
Visualization of Feature Locations
with the Tool FeatureDashboard

Sina Entekhabi∗
Middle East Technical University

Ankara, Turkey

Anton Solback
Chalmers University of Technology

Gothenburg, Sweden

Jan-Philipp Steghöfer
Chalmers | University of Gothenburg

Gothenburg, Sweden

Thorsten Berger
Chalmers | University of Gothenburg

Gothenburg, Sweden

ABSTRACT
Modern development processes and issue trackers often use the
notion of features to manage a software system. Features allow com-
municating system characteristics across stakeholders and keeping
an overview understanding—especially important for systems that
exist in many different variants. However, maintaining, evolving or
reusing features (e.g., propagating across variants, or integrating
into a platform) requires knowing their locations to prevent exten-
sive feature-location recovery. We advocate the use of embedded
annotations, added directly into software assets by the developers
during development. To support this process and provide immedi-
ate benefits to developers when using such annotations, we present
the open-source tool FeatureDashboard. It extracts and visualizes
features and their locations using different views and metrics. As
such, it encourages developers recording features and their locati-
ons early, to prevent feature identification and location efforts, as
well as it supports system comprehension.

CCS CONCEPTS
• Software and its engineering → Software maintenance tools;
Software product lines.
ACM Reference Format:
Sina Entekhabi, Anton Solback, Jan-Philipp Steghöfer, and Thorsten Berger.
2019. Visualization of Feature Locations with the Tool FeatureDashboard.
In 23rd International Systems and Software Product Line Conference - Volume
B (SPLC ’19), September 9–13, 2019, Paris, France. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3307630.3342392

1 INTRODUCTION
Features are typically used to describe the functional and non-
functional characteristics of a software system. Modern agile deve-
lopment as well as software product-line engineering (SPLE) proces-
ses use features to manage single or variant-rich systems. Features
∗Sina Entekhabi contributed to the tool during an internship at Chalmers University
of Technology, Sweden.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’19, September 9–13, 2019, Paris, France
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6668-7/19/09. . . $15.00
https://doi.org/10.1145/3307630.3342392

are units of communication, reuse, maintenance, and evolution, and
they allow keeping an overview understanding of a system [5–7].

Effectively using features requires knowing their locationswithin
the source assets of a software system. When not recorded, this
information needs to be recovered, which is a daunting and error-
prone task [15]—despite being one of the most common activities
of developers. Notably, the locations of features are often scattered
across the codebase [18, 19], further complicating this task. While
automated techniques to recover feature locations have been pro-
posed, none of them has found industrial adoption, mainly due to
their low accuracy [9, 20], challenging their application in practice.

Using features is especially important in variant-rich systems.
Organizations often realize variants through clone&own [8, 10] and
propagate features across the cloned variants. When the number of
variants challenges system evolution and maintenance, organiza-
tions often migrate the cloned variants into an integrated platform,
which requires identifying features and their locations, and orga-
nizing the features in a feature model.

We take a different route and advocate the use of features early,
and embedding feature locations directly into software assets. We
rely on a lightweight annotation technique we developed before [2,
12], comprising in-code annotations, file and folder mappings, and
a textual feature model in Clafer [3] syntax. Adding annotations
during development is cheap, and they naturally co-evolve with the
code (reducing annotation maintenance). They were also shown to
be beneficial for variant maintenance and platform migration [12]
as well as program comprehension [14]. However, standard code
editors lack support for such annotations, while it is difficult for
developers to extract feature information from large codebases ma-
nually. Consequently, using such annotations requires tool support
that can extract and visualize the developer-defined features and
annotations, supporting browsing and utilizing features.

We present FeatureDashboard,1 a lightweight tool usable as
an Eclipse plugin or standalone program that extracts features
from the feature model as well as feature-to-code mappings and
embedded annotations, and visualizes these using different views,
as demonstrated below. We provide a demo video on the project’s
website,2 showing a walk-through of FeatureDashboard’s views.

2 TOOL OVERVIEW
We assume that a developer continuously documents features in
a textual feature model (created in the project’s root folder) and

1https://bitbucket.org/easelab/featuredashboard
2https://bitbucket.org/easelab/featuredashboard/wiki/Demo

https://doi.org/10.1145/3307630.3342392
https://doi.org/10.1145/3307630.3342392
https://bitbucket.org/easelab/featuredashboard
https://bitbucket.org/easelab/featuredashboard/wiki/Demo

SPLC ’19, September 9–13, 2019, Paris, France Entekhabi, Solback, Steghöfer, Berger

MobilePhone
GPS ?
xor Resolution

Basic
HD

Calls
or Media ?

Camera
MP3

EarPhone ?

Resolution: Test.java, report.docx,
Basic: req.pdf, Main.java, charts.jpg
GPS: Reconfigure.java, Adapter.java

Media
Camera
MP3

_.cfr

_.feature-folder

_.feature-file

Figure 1: Examples of a textual (Clafer) feature model and
mapping files, relating features to files and folders, used in
FeatureDashboard

feature locations using in-code annotations as well as file and folder
mapping files. The latter allow relating entire files or folders to a
set of features (cf. Section 3). We encourage developers to perform
this documentation continuously and immediately, when the fea-
ture information is still fresh in the developer’s mind. To utilize
FeatureDashboard’s views, the developer selects the desired project
in Eclipse’s Project Explorer, and then opens the FeatureDashbo-
ard view. This view is the entry point for the tool, and it allows
scanning the selected project’s source tree for the feature model,
the mapping files, and the in-file annotations. Once the scan is
complete, the FeatureDashboard view represents all features in the
project as extracted in the project’s feature model, the annotated
files, and the mapping files. By selecting features in this view and
opening other, dedicated views of FeatureDashboard, the features
are visualized for the developer. The developer can synchronise
FeatureDashboard’s view at any time when changes have been
made in the project.

Feature location extraction and its visualization simplify com-
mon tasks such as change impact analysis where a developer needs
to understand which parts of the code need to be changed when a
feature is changed. It is also useful when introducing new features
to understand the relationship to existing ones and to get a better
understanding of the features, where they are implemented, and
how they are tangled. FeatureDashboard can thus be used during
the entire development lifecycle. FeatureDashboard’s views can be
classified into graphs and metrics views, and the majority work
on one specific project. FeatureDashboard also offers a view to
compare features across projects, which helps to detect inconsisten-
cies (e.g., in the naming of features across projects) or to compare
projects based on features.

1 //&begin[Resolution]
2 void func(boolean p, boolean q){
3 //&line[HD]
4 boolean r = p || q ;
5
6 //#defOpen[Basic]
7 if(p == true){
8 //#def[GPS]
9 int x = 0;
10 }
11 //#defClose[Basic]
12 }
13 //&end[Resolution]

Figure 2: Java code with embedded annotations, whose syn-
tax is customizable with regular expressions

Figure 3: FeatureDashboard view

3 FEATURE DOCUMENTATION
Features and their locations are specified by developers as follows.
Feature Model. We support feature models expressed in the Clafer
syntax [3], having an arbitrary name with cfr extension, and stored
in each project’s root folder. Currently, only the first file found
will be parsed; future tool versions might include the possibility
to merge feature models. Figure 1 shows an example. In Clafer,
each feature is represented by its name in a single line, with the
hierarchy being represented by tab indentation. Feature constraints
(e.g., dependencies) can also be expressed, but currently only for
documentation reasons (e.g., for a future product-line migration),
without any visualization.
EmbeddedAnnotations. Relying on our annotation approach [12],
two kinds of annotations exist: for relating a feature to a single line
of a file, and for relating a feature to multiple consecutive lines. The
annotations are always escaped through the respective language’s
commenting syntax, to avoid affecting any other tooling (e.g., edi-
tors or compilers). Single-line annotations contain the name of
exactly one feature. To relate consecutive lines of file to a feature,
a pair of begin and end annotations is used in FeatureDashboard,
each of which containing the same feature name. In the current
version of FeatureDashboard no multiple features supported in one
annotation, but it can be easily extended to support that.

In the Preferences of FeatureDashboard, developers can custo-
mize the syntax of these in-file annotations with regular expres-
sions. FeatureDashboard recognizes the feature name as the first
capturing group. Consequently, each regular expression must con-
tain a capturing group sub-expression like (.+). Figure 2 shows an
example with Java code.
Mapping Files. Whole files and folders are mapped to features via
simple text files named with the extensions .feature-folder and
.feature-file (to avoid Eclipse hiding them, we suggest using _
as the file name). A .feature-folder file is put into the respective
folder and just contains the names of the features (per line) that are
intended to be mapped to that folder. The .feature-file files are
also stored in folders, but contain feature names, separated with a
colon from the list of file names (separated with commas) mapped
to the feature. Each line of this file maps a feature to some files
which exist in the same folder. Figure 1 shows examples.

4 VIEWS
Feature Dashboard View. This view is the main entry point for
working with FeatureDashboard. For the selected project it shows

Visualization of Feature Locations with FeatureDashboard SPLC ’19, September 9–13, 2019, Paris, France

Figure 4: View for relations-
hips of features to files

Figure 5: View for relations-
hips of features to folders

the feature hierarchy (from the model) and feature locations. Users
can modify the preferences to filter files (e.g., specific file extension
or folders). Three tabs are provided: Feature Model, Resources, and
Traces. The features and the resources shown within the first two
tabs are selectable, and the selections are used in the Traces tab.

The Feature Model tab shows the selected project’s features along
with their hierarchy according to the featuremodel defined in Clafer
syntax in the project. The feature model representation of the model
in Fig. 1 is shown in Fig. 3 within this tab. Here, features that are
annotated in some source files of the project but not in the feature
model are represented in red as root features. In this tab the features
can be filtered and selected. Features selected in this tab are used
by the tab Traces to show the selected features’ locations and by
other visualisation views, as explained in the following.

The Resources tab represents all files and folders in the imported
project with their corresponding hierarchy, and allows filtering and
selecting the resources for the user as shown in Fig. 3. Resources
selected are used in the Traces tab to show the features related to
those resources, and by other views of FeatureDashboard as well.
Together with the Feature Model tab, it is thus possible to focus on
relevant features and resources in all views of FeatureDashboard.

The Traces tab shows the feature locations of the selected features
in the Feature Model tab and the selected resources in the Resources
tab. Fig. 3 shows an example of feature locations in the Traces tab
for the features and resources selected in the Feature model and
Resources tabs. Each feature location is listed with its feature, the
path within the project, and where applicable, the line numbers. If
the relation of a feature and a file or folder is stated in a mapping
file, the line numbers column is empty. The table of traces can be
sorted and its data can be exported. In addition, double-clicking
on a table row containing an embedded annotation will open the
corresponding file and highlight the annotated line or code block.
Feature-to-File View. The relations between features selected in
the FeatureDashboard view and relevant files are visualized in this
view. Figure 4 shows an example. A connection between a feature
(represented by a green rectangle) and a file (blue rectangle) indica-
tes that the relation is established in a mapping file or by feature
annotations within the file itself. It is also indicated if multiple
selected features are implemented in the same files.

Double-clicking the Additional files box will show additional files
that a feature is implemented in, but the other features are not. The
reasoning behind this is to divide the information into different mo-
dules to reduce the elements in a single view. In this view, clicking
on a file (docs.pdf in Fig. 4) will highlight the connections, which

Figure 6: Common features
between projects

Figure 7: Features tangled
with Camera

makes it easier to see which features are implemented in that file.
Clicking on a file box will open that file in the editor and highlight
the annotated code block.
Feature-to-Folder View. Similar to the Feature-to-File view, this
view visualizes the relations between features and folders, as shown
in Fig. 5. Green and blue rectangles represent features and folders,
respectively. The links between a folder and a feature indicate that
either the feature is annotated in a file within that folder or the
relation is directly mentioned by a mapping file. Hierarchical folder
representations are also shown by links between folders.
Common Features View. This view visualizes features different
projects (or variants) have in common. A matrix that relates all
open projects (rows) to all found features (columns) indicates that
a feature is contained in a project with a green cell. An example is
shown in Fig. 6.
Feature Tangling View. This view visualizes features that are
tangled with each other. This is useful for identifying the parts of
a system that are potentially affected if that particular feature is
modified. It is also possible to see whether some selected features
are tangled with each other in the Feature-to-File view. The Fea-
ture Tangling view, however, visualizes all tangled features for a
selection. As with the other views, the considered feature must be
selected in the FeatureDashboard view first. Figure 7 shows the tang-
led features with feature Camera. The blue rectangle in this view
represents the selected feature, and the green ones are the features
tangled with it. The link between the features can be double-clicked
to see more detailed information regarding the two features in the
Feature-to-File and Feature-to-Folder views.
Metrics View. All metrics proposed by Andam et al. [2] are calcu-
lated and shown in this view. The Feature Metrics tab shows feature
metrics for the selected features in the selected projects, as shown
in Fig. 8. The Resource Metrics tab shows feature-related metrics
for different resources and averages for suitable metrics from the
Feature Metrics tab. If the user has not selected any resources in

Figure 8: Metrics for features

SPLC ’19, September 9–13, 2019, Paris, France Entekhabi, Solback, Steghöfer, Berger

Figure 9: Metrics for resources

the FeatureDashboard view, metrics for the entire workspace are
shown. Figure 9 demonstrates resource metrics in this tab.
History view. An experimental view was created to show how a
selected metric for a feature evolved over time. Figure 10 shows how
a feature’s lines of feature code (LOFC) have change in successive
commits based on the git history. This experimental feature will be
developed further in the future.

5 RELATEDWORK
The most closely related work is our previous tool FLOrIDA [2],
from which FeatureDashboard gathers inspiration. However, FLO-
rIDA could not be released as open source andwas a standalone Java
Swing application, limiting integration into modern tools as well
as extensibility. Both FeatureDashboard and FLOrIDA encourage
developers to use embedded annotations [12], which can in the fu-
ture by supported by a recommender system [1]. FeatureDashboard
provides a superset of FLOrIDA’s functionality, but does not have
a built-in, automated feature-location tool (FLOrIDA has one based
on the Lucence search engine).

Other works, such as CIDE [13], FeatureCommander [11], PE-
oPL [4, 17], and ViewInfinity [21], focus on visualizing variation
points and optional features (omitting mandatory features, which
are the focus of FeatureDashboard). They also focus on visualizing
those variation points using different coloring techniques.

6 CONCLUSION
We described FeatureDashboard, an open-source tool to extract
features and their locations in different artifacts, to calculate useful
metrics for features, and to visualize the results. FeatureDashboard
was designed to support developers recording feature informa-
tion early and continuously, while obtaining immediate benefits

Figure 10: Experimental view showing a feature’s history

through the different views that help browsing feature locations and
keeping an overview understanding of the project. FeatureDashbo-
ard is open for extensions. We consider integrating it with Eclipse
Capra3 [16], a traceability management tool, which would allow
managing and visualizing the traceability between features and
many more types of assets, such as requirements, design models,
and documentation with non-textual representations. In addition,
we are currently evaluating the use of FeatureDashboard in indus-
trial settings with our partners with a focus on the visualisations
and the usefulness of the metrics.

REFERENCES
[1] Hadil Abukwaik, Andreas Burger, Berima Andam, and Thorsten Berger. 2018.

Semi-Automated Feature Traceability with Embedded Annotations. In ICSME.
[2] Berima Andam, Andreas Burger, Thorsten Berger, and Michel RV Chaudron.

2017. Florida: Feature location dashboard for extracting and visualizing feature
traces. In VaMoS.

[3] Kacper Bak, Zinovy Diskin, Michal Antkiewicz, Krzysztof Czarnecki, and Andrzej
Wasowski. 2016. Clafer: unifying class and feature modeling. Software & Systems
Modeling 15, 3 (2016), 811–845.

[4] B. Behringer, J. Palz, and T. Berger. 2017. PEoPL: Projectional Editing of Product
Lines. In ICSE.

[5] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Adeline Silva,
Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. 2015. What is a
Feature? A Qualitative Study of Features in Industrial Software Product Lines. In
SPLC.

[6] Thorsten Berger, Divya Nair, Ralf Rublack, Joanne M. Atlee, Krzysztof Czarnecki,
and Andrzej Wasowski. 2014. Three Cases of Feature-Based Variability Modeling
in Industry. In MODELS.

[7] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wąsowski. 2013. A Survey of Variability
Modeling in Industrial Practice. In VaMoS.

[8] John Businge, Openja Moses, Sarah Nadi, Engineer Bainomugisha, and Thorsten
Berger. 2018. Clone-Based Variability Management in the Android Ecosystem. In
ICSME.

[9] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature location in source code: a taxonomy and survey. Journal of software:
Evolution and Process 25, 1 (2013), 53–95.

[10] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial
Software Product Lines. In CSMR.

[11] Janet Feigenspan, Maria Papendieck, Christian Kästner, Mathias Frisch, and
Raimund Dachselt. 2011. FeatureCommander: colorful# ifdef world.. In SPLC
Workshops. 48.

[12] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. 2015.
Maintaining feature traceability with embedded annotations. In SPLC.

[13] Christian Kästner, Salvador Trujillo, and Sven Apel. 2008. Visualizing Software
Product Line Variabilities in Source Code.. In SPLC (2). 303–312.

[14] Jacob Krueger, Gul Calikli, Thorsten Berger, Thomas Leich, and Gunter Saake.
2019. Effects of Explicit Feature Traceability on Program Comprehension. In
FSE.

[15] Jacob Krüger, Thorsten Berger, and Thomas Leich. 2018. Features and How to Find
Them: A Survey of Manual Feature Location. Taylor & Francis Group, LLC/CRC
Press.

[16] Salome Maro and Jan-Philipp Steghöfer. 2016. Capra: A Configurable and Exten-
dable Traceability Management Tool. In RE.

[17] Mukelabai Mukelabai, Benjamin Behringer, Moritz Fey, Jochen Palz, Jacob Krü-
ger, and Thorsten Berger. 2018. Multi-View Editing of Software Product Lines
with PEoPL. In 40th International Conference on Software Engineering (ICSE),
Demonstrations Track.

[18] Leonardo Passos, Jesus Padilla, Thorsten Berger, Sven Apel, Krzysztof Czarnecki,
and Marco Tulio Valente. 2015. Feature Scattering in the Large: A Longitudinal
Study of Linux Kernel Device Drivers. In MODULARITY.

[19] Leonardo Passos, Rodrigo Queiroz, Mukelabai Mukelabai, Thorsten Berger, Sven
Apel, Krzysztof Czarnecki, and Jesus Padilla. 2018. A Study of Feature Scattering
in the Linux Kernel. IEEE Transactions on Software Engineering (2018). Preprint.

[20] Julia Rubin and Marsha Chechik. 2013. A survey of feature location techniques.
In Domain Engineering.

[21] Michael Stengel, Mathias Frisch, Sven Apel, Janet Feigenspan, Christian Kastner,
and Raimund Dachselt. 2011. View infinity: a zoomable interface for feature-
oriented software development. In ICSE.

3https://eclipse.org/capra

https://eclipse.org/capra

	Abstract
	1 Introduction
	2 Tool Overview
	3 Feature Documentation
	4 Views
	5 Related Work
	6 Conclusion
	References

