pattern bAsed Mission
specifier)to further support developers in designing missions.
PsALM allows (i) specifying a mission requirement through
a structured English grammar, which uses patterns as
basic building blocks and operators that allow composing
these patterns into complex missions, and (ii) automatically
generating specifications from mission requirements. PSALM
is robot-agnostic and integrated with Spectra [63] (a robot
development environment), a planner [30], NuSMV [64] (a
model checker), and Simbad [65] (a simulator for education
and research). The pattern catalog and the PSALM tool are
available in an online appendix [66].

We validated the correctness of the proposed patterns.
The methodology we conceived is generic and can be reused
in future work that propose pattern catalogs. Specifically,
we characterize all (and only) the set of behaviors that
were expected to be admitted by a mission requirement by
manually defining an w-regular expression. This w-regular
expression is compared with the set of behaviors admitted
by an LTL formula by using standard language inclusion
procedures. To further build confidence for the absence
of errors on the definition of the w-regular expression,
we additionally tested patterns correctness on a set of 12
randomly generated models representing buildings where a
robot is deployed. We considered ten mission requirements
(each obtained by combining three patterns), converted
the mission requirements into LTL mission specifications
and used those to generate robots’ plans. We used the
Simbad [65] simulator to verify that the plans satisfied the
intended mission requirement. We subsequently generated
both LTL and CTL specifications from the considered mission
requirements. We verified that the same results are obtained
when they are checked on the randomly generated models,
confirming the correspondence among the CTL and LTL
specifications.

We evaluated the benefits of using our patterns for
designing missions. We collected 441 mission requirements
in natural language: 436 obtained from robotic development
environments used by practitioners (i.e., Spectra [63] and
LTLMoP [31], [36]), and five defined in collaboration with
two well-known robotics companies developing commercial,
human-size service robots (BOSCH and PAL Robotics). We
show that most of the mission requirements were ambiguous
but expressible using the proposed patterns, and that usage
of patterns reduces ambiguities. We then evaluated the
coverage of mission specifications. We collected 1229 LTL
and 22 CTL mission specifications from robotic development

TRANSACTIONS ON SOFTWARE ENGINEERING

environments used by practitioners (i.e., Spectra [63] and
LTLMoP [31], [36]) and research publications (i.e., [67]) and
show that almost all specifications can be obtained using
the proposed patterns (1154 over 1251, i.e.,, = 92%). We
also generated specifications for five mission requirements
defined in collaboration with the two robotic companies
and fed them into an existing planner. The produced plans
were correctly executed by real robots, namely Tiago and
Turtlebot® showing the benefits of the patterns support in real
scenarios. Finally, we also showed that the LTL formulation
of the patterns is within the GR(1) fragment, enabling the
use of existing reactive synthesis tools (e.g., [29]).

A small fragment of this work has been published as
an extended abstract [68] and a tool-demo paper [69]. In
these papers, we presented the initial idea and a description
of our toolset for early dissemination. This paper presents
our work in its full richness, explaining the methodology,
presenting all patterns with their formalization, as well as
our evaluation of the patterns’ correctness and benefit using
real-world mission requirements and mission specifications.

We proceed by presenting background information and
important terminology in Section 2, and by describing our
research methodology in Section 3. We present our pattern
catalog in Section4, and tool support in Section5. We
evaluate patterns’ correctness in Section 6 and their benefits
in Section7. We discuss our findings in Section 8, related
work in Section 9, and conclude in Section 10.

2 BACKGROUND

In this section, we present the terminology used in the
remainder and introduce the temporal logic LTL used for
defining the patterns’ template solutions.

Recall that for communication and further refinement, the
requirements of a software system are typically expressed in
natural language or informal models. Refining these requi-
rements into more formal representations avoids ambiguity,
allowing automated processing and analysis. Such practices
also emerged in the robotics engineering domain.

e Mission Requirement: a description in a natural language
or in a domain-specific language of the mission (also called
“task”) the robots must perform [37].

e Mission Specification: a formulation of the mission in a
logical language with a precise semantics [57] .

e Mission Specification Problem: the problem of generating a
mission specification from a mission requirement.

o Mission Specification Pattern: a mapping between a recurrent
mission-specification problem to a template solution and a
description of the usage intent, known uses, and relationships
to other patterns.

e Mission Specification Pattern Catalog: a collection of mission
specification patterns organized in a hierarchy aiding at
browsing and selecting patterns, in order to support decision
making during mission specification.

We consider LTL (Linear Temporal Logic) [70] and CTL
(Computation Tree Logic) [71], since they are commonly
used to express mission specifications in robotics and are
utilized extensively by the community (e.g., [32], [56], [58]). A
temporal logic specification can be used for several purposes,

8. Tiago (tiago.pal-robotics.com) and Turtlebot (turtlebot.com).

23

Table 1
Papers (requirements) analyzed per venue and year

= 2 2 3 2 s
Robotics Venue & & & & &)
Int. Conf. Robotics & Autom. ~ 9(14) 16(11) 17(18) 27(22) 16(15) 85(80)
Int. J. of Robotics Research 48) 13(12) 12(11) 13(8) 17(12) 59 (51)
Trans. on Robotics 26) 12090 5(1) 8(2) 42 31 (20

Int. Conf. on Int. Robots & Sys. ~ 10(23) 55(26) 13(8) 20(16) 33(21) 131(94)

such as (i) for producing plans through the use of planners,
(ii) for analysing the mission satisfaction though the use of
model checkers, and (iii) to design a robotic application.

We now briefly recall LTL's syntax and semantics; a
precise treatment can be found in specialized text books (e.g.,
Baier and Katoen [5]). While CTL has also been considered
as a target logic to define patterns’ template solutions, it
is not introduced explicitly as this paper will use LTL as a
reference temporal logic. For additional details on the use of
CTL in the formulation of the proposed pattern the interested
reader may consult our online appendix [66]. Let 7 be a set
of atomic propositions; LTL's syntax is defined as follows:

(LTL) ¢ =7 || oV | X P | p U ¢ where T € 7.

The semantics of LTL is defined over an infinite sequence
of truth assignments to the propositions 7. The formula X" ¢
expresses that ¢ is true in the next position in a sequence,
and the formula ¢, U ¢2 expresses the property that ¢, is
true until ¢9 holds. The eventually F, always G and weak
until W operators can be obtained from the X and ¢/ LTL
operators as usual [5].

3 METHODOLOGY

We derived our pattern catalog in three main steps: (i)
collection of mission requirements, (ii) identification of
mission specification problems, and (iii) pattern formulation.

Collection of Mission Requirements. We collected mis-
sion requirements from scientific papers in the field of ro-
botics. We additionally considered the software engineering
literature, but noted a general absence of robotic mission
specifications. We chose major venues based on consultation
with domain experts and by considering their impact factor.
Specifically, we analyzed mission specifications published in
the four major robotics venues [72] over the last five years,
in line with similar studies for pattern identification [44],
[49], [50]. We analyzed all papers published within a venue
with two inclusion criteria (considered in order): (i) the
paper title implies some notion of robotic movement-related
concept, (ii) the paper contains at least one formulation
of a mission requirement involving a robot that concerns
movement. When the paper contained more than one mission
requirement, each was considered separately.

Altogether we obtained 306 papers, through which,
matching our inclusion criteria, we obtained 245 mission
requirements. Table1 shows the venues included in our
analysis, together with the number of scientific publications
and mission requirements obtained per year. The considered
software engineering venues (ICSE, FSE, and ASE) are not
present since they did not contain any paper matching the
inclusion criteria.

tiago.pal-robotics.com
turtlebot.com

TRANSACTIONS ON SOFTWARE ENGINEERING

24

:R Fa?.t —: Delayed I%nstz?cnt. Global
1Reaction, |Reaction eaction avil;égl;fce avoidance . Exact)
: Conditional /Limited estricte
i) [[Limited Avoidance
Ty i - (ic Missi ificati Avoidance/ : Upper
‘Bind ! Trigger (Robotic Missions Specification Patterns Lo Restricted
_____ N I Avoidance
, Bound 1 'Bound (Core Movement Patterns) Lower
«Reaction, { Delay | . Restricted
----------- (Coverage)— ©(Surveillance) |Avoidance
(Visit)” (Sequenced Ordered Strict Fair Patrolling| [Sequenced Ordered Strict Fair
isit Visit Ordered \[\@] Patrolling Patrolling | | Ordered Patrolling
Visit Patrolling

Figure 1. Mission specification pattern catalog. Filled nodes: patterns, non-filled nodes: categories.

Identification of Mission Specification Problems. We
identified mission specification problems as follows’.

e (STEP.1) We divided the collected mission requirements
among two of the authors, who labeled them with key-
words that capture the mission specification problems
they describe. For example, the mission requirement
“The robot has to autonomously patrol the site and
measure the state of valve levers and dial gauges at
four checkpoints in order to decide if some machines
need to be shut down” (occuring in Schillinger et al. [73])
was associated with the keywords “patrol,” since the
robot has to patrol the site, and “instantaneous reaction,”
since when a valve is reached its level must be checked.
(STEP.2) We created a graph structure representing
semantic relations between keywords. Each keyword
is associated with a node of the graph structure. Two
nodes were connected if their keywords identify two
similar mission specification problems. For example, the
keywords “visit” and “reach” are related since in both
cases the robot has to visit/reach a location.

(STEP.3) Since our interest was not a mere classification
of actions and movements that are executed by a robots,
but rather detecting mission specification problems that
concern how actions and movements are executed by a
robot behavior over time, nodes that contain keywords
that only refer to actions are removed (e.g., balance).
(STEP.4) Nodes that were connected through edges and
contained keywords that identify to the same mission
specification problem, e.g., visit and reach, were merged.
(STEP.5) We hierarchically organized the mission speci-
fication problems into a catalog represented through a
tree structure that facilitates browsing among mission
specification problems.

Pattern Formulation. We formulated patterns by follo-
wing established practices in the literature [44], [49], [51]. A
pattern is characterized by

e (i) a name;

(ii) a statement that captures the pattern intent (i.e., the
mission requirement);

(iii) a template instance of the mission specification in
LTL and CTL;

(iv) variations describing possible minor changes that

can be applied to the pattern;

9. For technical details on this methodology see [66].

e (v) examples of known uses;
o (vi) relationships of the pattern to others and;
o (vii) occurrences of the pattern in literature.

For each LTL pattern we also designed a Biichi Automa-
ton (BA) that unambiguously describes the behaviors of the
system allowed by the mission specification. The mission
specification was designed by consulting specifications enco-
ding requirements already present in the papers surveyed,
by crosschecking them, and consulting specification patterns
already proposed in the software-engineering literature [51].
If the proposed specification was related to (or corresponded
with) one of an already existing pattern, we indicated this in
the relationships of the pattern to others, meaning that the
pattern presented in the literature is also useful to solve the
identified mission specification problem.

4 MISSION SPECIFICATION PATTERNS

In this section, we present our catalog of mission specification
patterns!® and present one of them. Our catalog comprises
22 patterns hierarchically organized into a pattern tree as
illustrated in Figure 1. Leaves of the tree represent mission
specification patterns. Intermediate nodes facilitate browsing
within the hierarchy and aid pattern selection and decision
making. Patterns identified by following the procedure
described in Section 3 are graphically indicated with a solid
border. Patterns represented with a dashed border represent
new patterns identified during our evaluation, as explained
below in Section 7.1.

We provide a high-level description of all patterns iden-
tified, examples of application, and the corresponding LTL
mission specifications. The interested reader may refer to our
online appendix [66], which contains additional examples,
occurrences of patterns in the literature, relations among the
patterns, and additional CTL mission specifications.

Preliminaries. To aid comprehension of behavior and fa-
cilitate precise pattern definitions, we introduce the following
notation. Given a finite set of locations L = {l1,l2,...,l,}
and robots R = {r1,72,...,r}, PL = {rginl, | ry €
Randl, € L} is a set of location propositions, each
indicating that a robot r,;, is in a specific location [, of the en-
vironment. Given a finite set of conditions of the environment
C ={c1,ca,...,cm}, we indicate as PE = {s1,82,...,8m}

10. The pattern catalog in full, accompanied material and tool support
is available on our dedicated website: www.roboticpatterns.com

www.roboticpatterns.com

TRANSACTIONS ON SOFTWARE ENGINEERING

Table 2

25

Core movement patterns. The symbol % indicates the mathematical operator modulo.

Description

Example

Formula (I1,12,...
ons)

are location propositi-

Visit

Visit a set of locations in an unspeci-
fied order.

Locations 11, l2, and I3 must be visited. 11 — 4 — I3 — 11 —
ly — lo — (I4)” is an example trace that satisfies the mission
requirement.

}L\ F(ls)

=1

Sequenced

Visit

Visit a set of locations in sequence,
one after the other.

Locations 11, 2, ls must be covered following this sequence. The
trace Iy — Iy — I3 = 11 — lg — loa — (l#\a)“’ violates the
mission since I3 does not follow l5. The trace 17 — Iz — 11 —
lp = 1y — l3 — (lx)“ satisfies the mission requirement.

FliANF(a A ... F(lR)))

Ordered
Visit

The sequenced visit pattern does not
forbid to visit a successor location
before its predecessor, but only that
after the predecessor is visited the
successor is also visited. Ordered vi-
sit forbids a successor to be visited
before its predecessor.

Locations 1, l2, I3 must be covered following this order. The trace
i = 1lz3 = 11 — lo = I3 — (Ix)“ does not satisfy the mission
requirement since I3 preceeds lz. The trace Iy — Iy — I3 — l2 —
ly — I3 — (ly)" satisfies the mission requirement.

Fli AF(2 A ... F(ln)))
n—1

N (Rlip) UL
i=1

i=

Strict Ordered

Visit

The ordered visit pattern does not
avoid a predecessor location to be vi-
sited multiple times before its succes-
sor. Strict ordered visit forbids this
behavior.

Locations 1, l2, I3 must be covered following the strict order i1, l2,
ls. The trace I1 — Iy — I3 — I — lg — I3 — (I4)® does not
satisfy the mission requirement since I; occurs twice before l3. The
trace 1 — Iy — lo — Iy — I3 — (lx)“ satisfies the mission
requirement.

Fi ANF(I2 A ... F(ln)))
72\1 (Rlip) UL

j/z_\ll(ﬂzi)U(zi A X (=l Ulisn)))

Fair
Visit

The difference among the number
of times locations within a set are
visited is at most one.

Locations I, l2, I3 must be covered in a fair way. The trace I; —
ly =11 =13 =11 =51y = 1o — (l#\(172’3})w does not
perform a fair visit since it visits /; three times while /5 and I3 are
visited once. The trace I — Iy — I3 — 11 — Iy — Iz — 1l —
la = (lu\{1,2,3))” performs a fair visit since it visits locations [1,
l2, and I3 twice.

A F)

=1
[\1 G(li = X((l)Wltit1y%n))

Patrolling

Keep visiting a set of locations, but
not in a particular order. The patrol-
ling problem also appears in litera-
ture as surveillance.

Locations 1, l2, I3 must be surveilled. The trace 7 — 4 — I3 —
1 = ly — la = (I2 = lg — 11)“ ensures that the mission
requirement is satisfied. The trace ; — lo — I3 — (I1 — I3)*
represents a violation, since I is not surveilled.

G F(l;)

>3

Sequenced
Patrolling

Keep visiting a set of locations in
sequence, one after the other.

Locations 1y, l2, I3 must be patrolled in sequence. The trace I; —
la > 13 =11 = ly = 1o = (11 — la — 13)“ satisfies the mission
requirement since globally any I; will be followed by I3 and I3 by 3.
The trace Iy — 1y — Iz — 1 — 1y — o — (I1 — 13)* violates
the mission requirement since after visiting [, the robot does not
visit ls.

Ordered
Patrolling

Sequence patrolling does not forbid
to visit a successor location before
its predecessor. Ordered patrolling
ensures that (after a successor is vi-
sited) the successor is not visited
(again) before its predecessor.

Locations I, l2, and I3 must be patrolled following the order i1, 2,
and l3. The trace l{ — Iy — I3 — 11 — 14 — lo — (ll — 1o —
l3)* violates the mission requirement since I3 precedes l2. The trace
i =2l =l =l = la =13 = (Ih — lo — 13)” satisfies the
mission requirement

QEJI:(ll ANF(2 Ao F(in))))
‘i\l (‘\li+1)1/{l11

n
[\1 Gy wn = X((Slarnywn) ULL))

Strict Ordered
Patrolling

The ordered patrolling pattern does
not avoid a predecessor location to
be visited multiple times before its
successor. Strict Ordered Patrolling
ensures that, after a predecessor is
visited, it is not visited again before
its successor.

Locations 11, 2, I3 must be patrolled following the strict order 1,
lo,and l3. The trace Iy — la — 11 — 1o = la = I3 = (I1 —
lp — 13)* violates the mission requirement since I; is visited twice
before l5. The trace 17 — Iy — lo — 1y — I3 — (ll — o — lg)w
satisfies the mission requirement.

gﬁf(ll AF(2 A ... F(1n))))
/\1 (Rlip) Ul
/:\1 G(l+1ymn = X((2lrngn) U L))

n_1
‘i\1 G((li) = X(=Li U i41)%n)))

Fair
Patrolling

Keep visiting a set of locations and
ensure that the difference among the
number of times locations within a
set are visited is at most one.

Locations I, l2, and I3 must be fair patrolled. The trace I; — I4 —
ls > 11 = lyg = lo — (ll — lo — 11 — ls)w violates the
mission requirements since the robot patrols /; more than I and 3.
The trace I; — 1y — I3 — 1y — lo — 14 — (ll — Iy — lg)w
satisfies the mission requirement since locations l;, l2, and I3 are
patrolled fairly.

A 9F(w)

_4\1 Gl = X((=l) Wi+1y%n))

TRANSACTIONS ON SOFTWARE ENGINEERING

Table 3
Avoidance patterns.

26

Description Example Formula
Past A condition has been If the robot enters location 1, then it should have not visited location ~ (—(I1)) U p, where l; € Landp € M
avoidance fulfilled in the past. 15 before. The trace ls — la — 11 — lo — la — 13 — (I = 13)¥
satisfies the mission requirement since location I3 is not entered before
location 1.
Global An avoidance The robot should avoid entering location I;. Trace I3 — I4 — l3 — G(—(l1)), wherely € L
avoidance condition globally Iz — Iy — I3 — (I3 — l2 — l3)“ satisfies the mission requirement
holds throughout the since the robot never enters I;.
mission.
Future After the occurrence If the robot enters Iy, then it should avoid entering I3 in the future. G((c¢) — (G(—(l1)))), wherec € M and I, € PL
avoidance of an event, avoidance The trace I3 — Iy — I3 — I3 — 1y — I3 — (I3 — la — l3)* does
has to be fulfilled. not satisfy the mission requirement since /5 is entered after /;.
Upper A restriction on the A robot has to visit [; at most (less than) 3 times. The trace i1 — —~F(l1 AX(F({1 A...X(F(l1))))), where I; €
Rest. maximum number of Iy — I — I3 = 11 — la = 11 — (I3)“ violates the mission e
Avoidance occurrences is desired. requirement since [, is visited four times. The trace l4 — I3 — I3 — L
log — lg — (I3)* satisfies the mission requirement.
Lower A restriction on the A robotshould enter location /; atleast (more than) 3 times. The trace ~ F(I1 A X(F(l1 A ... X(F(11))))), wherel; € L
Rest. minimum number of Iy — I3 — lo — la — Iy — (I3)® violates the mission requirement e
Avoidance occurrences is desired. since location 1 is never entered. The trace I1 — 14 — I3 — 11 —
Iy — 11 — (I3)® satisfies the mission requirement.
Exact The number of occur- A robot must enter location I; exactly 3 times. The trace Iy — I3 — (—=(I1)) UL A (X((RI)UUL. .. A (X((—I1) U1
Rest. rences desired is an ex- ly — la — Iy — (I3)* violates the mission requirement. The trace M
Avoidance act number. li >y > 13 = 11 = la — 11 — (I3)” satisfies the mission A(X(G(=11))))))))), where I, € L
requirement since location /; is entered exactly 3 times.
Table 4
Trigger patterns.
Description Example Formula
Inst. The occurrence of When location Il is reached the action a must be executed. The G(p1 — p2), whereps € M and po € PLU PA
Reaction a stimulus instanta- trace Iy — I3 — {l2,a} — {lo,a} — l4 — (I3)“ satisfies the
neously triggers a mission requirement since when location I3 is entered condition a is
counteraction. performed. The trace Iy — I3 — l2 — {l1,a} — ls — (I3)* does
not satisfy the mission requirement since when 5 is reached a is not
executed.
Delayed ~ The occurrence of a sti- ~ When ¢ occurs the robot must start moving toward location {1, and G(p1 — F(p2)), where p1 € M and p» € PL U
Reaction mulus triggers a coun- [; is subsequently finally reached. The trace Iy — I3 — {l2,c} - PA
teraction some time la- I3 — I3 — (l3)“ satisfies the mission requirement, since after ¢
ter occurs the robot starts moving toward location 11, and location [y is
finally reached. The trace I1 — 11 — {l2,c¢} — I3 — (I3)“ does
not satisfy the mission requirement since ¢ occurs when the robot is
in Iz, and [; is not finally reached.
Prompt The occurrence of a sti- If ¢ occurs I is reached in the next time instant. The trace [; — I3 — G(p1 — X(p2)), where p1 € M and po € PL U
Reaction mulus triggers a coun- {la,c} — I1 — lg — (I3)* satisfies the mission requirement, since PA
teraction promptly, i.e. after ¢ occurs Iy is reached within the next time instant. The trace
in the next time in- I3 — I3 — {l2,c} — l4 — 3 — (I3)“ does not satisfy the mission
stant. requirement.
Bound A counteraction must Action a; is bound though a delay to location ;. The trace {; — G(p1 <> p2), whereps € M and p» € PLUPA
Reaction be performed every I3 — {l2,c} — {li,a1} = la — {l1,a1} — (I3)* satisfies the
time and only when a mission requirement. The trace I; — I3 — {l2,¢} — {l1,a1} —
specific location is en- {l4,a1} — {l1,a1} — (I3)* does not satisfy the mission require-
tered. ment since a is executed in location l4.
Bound A counteraction must Action a; is bound to location I;. The trace I; — I3 — {l2,c} — G(p1 < X(p2)), where p1 € M and po € PL U
Delay be performed, in the {l1} — {la,11} — {l1} — {la, a1} — (I3)* satisfies the mission =~ PA
next time instant, requirement. The trace I — Iz — {l2,c} — {l1} — {l4, 11} —
every time and only {l1,a1} — {la} — (13)“ does not satisfy the mission requirement.
when a specific
location is entered.
Wait Inaction is desired till ~ The robot remains in location ! until condition ¢ is satisfied. The (I1)U(p), wherel; € Landp € PEU PA

a stimulus occurs.

trace Iy — Iz — {la,c} — l1 — Iy — (I3)® violates the mission
requirement since the robot left [, before condition c is satisfied. The
trace I1 — {l1,c¢} = lo = l1 — 1y — (I3)* satisfies the mission
requirement.

TRANSACTIONS ON SOFTWARE ENGINEERING

27

Name: Strict Ordered Patrolling
Intent: A robot must patrol a set of locations following a strict sequence ordering. Such locations can be, e.g., areas in a building to be
surveyed.
Template: The following formula encodes the mission in LTL for n locations and a robot r (% is the modulo arithmetic operator):

n n—1

N GFUANF2A . Fn)) N\ (Hlig1) U li)Z\lg(l(z‘H)%n = X((~lrnwn) U 1))

i=1 i=1
Example with two locations.
GFUAF(2)) A((Hl2) U L) AG(I2 = X((l2) U 1)) AG(h — X((mh) U l2))

where I1 and I3 are expressions that indicate that a robot r is in locations /1 and 2, respectively.

Variations: A developer may want to allow traces in which sequences of consecutive l1 (I2) are allowed, that is strict ordering is applied on
sequences of non consecutive {1 (I2). In this case, traces in the form Iy — (— l1 — l1 — I3 — l2)“ are admitted, while traces in the form
Iy = (= 11 = I3 = l1 — l2)*¥ are not admitted. This variation can be encoded using the following specification:

G(F(AF(12)) A((ml2) U) AG((I2 A X(l2)) = X((Rl2) U 1)) AG((L A X (=) = X((2h) U 12))

This specification allows for sequences of consecutive I1 (l2) since the left side of the implication Iy A X (—l1) (I2 A X(—l2)) is only triggered
when [; (l2) is exited.

Examples and Known Uses: A common usage example of the Strict Ordered Patrolling pattern is a scenario where a robot is performing
surveillance in a building during night hours. Strict Sequence Patrolling and Avoidance often go together. Avoidance patterns are used to
force robots to avoid obstacles as they guard a location. Triggers can also be used in combination with the Strict Sequence Patrolling pattern
to specify conditions upon which Patrolling should start or stop.

Relationships: The Strict Ordered Patrolling pattern is a specialisation of the Ordered Patrolling pattern, forcing the strict ordering.
Occurrences: Smith et. al. [74] proposed a mission specification forcing a robot to not visit a location twice in a row before a target location is

reached.

Figure 2. The pattern Strict Ordered Patrolling. The catalog in full can be found in the online appendix [66].

a set of environment propositions such that s; € PE is
true if and only if condition ¢; holds. Given a finite set of
actions A = {ay,as,...,ay} that the robots can perform,
we indicate as PA = {r, execay | 7, € Randa, € A}
a set of action propositions such that r, exec a, is true
if and only if action a, is performed by robot r,. We
define the set of propositions M of a robotic application
as PLUPE U PA. Let M,,M,,M, C M, a trace is an
infinite sequence M, — M, — M, ... indicating that
M, holds after M,, and M, holds after M,. For example,
{riinli} = {r1inls,c1} = {ca,72 execay}... is a trace
where the element in position 1 of the trace indicates that the
robot 7y is in location {1, then the element in position 2 indica-
tes that the robot r; is in location 5 and condition ¢; holds (in-
dicating, for example, that an obstacle is detected), and then
the element in position 3 indicates that condition ¢y holds
and robot 73 is executing action a;. In the following, with a
slight abuse of notation, when a set is a singleton we will omit
brackets. We use the notation (M, — ... — M,)¥, where
M,,...,M, C M, to indicate a sequence M, — ... = M,
that occurs infinitely. We use the notation [to indicate
any location, e.g., 71 in l; — r1 in Iy — 71 in lp indicates
that a robot ry visits location [y, afterwards any location,
and then location /2. We use the notation 4\ x, where
K C M, to indicate any possible location not in K, e.g.,
r1inly — 11 Ly i,y — 7190 2 indicates that ry visits /g,
then any location except 3 is visited, and finally I5.

Patterns. Patterns are organized in three main groups —
core movement (Table 2), triggers (Table 3), and avoidance
(Table 4), explained in the following. For simplicity, in
Tables 2 and 3, we assume that a single robot is considered
during the mission specification and we use the notation [,
as shortcut for 7y in [,. The presented examples assume that
the environment is made of four locations, namely [y, I3, I3,
and 4.

o Core movement patterns. How robots should move within

an environment can be divided in two major categories
representing locations’ coverage and locations’ surveil-
lance. Coverage patterns require a robot to reach a set
of locations of the environment. Surveillance patterns
require a robot to keep reaching a set of locations of the
environment.

o Avoidance patterns. Robot movements may be constrai-
ned in order to avoid occurrence of some behavior
(Table 3). Avoidance may reflect a condition, possibly
over the occurrence of some event. Conditional avoidance
generally holds globally (i.e., for the entire behavior)
and applies when avoidance of locations or obstacles is
sought that depends on some condition. For example,
a cleaning robot may avoid visiting locations that have
been already cleaned. In the restricted avoidance case,
avoidance does not hold globally but accounts for a
number of occurrences of an avoidance case. Depending
on the number of occurrences being a maximum, mini-
mum or exact number, upper, exact or lower restricted
avoidance is yielded. For example, a cleaning robot may
avoid cleaning a room more than three times.

o Trigger patterns. Trigger patterns express a robot reactive
behaviour based on stimuli, or robot’s inaction until a
stimulus occurs as described in Table 4.

As an example, the definition of the Strict Ordered Patrol-
ling mission specification pattern is presented in Figure 2. The
patterns in detail are available in our online appendix [66].
Note that the logic formulation is generic on purpose to allow
specifications where a robot can be simultaneously in an area
and in one of its sub-areas. An additional logical constraint
can be added to disallow these behaviors. For example, the
constraint G(—((r1 in l1) A (r2 in l3))) disallows the robot
71 to be simultaneously in locations /; and /5. Defining such
constraints is an orthogonal concern.

TRANSACTIONS ON SOFTWARE ENGINEERING

5 SPECIFICATION PATTERN TOOL SUPPORT

We now present PSALM [69]", a tool that supports de-
velopers in designing mission requirements through the
proposed patterns and the automatic generation of mission
specifications. PsALM allows creating complex mission requi-
rements by composing patterns with simple operators and
transforming mission requirements (i.e., composed patterns)
into mission specifications in LTL or CTL.

Figure 3 illustrates the components of PsALM. Its GUI
(1) allows defining robotic missions requirements through
a structured English grammar, which uses patterns as basic
building blocks and AND and OR logic operators to compose
these patterns. The structured English grammar is provided
in our online appendix [66]. The SE2PT component extracts
from a mission requirement the set of patterns that are
composed through the AND and OR operators (2). The
PT2LTL (3) and PT2CTL (4) components automatically
generate LTL and CTL specifications from these patterns.

The produced LTL specifications can be used in different
ways; three possible usages are presented in Figure 3. The
LTL formulae are (i) fed into an existing planner and used
to generate plans that satisfy the mission specification (5);
(ii) converted into Deterministic Biichi automata used as
input to the widely used Spectra [63] robotic application
modeling tool @; or (iii) converted into the NuSMV [64]
input language to be used as input for model checking (7).
The plans produced using the planner are (i) used as inputs
by Simbad [65] , an autonomous robot simulation package
for education and research; and (ii) performed by actual
real robots @, as also illustrated in the following sections.
The produced CTL specifications are also converted to the
NuSMYV [64] input language to be used as input for model
checking (7).

To use our pattern-based mission specification and the
PsALM prototype tool in practice (as exemplified in Figure 4),
a robotics engineer follows four distinct steps:

1) The pattern catalog is consulted and behavior intents
relevant to the mission at hand are selected [66]. This
step is essential to establish common vocabulary, utilize
the unambiguous patterns notation, and provide a
precise description of what robots should do in terms of
movements and actions during run-time.

2) The mission is defined using an appropriate GUI that
allows using patterns as basic building blocks and
composing them through a structured English grammar
(Figure 4a).

3) Automatically generated CTL or LTL specifications are
customized if necessary.

4) Analysis, planning or simulation facilities are invoked
through interfacing with NuSMV [64], Spectra [63],
Simbad [65] (Figure 4b), or sent to robots for execution
(Figure 4c) through LTL planning.

A video showing how PsALM can be used in practice is also
made available on a dedicated website [75].

6 CORRECTNESS OF THE PATTERNS

We now describe the procedure we used to validate the
correctness of our patterns. This procedure can be considered

11. The tool is available at github.com/claudiomenghi/PsAIM

28

PsALM

—_ v __ LTLY o _ v __
| NuSMV@ | Planner’| Spectra@

- " PLAN

W-abao =Ofhs
AN i L,
ii | RealRobotsT™ | Simbad /G2
Legend LTL: Linear Temporal Logic
“Fvia 7| CTL: Computation Tree Logic
Software | "External |) P ‘ 9
Components L Tools |§$ Structured English

Mission specification Patterns

Figure 3. Main components of the PsALM specification tool [69].

a contribution per se since it can be used in validating
future patterns be proposed by the research community. The
procedure has two phases: (i) testing the compliance between
the English formulation and the logical specification of the
patterns (Section 6.1) and (ii) testing for errors in the logical
specification (Section 6.2).

6.1

We tested the compliance between the English formulation
and the target mission specifications (LTL and CTL) as
follows. We considered the English formulation and defined
an alternative set of specifications into a language that is
different from (but comparable to) the one used to express
the target mission specifications. We then compared the
specifications. If the alternative and the target mission
specifications are not equivalent, an error must be present
either in the alternative or in the target specification. If the
two formulations are equivalent there is no guarantee that
the specification is correct, as it might be the case that both
the specifications do not represent the intended mission
requirement. A further check that we performed to avoid
this case is explained in Section 6.2.
For LTL specifications we proceeded as follows:

Compliance Testing

o (STEP.A1) We considered a pattern’s English description
and wrote a w-regular expression [5], which encodes all
(and only) the behaviors of the system that are admitted
by the specification;

o (STEP.A2) We converted the LTL specification into a
Biichi automaton (BA), which was subsequently conver-
ted into a w-regular expression;

o (STEP.A3) We checked the equivalence among the w-
regular expressions.

We performed those steps using SPOT [76]. The testing
activity did not reveal any non-compliance between the
English formulation and the logical specification of the
patterns, i.e., all the w-regular expressions were equivalent.
While a similar procedure can also be applied in the case
of the CTL specifications, e.g., by considering a restriction of
First Order Logic, in our case this check was not necessary
since the CTL mission specifications correspond with the LTL
specifications where all the temporal operators are scoped

github.com/claudiomenghi/PsAlM

TRANSACTIONS ON SOFTWARE ENGINEERING

Mission management
Mission: No mission selected
NuSmv
Mission2Nusmv LTL

Logic

imulator
Mission2LTL Simulato

Run Simbad simulator Send mission

Mission2CTL Mission2Nusmv CTL

Output Panel

Pattern selection panel

Pattern category: Core Movement

Pattern: Visit

Pattern inputs:

Drag and drop the considered locations and actions and separate them with comma

29

® ©

N

Available locations:

(b) Mission verification and simulation.

Add mission in library

Missions Library

. Instantaneous_Reaction (cond, act)
Strict_Ordered_Visit (I1,12)

(a) Pattern-based mission specification.

Figure 4. Specification of dependable robotic missions with PsALM [69].

with the branch quantifier “for all” (V). Since, given a CTL
formula, if there exists an equivalent LTL formula, it can be
obtained by dropping all the branch quantifiers [5], the CTL
formulation is compliant with the LTL specification.

The steps previously described can be used to check
compliance among English formulations and mission specifi-
cations in future pattern catalogs proposed by the research
community.

6.2 Checking for Errors through Testing

We performed a further experiment to check whether for
some patterns we had formulated two equivalent speci-
fications, but both of them do not represent the mission
requirement. This has been performed through testing. We
randomly created scenarios and assigned to a robot a mission
obtained by combining a set of patterns. We synthesized a
plan for the robot and observed the robot performing the
plans. We checked whether the robot was executing the
plans according to the mission requirement described by the
patterns. This has been performed through the following
steps:

e (STEP.B1) Scenarios were randomly defined over a
map. Testing by exploiting a set of randomly generated
models is a widespread technique to evaluate artifacts
in both software [77], [78], [79] and robotic engineering
communities [80], [81], [82], [83], [84].

o (STEP.B2) To test the LTL specifications, randomly gene-
rated mission requirements were created by combining
a core movement, a trigger, and an avoidance pattern,
and by ensuring that each pattern in our catalog is used
for at least one requirement. Then, (a) the corresponding
LTL specification was negated; (b) the specification and
the model of the scenario was encoded in a model
checker; and (c) the model checker was used to check
whether the models contained a path that satisfied the
mission specification (i.e., violates its negation). If a
path was present, a simulator was used to execute the

Load mission library
Save mission library

Select mission

L
D

(c) Execution on robots.

produced plan. Subsequently, we checked whether the
plan execution was correct with respect to the intent of
the mission specification patterns: when we expected a
plan to not be present in the given model, the model
checker was not able to compute it, and, when a plan
was expected to be present, it was computed by the
model checker. Finally, we simulated the generated
plans by using the Simbad robot simulator and checked
whether the robots achieve their mission requirements.
e (STEP.B3) To build confidence that errors do not exist in
the CTL specification with respect to the LTL ones, an
extra testing activity was performed. The comparison
among the LTL versus the CTL expressions was perfor-
med since given a CTL formula ¢, and an LTL formula
1) obtained by eliminating all the path quantifiers from
¢, either the two formula are equivalent (i.e., ¢ = ¢) or
it does not exist any LTL formula that is equivalent to
@ [5]. Our testing activity aims at determining whether
CTL and LTL formulation are not equivalent. The same
models considered in step (STEP.B2) were used and
LTL and CTL specifications were generated for the
considered mission requirements. The LTL and CTL
specifications, as well as the model of the scenario, were
considered and a model checker was used to check
whether the verification of the specifications returned the
same results, i.e., if the LTL specification was satisfied,
also the CTL specification was satisfied (and viceversa).

While the proposed process can be reused in future works,
the random generation procedure for creating test cases is
problem-specific and must be defined on a per-domain basis.
In the following, we describe the results of executing the
process described above.

e (STEP.B1) We generated 12 scenarios representing floor
plan structures containing 16 locations, where a robot is
deployed. We synthesized plans to be executed by robots
from combinations of mission specification patterns
and checked whether the plan execution is correct

TRANSACTIONS ON SOFTWARE ENGINEERING

Table 5
Results of the verification procedure for checking presence of errors. For
step B2 columns contain the number of times a plan is found (T) and not
found (_L). For step B3 and B3’ columns contain the number of times the
mission requirement is satisfied (T) and violated (_L).

ot
N
s+t
w
o
<2

Mission Requirement

OrdPatrol,UpperRestAvoid, Wait
FairVisit,ExactRestAvoid* ,DelReact
StrOrdVisit,Global Avoid,InstReact
SeqVisit,FutAvoid,BindDel *
OrdVisit,PastAvoid,InstReact
Visit,LowRestAvoid,BindReact
StrictOrdPatrol, FutAvoid, Wait
Patrol,LowRestAvoid,InstReact
FairPatrol, ExactRestAvoid*,DelReact
SeqPatrol,UpperRestAvoid,FastReact™

—HWWREWWRWaN | -
—_ —_ —_ —_
—ooDvonoNs
coRrRrRrRROROR|
—_
=N
N L el Nl |
—_
—_

with respect to patterns’ intent. The plan has been
generated by allocating 12 traversable locations and
4 locations that cannot be crossed, on a 4 x 4 matrix.
The identifiers lo,l1,...,l11 are randomly assigned to
the traversable locations. In 6 of the 12 scenarios, the
robot can move among adjacent cells that are traversable,
while it cannot move within not crossable locations. In
the other 6 scenarios, the robot can cross adjacent cells
from a cell with coordinates [, j] to a traversable one of
[¢,7 + 1 mod j] (and similarly to the j axis). Conditions
and actions specify whether a box is present in a location
(cond in the following), and the capability of the robot in
changing its color (act in the following). We randomly
selected 4 traversable locations in which cond is true
and 4 locations in which act can be performed, that is
the robot can wrap around to the other side of the grid.

o (STEP.B2) In total we generated 10 mission requirements
(Table 5). Core movement patterns are parametrized
with locations [1,l>. The patterns upper, exact, and
lower restricted avoidance are parametrized by forcing
the robot to visit location I3, at most, exactly, and at
least 2 times, respectively. The pattern global avoidance
forces the robot to not visit /3, while the future and past
avoidance force the robot to not visit /3 after and before
condition cond is satisfied, i.e., a room that contains a
box is visited. The wait pattern forces the robot to wait
in location l4 if a box is not present. The other trigger
patterns are parametrized with the action act that must
be executed by the robot in relation with the occurrence
of condition cond.
To test the LTL specifications, we followed the indi-
cations provided in (STEP.B2) and made use of the
NuSMV [64] model checker and of Simbad [65] to
simulate the robot executing the plan.
We did not find any error in the proposed LTL specifi-
cations. The column labeled ExpV1 in Table 5 marked
with T (respectively L) contains the number of cases in
which a plan was (was not) present.

¢ (STEP.B3) We used the NuSMV [64] model checker:
Table 5’s column B3 contains the number of cases in
which the mission requirement was satisfied (T) and
not satisfied (). Mission requirements were generally
not satisfied, since to be satisfied they have to hold
on all the paths of the models. The testing activity did

30

Table 6
Coverage of the proposed mission requirements. Lines contain the total
number of mission requirements (MR), the number of not expressible
(NE) and ambiguous (A) mission requirements and the number of
requirements that lead to a consensus (C) and no consensus (NC).
Columns labeled with Spectra and MP contain the number of
requirements extracted from LTLMoP.

| Spectra |

| 1 23 456 78 9 10 11 | MP | Total
MR | 29 22251 159 4 32 47 53 74 8 436
NE 3 00 0047 00 7 1 8 0 66
A 3 02 103 0101232 7 0 102
C 13 0112129 48 118 20 5 112
NC| 10 29 2048 014 17 12 39 3 156

not reveal any error as NuSMV always returned the
same results for LTL and CTL specifications. Since in
several cases the mission requirement was always not
satisfied, and we also wanted to test cases in which
the mission requirement was satisfied, we relaxed the
mission requirements, by removing the patterns marked
with the * symbol in Table 5. Table 5’s column B3’ shows
that by relaxing the mission requirements there were
cases in which the mission requirements were actually
satisfied. Also in these cases the testing activity did not
reveal any error in the LTL and CTL specifications as
NuSMYV always returned the same results.

7 EVALUATION

We evaluated how effective our pattern catalog is in capturing
mission requirements and producing mission specifications.
We investigated three questions:

o RO1: To what extent are real-world, natural-language
mission requirements expressible using our pattern
catalog? (Section 7.1)

o RQ2: To what extent are real-world mission specificati-
ons expressible using our pattern catalog? (Section 7.2)

o RQ3: Does the pattern catalogue support the formula-
tion of mission requirements and specifications in a set
of real-world scenarios defined in collaboration with our
industrial partners? (Section 7.3)

To cover both aspects and to answer the question above,
we performed three experiments.

7.1

We collected mission requirements in natural language
from available requirements produced from Spectra [63]
and LTLMoP [31], [36]. Spectra is a tool that supports the
design of robotic applications. LTLMoP is a software package
assisting in the development, implementation, and testing of
robot controllers. We checked how the pattern catalog may
have supported developers in the definition of the mission
requirements.

In the case of Spectra, we extracted 428 mission require-
ments from Spectra files of 11 robotic applications. Note
that these mission requirements are realistic, since they
were defined for and executed with real robots. Videos are
available online [85]. The number of mission requirements
(MR) per robotic application is reported in Table 6. In the

Formulation of Mission Requirements (RQ1)

TRANSACTIONS ON SOFTWARE ENGINEERING

Table 7
Number of occurrences of each pattern in the formulation of mission
requirements.

Pattern Occ Pattern Occ Pattern Occ Pattern Occ
Visit 25 SeqVisit 1 OrdVisit 1 InstReact 127
PastAvoid 60 DelReact 50 Wait 3 FutAvoid 48

StrictOrdPat 1 GlobAvoid 25 ExactRest 1

case of LTLMOoP, 8 requirements were extracted from the
corresponding research papers [31], [36] (Table 6 MP column).

Each mission requirement was independently analyzed
by two of the authors. The authors checked whether it
is possible to express the mission requirement using the
mission specification patterns. If one the authors stated
that the requirement is not expressible, it is marked as not
expressible (NE). The number of not expressible mission
requirements is presented in Table 6 in the row NE. If at
least one of the authors found the mission requirement is
ambiguous the author marked it with the flag A. Otherwise,
the mission requirement is labeled with the mission specifica-
tion patterns needed to express the mission requirement.
Then, the mission specification patterns used to express
the mission requirement are considered. If the authors
used the same mission specification patterns to express the
mission requirement, a consensus is reached. The number of
mission requirements that leads to consensus (respectively
no consensus) is indicated in the row labeled C (respectively
NC). The number of occurrences of each pattern is indicated
in Table 7.

The results show that most of the mission requirements
(370 of 436, i.e., = 84%) were expressible using the pattern
catalog, which we consider a reasonable coverage for a
pattern catalog. The 66 mission requirements that are not
covered suggested the introduction of new patterns identified
in Figure 1 with a dashed border. It also shows that the
pattern catalog is effective in real scenarios.

102 mission requirements were ambiguous, meaning that
different interpretations can be given to the proposed mission
requirement. For these requirements, alternative combinati-
ons of patterns have been proposed by the authors to express
the mission requirement. Each of these alternatives represents
a possible way of expressing it in a non-ambiguous manner.
For 156 mission requirements, while the authors judged
that the requirement was not ambiguous, different pattern
combinations were proposed. The combinations of patterns
encode possible ways of expressing the mission requirement
in a non-ambiguous manner.

7.2 Formulation of Mission Specifications (RQ2)

We analyzed the mission specifications contained in the
Spectra examples collected for answering RQ1 . We collected
1216 distinct LTL mission specifications and we analyzed
each of these specifications.!> We verified whether it is
possible to obtain the mission specifications starting from the
proposed patterns, by performing the following steps.
e (STEP.1) For each property we automatically checked
whether it was an instance of a mission specification

12. This number differs from the one of RQ1, since some specifications
were not related with a mission requirement in natural language.

31

pattern or a simple combination of mission specification
patterns through a script that matches pattern occurren-
ces within mission specifications. Results are shown in
Table 8. Among 1216 mission specifications 424 were
obtainable from the proposed patterns.

o (STEP.2) We considered the mission specifications that
did not match any of the proposed patterns. 127 of
these mission specifications are simple statements on the
initial state of the system (no temporal operator is used)
and, thus, did not match any of the proposed patterns.
442 mission specifications concern properties that refer
to variation of the trigger patterns, that we have added to
the pattern catalogue. 224 mission specifications still did
not match any of the proposed patterns. After analysis,
155 among them were expressed using past temporal
operators13 , which are not used in the mission specificati-
ons proposed in this work. In Step 3 we checked whether
these specifications might be reformulated without the
past operators. 69 of these mission specifications, while
they could be rewritten using the proposed patterns,
they are written as complex LTL formulae and thus they
do not match any of our patterns or combination of
them. As these specifications did not “directly” match
any of our patterns (or combinations of them), we did
not consider them as covered.

o (STEP.3) We considered the 155 mission specifications ex-
pressed using past temporal operators and we designed
mission specifications for them. We found that 129 of
the proposed LTL formulae match one of the proposed
patterns, while 26 are complex LTL formulae that did
not match any combination of the patterns. Thus, the
final coverage of the proposed pattern catalog is 92%.

We then analyzed 13 mission specifications expressed
in the form of LTL properties and 22 PCTL properties
considered by Ruchkin et al. [67]. The PCTL properties wrap
an LTL formula into a CTL formula which is scoped with the
probabilistic operator (P). To check for the pattern presence
we transform PCTL formulae into CTL by replacing the
probabilistic operator (P) with the universal quantifier (V)
and by scoping temporal operators of the LTL formulae with
the universal quantifier. Removing the probabilistic operator
in front of the PCTL formula generated an approximation
of the original formula. Scoping the LTL formulae with the
universal quantifier was allowed as the analyzed formulae
belong to the intersection among LTL and CTL . Given
the small number of LTL and CTL mission specifications we
manually checked the presence of patterns in the formulae
(Step 1 in Table 8). The results reported in the Table 8
(Columns labeled with [67]) show that 2 among these
specifications did not match any pattern. The results show
that the pattern system was able to generate almost all
mission specifications (1154 of 1251, i.e., = 92%).

13. The LTL formulae can be formulated using the future or past
operators. We used future operators as commonly done and dictated by
reuse of robotic components (e.g., planners), needed for the real robots
of BOSCH/PAL Robotics. Formulations using past operators can be
obtained using LTL formulae equivalence.

14. This has been checked using a simple state-of-the-art procedure [5].

TRANSACTIONS ON SOFTWARE ENGINEERING

Table 8
Pattern occurrence in the formulation of mission specifications for the
considered mission specifications.

\ LTL | CTL

Pattern | Spectra [67] | [67]
Instantaneous reaction 318 0 0
Visit 52 0 0
- Patrolling 0 1 0
a. Strict Ordered Visit 0 9 18
& Wait 0 1 2
Avoidance/Invariant 21 0 0
Visit and Instantaneous reaction 18 0 0
Strict Ordered Visit and Global Avoidance 0 0 1
Reaction chain (chain of instantaneous reactions) 15 0 0
Non matching 792 1 1
Init 127 - -
~ Fast reaction 379 - -
& Bound reaction 36 - -
n Bound delay 27 - -
Non matching for past 155 - -
Actual non matching 69 - -
(& Fast reaction 103 - -
] Bound delay 26 - -
Actual non matching 26 - -

7.3 Usage in Real-World Robotic Scenarios (RQ3)

We checked how the pattern catalog supports the formulation
of mission requirements and the generation of mission
specifications in real-world robotic scenarios. To this end,
we defined five scenarios (Table9) in collaboration with our
industrial partners BOSCH and PAL Robotics.

The pattern catalog supported the formulation of mission
requirements using the patterns listed in Table9 for the
different scenarios. In all the scenarios, PsALM allowed the
automatic creation of LTL mission specifications from the
mission requirements. The mission specifications were then
executed by the robots by relying on existing planners (see
Figure 3). In our case, we used an existing planner developed
by Meng and Dimarogonas [3] as this was a requirement
of the Co4Robots project [4] which was funding part of
this work. However, the proposed patters are agnostic with
respect to the LTL planner that is used to synthesize plans.
Videos of the robots performing the described missions are
available in our dedicated website [66]. The pattern catalog
effectively supported the creation of mission requirements
and specifications in realistic, industry-sourced scenarios.

8 REFLECTION

The pattern catalog is effective in supporting developers in
defining mission requirements and in generating mission
specifications. Sections 7.1 and 7.3 show that the pattern
catalog effectively supports the definition of mission requi-
rements and that helps in reducing ambiguities in available
mission requirements. Sections 7.2 and 7.3 show that the
pattern catalog effectively supports the generation of mission
specifications. Section 7.3 shows how the pattern catalog
can be used to generate precise, unambiguous, and formal
mission specifications in industry-sourced scenarios.
Methodology. The number of mission requirements analy-
zed is in line with other approaches in the field [44], [49], [50],
[51], [52]. These requirements usually come from exemplar
scenarios used to provide evaluation about effectiveness of

32

research-intensive works. As such, we believe that the scope
of the pattern system is quite wide. Our study is certainly not
exhaustive, as (i) formal specification in robotic application
spreads, and (ii) the types of mission specifications change
over time. As shown in the evaluation, patterns will grow
over time as specifications that do not belong to the catalog
emerge.

Patterns. While the presented patterns are mainly concei-
ved to address needs of robotic mission specification, they
are more generic and can be applied when the need is to
specify some “ordering” among events or action execution.
Rather than requiring robots reaching a set of locations,
coverage and surveillance patterns may also include pro-
positions that refer to generic events. In this sense, the
proposed patterns can be considered as an extension of
the property specification patterns [44], [89] that explicitly
address different ordering among the occurrence of a set of
events. While in this paper we proposed a direct encoding
in LTL and CTL, they may also be expressed in terms of
standard property specification patterns. The instantaneous
reaction pattern may be obtained from the response pattern
scoped with the global operator. The precedence chain and
the response chains patterns [44], [89] (that illustrate the 2
cause-1 effect and 1 cause-2 effects chain), can be composed
with the precedence and response patterns [44], [89] to specify
different ordering among a set of events.

Evaluation. The Spectra tool only supports specifications
captured by the GR(1) LTL fragment used to describe
three types of guarantees: initial, safety, and liveness. Initial
guarantees constraint the initial states of the environment.
Safety guarantees start with the temporal operator G and
constraint the current and next state. Liveness guarantees
start with the temporal operators G F and may not include
the X' operator. These constraints justify the prevalence
of patterns presented in Tables 7, 8, and 5. While the
proposed patterns can be expressed using deterministic Biichi
automata, which can be translated into GR(1) formulae [29],
a manual encoding of the proposed patterns in GR(1) is
complex and error prone. This is confirmed by the fact that
analysis on the standard property specification patterns that
can be expressed in GR(1), and an automatic procedure
to map these patterns on formulae that are in the GR(1)
fragment has been recently conducted [29]. The BA generated
from the LTL formulations associated with the patterns
proposed in this work are deterministic, and thus can be
used as assumptions or guarantees of the GR(1) formula [1],
[2]. Thus, the automatic procedure presented in by Maoz
et al. [29] can be integrated in PSALM to generate Spectra
formulae.

9 RELATED WORK

Temporal logic specification patterns are a well-known solu-
tion to support developers in requirement specification [44],
[49], [50], [51], [90], [91], [92]. Foundational work by Dwyer
et al. [44] has been extended by Konrad and Cheng [50] to
express real-time properties, by Grunske [49] to address real
time and probabilistic properties, and Autili et al. [51] that
proposed a comprehensive catalog. Further use, refinement,
and extensions were developed, for events [90] or automata-
based specification [91], [92]. Property specification patterns

TRANSACTIONS ON SOFTWARE ENGINEERING

Table 9

33

Mission specification patterns for checking the usage in real-world robotic scenarios. Labels SC1, SC2, ..., SC5 identify the considered scenarios.

The column patterns contains the patterns used to formulate the mission requirement.

Scenario Informal Description Patterns
SC1 A robot is deployed within a supermarket and reports about the absence of sold items within a set of locations (i.e. 11, Ordered Patrolling,
12, 13, and 14). Furthermore, if in location {4 (where water supplies are present) a human is detected, it has to perform Instantaneous
a collaborative grasping action and help the human in placing new water supplies. Reaction
SC2 Three robots are deployed within an hospital environment: a mobile platform (Summit [86]), a manipulator (PA10 [87]) Patrolling,
and a mobile manipulator (Tiago [88]), identified in the following as MP, M, and MM, respectively. The robot M is Instantaneous
deployed in hospital storage; when items (e.g., towels) are needed by a nurse or doctors, M has to load them on the = Reaction,
MP. MP should reach the location where the nurse is located. If the item is heavy (e.g., heavy medical equipment), MM Ordered Visit,
should reach the location where the nurse is to help unloading the equipment. When MP and MM are not required =~ Wait
for shipping items they are patrolling a set of locations to avoid unauthorized people entering restricted areas of the
hospital (e.g., radiotherapy rooms).
SC3 A robot is developed within a university building to deliver coffee to employees. The robot reaches the coffee machine, Strict Ordered Visit,
uses the coffee machine to prepare the coffee and delivers it to the employees. Instantaneous
Reaction
SC4 A robot is deployed within a shop to check the presence of intruders during night time. It has to iteratively check for Patrolling,
intruders and report on their presence Instantaneous
Reaction
SC5 A robot is deployed within a company to notify employees in presence of a fire alarm. If a fire is detected, the robotis Visit,
send to different areas of the company to ask employees to leave the building. Instantaneous
Reaction

use in specific domains has been investigated in the literature,
including service-based applications [52], safety [93] and
security [94]. Patterns have also been considered in the
robotic domain [95], [96], [97].

For example, Rothwell et al. [98], [99] proposed a specifi-
cation pattern editor for vehicle mission planning. However,
the work is not focusing on proposing and collecting mission
specification patterns for the robotic domain. Differently, we
proposed patterns, discuss their variations, and provided
example traces that do and do not fulfill the patterns.

Domain-Specific Languages (DSLs) [21], [28], [100], [101],
[102] have been proposed for various purposes including
production and analysis of behavior descriptions, property
verification, and planning. However, features incorporated
within DSLs are usually arbitrarily chosen by relying on the
domain-specific experience of robotic engineers. Instead, spe-
cification patterns presented in this paper are collected from
missions encountered in the scientific literature, evaluated
in industrial uses, and aim at supporting a wide range of
robotic needs. We believe that the presented patterns consist
of basic building blocks that can be reused within existing
and new robotic DSLs. Moreover, support for developers on
solving the mission specification problem is also provided in
the literature by graphical tools that simplify the specification
of LTL formulae [22], [23], [24]. Our work is complementary
with those; graphical logic mission specifications can also be
integrated within PsALM.

Reasoning on system behavior is the main driver electing
temporal languages and logics as the most widely adopted
specification formalisms. Other system concerns may dic-
tate specification in different system domains. Since robot
movement occurs in space, we identify this concern as additi-
onally relevant. Spatial reasoning [103] has been traditionally
considered in diverse domains such as safety properties [104],
including query languages [105] and logics for the analysis
of spatial data [106], [107], where the focus has been mainly
in relations that exist between regions, lines, and points of a
spatial model [108], [109]. In addition, spatial logics have also
been studied in the context of process calculi [110], graph

databases [111] or hybrid automata [112]. We identify investi-
gation of complex spatial robotic behaviours as an important
avenue for future work, especially regarding specification
of spatio-temporal behavior [113]. Sun et al. [104] propose a
combination of metric and spatial logics for verification of
safety properties in cyber-physical systems. Shao et al. [112]
present a composition of a topological and temporal logic
over hybrid automata. A combination of CTL and SLCS is
developed [114] to study bike sharing systems, while run-
time verification of spatio-temporal behaviors of complex
systems is studied by Nenzi et al. [115]. Signal Temporal
Logic (STL) [6] and Metric Temporal Logic (MTL) [116] is
also used in the literature to express missions that contian
explicit timing constraints [7], [8].

10 CONCLUSIONS

In this paper, we proposed a pattern catalog for mission
specification of mobile robots. We identified patterns by ana-
lyzing mission requirements that have been systematically
collected from scientific publications. We further presented
PsALM, a tool that uses the proposed patterns to concretely
support robotic developers in designing complex missions.
We evaluated the support provided by the pattern catalog
in the definition of real-world missions, as well as the
correctness of the mission specifications.

Currently, our patterns can be combined by using simple
AND and OR logical operators. By using these simple
operators our coverage was adequate for the great majority
of the mission requirements and specification collected from
literature. However, specification can be extended to support
patterns’ nesting. Analyzing how patterns can be nested
within each other may increment coverage, something which
is the subject of future investigation. Future extensions of our
mission specification pattern catalog will also consider time,
space, and probability and therefore the mapping to other
logics, such as STL [6], MTL [116], TCTL [117], and CSL [118].
Moreover, we will consider extensions of the patterns to
collaborative or team aspects of robotic missions. Although

TRANSACTIONS ON SOFTWARE ENGINEERING

the formal languages adopted so far constitute the majority
of mission specification, we will also investigate the use of
spatial logics [103], [106], [107], [110], [119] to express more
complex spatial robotic behaviors and conduct user studies.

ACKNOWLEDGEMENTS

This work has received funding from the European Research
Council under the European Union’s Horizon 2020 research
and innovation programme (grant agreements No 731869
and No 694277).

We thank Domenico Bianculli for insightful comments. We
are grateful for feedback provided by the anonymous TSE
reviewers.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive (1)
designs,” in International Workshop on Verification, Model Checking,
and Abstract Interpretation. Springer, 2006, pp. 364-380.

R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar,
“Synthesis of reactive (1) designs,” Journal of Computer and System
Sciences, vol. 78, no. 3, pp. 911-938, 2012.

M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local 1tl specifications,” The International Journal of Robotics
Research, vol. 34, no. 2, pp. 218-235, 2015.

http:/ /www.codrobots.eu/, “Co4robots,” 2019.

C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

O. Maler and D. Nickovic, “Monitoring temporal properties of
continuous signals,” in Formal Techniques, Modelling and Analysis
of Timed and Fault-Tolerant Systems. ~Springer, 2004, pp. 152-166.
Y. V. Pant, H. Abbas, R. A. Quaye, and R. Mangharam, “Fly-by-
logic: Control of multi-drone fleets with temporal logic objectives,”
in International Conference on Cyber-Physical Systems. IEEE, 2018.
R. Mangharam, “Fly-by-logic: A tool for unmanned aircraft system
fleet planning using temporal logic,” in NASA Formal Methods.
Springer, 2019, p. 355.

IFR, “World Robotic Survey,” https://ifr.org/ifr-press-
releases /news/world-robotics-survey-service-robots-are-
conquering-the-world-, 2016.

D. Brugali, Software engineering for experimental robotics.
2007, vol. 30.

E. A. Lee, “Cyber physical systems: Design challenges,” in
Symposium on Object Oriented Real-Time Distributed Computing
(ISORC). 1IEEE, 2008, pp. 363-369.

J. Pérez, N. Alj, J. A. Carsi, I. Ramos, B. Alvarez, P. Sanchez, and
J. A. Pastor, “Integrating aspects in software architectures: Prisma
applied to robotic tele-operated systems,” Information and Software
Technology, vol. 50, no. 9-10, pp. 969-990, 2008.

N. Gamez and L. Fuentes, “Architectural evolution of famiware
using cardinality-based feature models,” Information and Software
Technology, vol. 55, no. 3, pp. 563-580, 2013.

D. Bozhinoski, D. D. Ruscio, I. Malavolta, P. Pelliccione, and
I. Crnkovic, “Safety for mobile robotic system: a systematic
mapping study from a software engineering perspective,” Journal
of Systems and Software (JSS), to appear, 2019.

D. Brugali and E. Prassler, “Software engineering for robotics,”
IEEE Robotics Automation Magazine, vol. 16, no. 1, pp. 9-15, March
2009.

C. Lignos, V. Raman, C. Finucane, M. Marcus, and H. Kress-
Gazit, “Provably correct reactive control from natural language,”
Autonomous Robots, vol. 38, no. 1, pp. 89-105, 2015.

A. Nordmann, N. Hochgeschwender, and S. Wrede, “A survey on
domain-specific languages in robotics,” in Simulation, Modeling,
and Programming for Autonomous Robots. Springer, 2014.

M. Broy, “Declarative specification and declarative programming,”
in Software Specification and Design. 1EEE, 1991.

J. E. Kramer and M. Scheutz, “Development environments for
autonomous mobile robots: A survey,” Autonomous Robots, vol. 22,
pp. 101-132, 2007.

Springer,

’

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]

[28]

[29]

[30]

[31]

[32]

(33]

(34]

[35]

[36]

[37]

[38]

(39]

[40]

(41]

[42]

34

S. Maniatopoulos, M. Blair, C. Finucane, and H. Kress-Gazit,
“Open-world mission specification for reactive robots,” in Inter-
national Conference on Robotics and Automation (ICRA). IEEE,
2014.

D. Bozhinoski, D. D. Ruscio, I. Malavolta, P. Pelliccione, and
M. Tivoli, “Flyaq: Enabling non-expert users to specify and
generate missions of autonomous multicopters,” in Automated
Software Engineering (ASE). IEEE, 2015.

I. Lee and O. Sokolsky, “A graphical property specification
language,” in High-Assurance Systems Engineering Workshop. IEEE,
1997.

M. H. Smith, G. J. Holzmann, and K. Etessami, “Events and
constraints: A graphical editor for capturing logic requirements of
programs,” in International Symposium on Requirements Engineering.
IEEE, 2001.

S. Srinivas, R. Kermani, K. Kim, Y. Kobayashi, and G. Fainekos,
“A graphical language for 1tl motion and mission planning,” in
International Conference on Robotics and Biomimetics (ROBIO). IEEE,
2013.

R. Arkin, “Missionlab v7. 0,” 2006.

T. Balch, “Teambots,” 2004. [Online]. Available: www.teambots.org
S. Maoz and Y. Sa’ar, “Aspectltl: an aspect language for ltl
specifications,” in International conference on Aspect-oriented software
development. ACM, 2011.

D. D. Ruscio, I. Malavolta, P. Pelliccione, and M. Tivoli, “Auto-
matic generation of detailed flight plans from high-level mission
descriptions,” in Model Driven Engineering Languages and Systems,
ser. MODELS. ACM, 2016.

S. Maoz and J. O. Ringert, “GR(1) synthesis for LTL specification
patterns,” in Foundations of Software Engineering (FSE). ~ACM,
2015.

M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local LTL specifications,” The International Journal of Robotics
Research, 2015.

C. Finucane, G. Jing, and H. Kress-Gazit, “LTLMoP: Experi-
menting with language, temporal logic and robot control,” in
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2010, pp. 1988-1993.

C. Menghi, S. Garcia, P. Pelliccione, and J. Tumova, “Multi-robot
1tl planning under uncertainty,” in Formal Methods, K. Havelund,
J. Peleska, B. Roscoe, and E. de Vink, Eds. Cham: Springer
International Publishing, 2018, pp. 399—-417.

X. C. Ding, M. Kloetzer, Y. Chen, and C. Belta, “Automatic
deployment of robotic teams,” IEEE Robotics Automation Magazine,
vol. 18, no. 3, pp. 75-86, Sept 2011.

Y. Endo, D. C. MacKenzie, and R. C. Arkin, “Usability evaluation
of high-level user assistance for robot mission specification,”
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 34, no. 2, pp. 168-180, 2004.

S.Maoz and J. O. Ringert, “On the software engineering challenges
of applying reactive synthesis to robotics,” in Workshop on Robotics
Software Engineering, ser. RoSE "18. ACM, 2018.

W. Wei, K. Kim, and G. Fainekos, “Extended LTLvis motion
planning interface,” in International Conference on Systems, Man,
and Cybernetics. 1EEE, 2016.

C. Lignos, V. Raman, C. Finucane, M. Marcus, and H. Kress-Gazit,
“Provably correct reactive control from natural language,” vol. 38,
no. 1, Jan 2015, pp. 89-105.

V. Raman, C. Lignos, C. Finucane, K. C. Lee, M. Marcus, and
H. Kress-Gazit, “Sorry dave, i'm afraid i can’t do that: Explaining
unachievable robot tasks using natural language,” University of
Pennsylvania Philadelphia United States, Tech. Rep., 2013.

H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” Transactions on
robotics, vol. 25, no. 6, pp. 1370-1381, 2009.

C. Yoo, R. Fitch, and S. Sukkarieh, “Online task planning and
control for fuel-constrained aerial robots in wind fields,” The
International Journal of Robotics Research, vol. 35, no. 5, pp. 438453,
2016.

U. S. Shah and D. C. Jinwala, “Resolving ambiguities in natural
language software requirements: a comprehensive survey,” ACM
SIGSOFT Software Engineering Notes, 2015.

N. Kiyavitskaya, N. Zeni, L. Mich, and D. M. Berry, “Requirements
for tools for ambiguity identification and measurement in natural
language requirements specifications,” Requirements engineering,
2008.

www.teambots.org

TRANSACTIONS ON SOFTWARE ENGINEERING

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

(52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

J. O. Ringert, B. Rumpe, and A. Wortmann, “A requirements
modeling language for the component behavior of cyber physical
robotics systems,” arXiv preprint arXiv:1409.0394, 2014.

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in
property specifications for finite-state verification,” in International
Conference on Software Engineering (ICSE). 1EEE, 1999.

E. A. EMERSON, “{CHAPTER} 16 - temporal and modal logic,”
in Formal Models and Semantics, ser. Handbook of Theoretical
Computer Science, . V. LEEUWEN, Ed. Elsevier, 1990, pp. 995 —
1072.

H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” Transactions on
Robotics, vol. 25, no. 6, pp. 1370-1381, 2009.

G. J. Holzmann, “The logic of bugs,” in Foundations of Software
Engineering (FSE). ACM, 2002.

M. Autili, P. Inverardi, and P. Pelliccione, “Graphical scenarios
for specifying temporal properties: An automated approach,”
Automated Software Engg., vol. 14, no. 3, 2007.

L. Grunske, “Specification patterns for probabilistic quality pro-
perties,” in International Conference on Software Engineering (ICSE).
IEEE, 2008.

S. Konrad and B. H. Cheng, “Real-time specification patterns,” in
International conference on Software engineering (ICSE). 1EEE, 2005.
M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and A. Tang,
“Aligning qualitative, real-time, and probabilistic property specifi-
cation patterns using a structured english grammar,” Transactions
on Software Engineering, vol. 41, no. 7, pp. 620-638, 2015.

D. Bianculli, C. Ghezzi, C. Pautasso, and P. Senti, “Specification
patterns from research to industry: a case study in service-based
applications,” in International Conference on Software Engineering
(ICSE). 1IEEE, 2012.

R. A. Brooks et al., “Intelligence without reason,” Artificial intelli-
gence: critical concepts, vol. 3, pp. 10763, 1991.

D. Brugali and M. Reggiani, “Software stability in the robotics
domain: issues and challenges,” in International Conference on
Information Reuse and Integration. IEEE, 2005.

D. Brugali, “Stable analysis patterns for robot mobility,” in Software
Engineering for Experimental Robotics. Springer, 2007, pp. 9-30.
A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimal
multi-robot path planning with temporal logic constraints,” in
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2011.

G. E. Fainekos, A. Girard, H. Kress-Gazit, and G.]J. Pappas,
“Temporal logic motion planning for dynamic robots,” Automatica,
vol. 45, no. 2, pp. 343-352, 2009.

M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Revising
motion planning under linear temporal logic specifications in par-
tially known workspaces,” in International Conference on Robotics
and Automation (ICRA). IEEE, 2013.

E. M. Wolff, U. Topcu, and R. M. Murray, “Automaton-guided
controller synthesis for nonlinear systems with temporal logic,”
in International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2013.

H. Kress-Gazit, “Robot challenges: Toward development of verica-
tion and synthesis techniques [errata],” IEEE Robotics & Automation
Magazine, vol. 18, no. 4, pp. 108-109, 2011.

S. Maoz and J. O. Ringert, “Synthesizing a lego forklift controller
in GR(1): A case study,” in Proceedings Fourth Workshop on Synthesis
(SYNT), 2015.

S. Maoz and J. O. Ringert, “On well-separation of GR(1) speci-
fications,” in Foundations of Software Engineering (FSE). ACM,
2016.

S. Maoz and J. O. Ringert. Spectra. http://smlab.cs.tau.ac.il/
syntech/spectra/. Accessed: 2018-06-20.

A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV:
A new symbolic model verifier,” in Computer Aided Verification
(CAV). Springer, 1999.

L. Hugues and N. Bredeche, “Simbad: an autonomous robot
simulation package for education and research,” in International
Conference on Simulation of Adaptive Behavior. Springer, 2006.
“Accompanied material and data for this paper,” http://www.
roboticpatterns.com /,2018.

I. Ruchkin, J. Sunshine, G. Iraci, B. Schmerl, and D. Garlan, “IPL:
An integration property language for multi-model cyber-physical
systems,” in International Symposium on Formal Methods. Springer,
2018.

[68]

[69]

[70]
[71]
[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

(80]

(81]

[82]

(83]

[84]

(85]
(86]
(87]

[88]
(89]

[90]

[91]

[92]

[93]

35

C. Menghi, C. Tsigkanos, T. Berger, P. Pelliccione, and C. Ghezzi,
“Property specification patterns for robotic missions,” in Interna-
tional Conference on Software Engineering: Companion Proceeedings,
2018.

C. Menghi, C. Tsigkanos, T. Berger, and P. Pelliccione, “PsALM:
Specification of dependable robotic missions,” in International
Conference on Software Engineering (ICSE): Companion Proceeedings,
2019.

A. Pnueli, “The temporal logic of programs,” in Foundations of
Computer Science. 1EEE, 1977.

M. Ben-Ari, A. Pnueli, and Z. Manna, “The temporal logic of
branching time,” Acta informatica, 1983.

“Google Scholar Robotic Venues,” https:/ /scholar.google.com/
citations?view_op=top_venues&hl=en&vq=eng_robotics, 2017.

P. Schillinger, S. Kohlbrecher, and O. von Stryk, “Human-robot
collaborative high-level control with application to rescue robo-
tics,” in International Conference on Robotics and Automation (ICRA).
IEEE, 2016.

S. L. Smith, J. Tumovéa, C. Belta, and D. Rus, “Optimal path
planning for surveillance with temporal-logic constraints,” The
International Journal of Robotics Research, vol. 30, no. 14, pp. 1695—
1708, 2011.

https:/ /www.youtube.com/watch?v=ib2hKuRO6n4, “PsALM vi-
deo.” 2018.

A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault,
and L. Xu, “Spot 2.0 — a framework for LTL and w-automata
manipulation,” in Automated Technology for Verification and Analysis.
Springer, 2016.

P. Saadatpanah, M. Famelis,]. Gorzny, N. Robinson, M. Chechik,
and R. Salay, “Comparing the Effectiveness of Reasoning Forma-
lisms for Partial Models,” in Workshop on Model-Driven Engineering,
Verification and Validation. ACM, 2012.

M. Famelis, R. Salay, and M. Chechik, “Partial Models: Towards
Modeling and Reasoning with Uncertainty,” in International
Conference on Software Engineering (ICSE). 1EEE, 2012.

C. Menghi, P. Spoletini, M. Chechik, and C. Ghezzi, “Supporting
verification-driven incremental distributed design of components,”
in Fundamental Approaches to Software Engineering. ~Springer, 2018.
C. Menghi, S. Garcia, P. Pelliccione, and J. Tumova, “Towards
multi-robot applications planning under uncertainty,” in Inter-
national Conference on Software Engineering (ICSE): Companion
Proceeeding, 2018.

C. Menghi, S. Garcia, P. Pelliccione, and J. Tumova, “Multi-robot
LTL planning under uncertainty,” in International Symposium on
Formal Methods (FM). Springer, 2018.

G. Best,]. Faigl, and R. Fitch, “Multi-robot path planning for
budgeted active perception with self-organising maps,” in Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2016.

B. Takdcs and Y. Demiris, “Multi-robot plan adaptation by
constrained minimal distortion feature mapping,” in International
Conference on Robotics and Automation (ICRA). IEEE, 2009.

A. Stentz, “Map-based strategies for robot navigation in unknown
environments,” in AAAI spring symposium on planning with incom-
plete information for robot problems, 1996, pp. 110-116.

Syntech. http://smlab.cs.tau.ac.il/syntech/lego/. Accessed: 2018-
06-20.

Robotnik. https:/ /www.robotnik.eu/mobile-robots /
summit-xI-hl/. Accessed: 2018-06-20.

Mitsubishi. https:/ /robotik.dfki-bremen.de/en/research/
robot-systems/mitsubishi-pa-10-7c.html. Accessed: 2018-06-20.
P. robotics. http://tiago.pal-robotics.com/. Accessed: 2018-06-20.
“Order Specification Patterns,” http:/ /patterns.projects.cs.ksu.
edu/documentation/patterns/order.shtml.

D. O. Paun and M. Chechik, “Events in linear-time properties,” in
International Symposium on Requirements Engineering. 1EEE, 1999.
D. Remenska, T. A. C. Willemse, J. Templon, K. Verstoep, and
H. Bal, “Property specification made easy: Harnessing the power
of model checking in uml designs,” in International Federated
Conference on Distributed Computing Techniques. Springer, 2014.
K. C. Castillos, FE. Dadeau, J. Julliand, B. Kanso, and S. Taha,
A Compositional Automata-Based Semantics for Property Patterns.
Springer, 2013.

F. Bitsch, “Safety patterns - the key to formal specification of
safety requirements,” in International Conference on Computer Safety,
Reliability and Security, 2001.

http://smlab.cs.tau.ac.il/syntech/spectra/
http://smlab.cs.tau.ac.il/syntech/spectra/
http://www.roboticpatterns.com/
http://www.roboticpatterns.com/
https://scholar.google.com/citations? view_op=top_venues&hl=en&vq=eng_robotics
https://scholar.google.com/citations? view_op=top_venues&hl=en&vq=eng_robotics
http://smlab.cs.tau.ac.il/syntech/lego/
https://www.robotnik.eu/mobile-robots/summit-xl-hl/
https://www.robotnik.eu/mobile-robots/summit-xl-hl/
https://robotik.dfki-bremen.de/en/research/robot-systems/mitsubishi-pa-10-7c.html
https://robotik.dfki-bremen.de/en/research/robot-systems/mitsubishi-pa-10-7c.html
http://tiago.pal-robotics.com/
http://patterns.projects.cs.ksu.edu/docum entation/patterns/order.shtml
http://patterns.projects.cs.ksu.edu/docum entation/patterns/order.shtml

TRANSACTIONS ON SOFTWARE ENGINEERING
[94] G. Spanoudakis, C. Kloukinas, and K. Androutsopoulos, “Towards
security monitoring patterns,” in Symposium on Applied Computing.
ACM, 2007.

C. Coté, D. Létourneau, F. Michaud, and Y. Brosseau, “Software

design patterns for robotics: Solving integration problems with

marie,” in Workshop of Robotic Software Environment, IEEE Internati-

onal Conference on Robotics and Automation, 2005.

N. M. Nasrabadi, “Pattern recognition and machine learning,”

Journal of electronic imaging, vol. 16, no. 4, p. 049901, 2007.

J. Buchli and A. J. Ijspeert, “Distributed central pattern generator

model for robotics application based on phase sensitivity analysis,”

in International Workshop on Biologically Inspired Approaches to

Advanced Information Technology. Springer, 2004, pp. 333-349.

C. Rothwell, A. Eggert, M.]. Patzek, G. Bearden, G. L. Calhoun,

and L. R. Humphrey, “Human-computer interface concepts for

verifiable mission specification, planning, and management,” in

AIAA Infotech@ Aerospace (1@ A) Conference, 2013, p. 4804.

C. Rothwell, M. Patzek, and L. Humphrey, “Verifiable task

assignment and scheduling controller,” 711 Human Performance

Wing Wright-Patterson AFB United States, Tech. Rep., 2017.

D. C. Schmidt, “Guest editor’s introduction: Model-driven engi-

neering,” Computer, vol. 39, no. 2, pp. 25-31, 2006.

F. Ciccozzi, D. D. Ruscio, I. Malavolta, and P. Pelliccione, “Adop-

ting MDE for specifying and executing civilian missions of mobile

multi-robot systems,” Journal of IEEE Access, vol. 2, no. 1, 2016.

[102] S. Adam, M. Larsen, K. Jensen, and U. P. Schultz, Towards Rule-
Based Dynamic Safety Monitoring for Mobile Robots. Springer, 2014,
pp- 207-218.

[103] M. Aiello, I. Pratt-Hartmann, J. van Benthem et al., Handbook of
spatial logics. Springer, 2007, vol. 4.

[104] H. Sun, J. Liu, X. Chen, and D. Du, “Specifying cyber physical
system safety properties with metric temporal spatial logic,” in
Asia-Pacific Software Engineering Conference (APSEC). IEEE, 2015.

[105] J. Kennedy, P. Barclay et al., “A survey of query languages for
geographic information systems,” 1996.

[106] C. H. Papadimitriou, D. Suciu, and V. Vianu, “Topological queries
in spatial databases,” in Symposium on Principles of database systems.
ACM, 1996.

[107] R.S. Bivand, E. Pebesma, and V. Gémez-Rubio, Spatial Data Import

and Export. Springer, 2013.

M. J. Egenhofer and J. Herring, “Categorizing binary topologi-

cal relations between regions, lines, and points in geographic

databases,” The, vol. 9, pp. 94-1, 1990.

M. J. Egenhofer, A. U. Frank, and J. P. Jackson, “A topological

data model for spatial databases,” in Symposium on Large Spatial

Databases. Springer, 1989, pp. 271-286.

L. Cardelli, P. Gardner, and G. Ghelli, “A spatial logic for querying

graphs,” in Automata, Languages and Programming. Springer, 2002.

L. Cardelli and L. Caires, “A spatial logic for concurrency,” in

Theoretical Aspects of Computer Software (TACS), vol. 1, 2001, pp.

1-37.

[112] Z. Shao and]. Liu, Spatio-temporal Hybrid Automata for Cyber-

Physical Systems. Springer, 2013, pp. 337-354.

C. Tsigkanos, T. Kehrer, and C. Ghezzi, “Modeling and verification

of evolving cyber-physical spaces,” in Proceedings of the 2017 11th

Joint Meeting on Foundations of Software Engineering, ESEC/FSE

2017, 2017, 2017, pp. 38-48.

V. Ciancia, D. Latella, M. Massink, and R. Pakauskas, “Exploring

spatio-temporal properties of bike-sharing systems,” in Self-

Adaptive and Self-Organizing Systems Workshops (SASOW), 2015

IEEE International Conference on. IEEE, 2015, pp. 74-79.

L. Nenzi, L. Bortolussi, V. Ciancia, M. Loreti, and M. Massink,

“Qualitative and quantitative monitoring of spatio-temporal pro-

perties,” in Runtime Verification. Springer, 2015, pp. 21-37.

R. Koymans, “Specifying real-time properties with metric tempo-

ral logic,” Real-time systems, vol. 2, no. 4, pp. 255299, 1990.

R. Alur, “Techniques for automatic verification of real-time

systems,” Ph.D. dissertation, Stanford, CA, USA, 1992.

A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton, “Verifying

continuous time markov chains,” in International Conference on

Computer Aided Verification (CAV). Springer-Verlag, 1996.

[119] R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev,
“Spatial logic+ temporal logic=?" in Handbook of spatial logics.
Springer, 2007, pp. 497-564.

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[108]

[109]

[110]

[111]

[113]

[114]

[115]

[116]
[117]

[118]

36

Claudio Menghi is an Associate Researcher at
the Interdisciplinary Centre for Security, Reliability
and Trust (SnT), at the University of Luxembourg.
After receiving his PhD at Politecnico di Milano,
he was post-doctoral researcher at Chalmers |
University of Géteborg, Sweden. His current rese-
arch interests lie in software engineering, with a
special interest in cyber physical systems (CPS),
and formal verification.

Christos Tsigkanos is university assistant at the
Technical University of Vienna, Austria. Previ-
ously, he was post-doctoral researcher at Poli-
tecnico di Milano, Italy where he also received his
PhD (2017). His current research interests lie in
the intersection of distributed systems and soft-
ware engineering, and include self-adaptive and
dependable systems, requirements engineering
and formal verification.

Patrizio Pelliccione is Associate Professor at
the Chalmers University of Technology and Uni-
versity of Gothenburg, Sweden, Department of
Computer Science and Engineering and Associ-
ate Professor at the University of LAquila, Italy
(double affiliation). He got his PhD in 2005 at the
University of LAquila (Italy) and from February 1,
2014 he is Docent in Software Engineering, title
given by the University of Gothenburg. His rese-
arch topics are mainly in software engineering,
software architectures modelling and verification,
autonomous systems, and formal methods. He has co-authored more
than 120 publications in journals and international conferences and
workshops in these topics. He has been on the program committees
for several top conferences and is a reviewer for top journals in the
software engineering domain. He is very active in European and Natio-
nal projects. In his research activity he has collaborated with several
industries such as Volvo Cars, Volvo AB, Ericsson, Jeppesen, Axis
communication, Systemite, Thales ltalia, Selex Marconi telecommuni-
cations, Siemens, Saab, TERMA, etc. More information is available at
http://www.patriziopelliccione.com.

Carlo Ghezzi is an Emeritus Professor in the
Dipartimento di Elettronica, Informazione e Bi-
oingegneria, Politecnico di Milano, ltaly. He is
past president of Informatics Europe. He has
been the editor in chief of the ACM Transactions
on Software Engineering and Methodology and
associate editor of the IEEE Transactions on Soft-
ware Engineering. He is currently an associate
editor of the Communications of the ACM and the
Science of Computer Programming. His research
has been mostly focusing on different aspects
of software engineering. He co-authored more than 200 papers and
eight books. He coordinated several national and international research
projects and has been a recipient of an ERC Advanced Grant. He
received the ACM SIGSOFT Outstanding Research Award (2015) and
the Distinguished Service Award (2006). He is a fellow of the ACM and
the IEEE, a member of the European Academy of Sciences and the
Italian Academy of Sciences.

TRANSACTIONS ON SOFTWARE ENGINEERING

Thorsten Berger is an Associate Professor in
Software Engineering at Chalmers University
of Technology and University of Gothenburg in
Sweden. His research focuses on model-driven
software engineering, program analysis, and em-
pirical software engineering. He develops met-
hods and tools for engineering highly configura-
ble software. Thorsten Berger received the PhD
degree in computer science from the University
of Leipzig in Germany in 2013, supported by a
scholarship from the German National Academic
Foundation. He worked as a Postdoctoral Fellow at the University of
Waterloo in Canada and the IT University of Copenhagen in Denmark.
He received grants from the Swedish Research Council (competitive
early-career grant), the Wallenberg Autonomous Systems Program,
Vinnova Sweden (EU ITEA project), and the European Union (H2020
project). He received best-paper awards at the 2015 ACM SIGPLAN
conference on MODULARITY and the 2013 European Conference on
Software Maintenance and Reengineering (CSMR, now IEEE SANER).
His service was recognized with a distinguished reviewer award at the
2018 IEEE/ACM ASE conference.

37

