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Abstract—Engineering software amounts to implementing and
evolving features. While some engineering approaches advocate
the explicit use of features, developers usually do not record
feature locations in software artifacts. However, when evolving
or maintaining features—especially in long-living or variant-rich
software with many developers—the knowledge about features
and their locations quickly fades and needs to be recovered. While
automated or semi-automated feature-location techniques have
been proposed, their accuracy is usually too low to be useful
in practice. We propose a semi-automated, machine-learning-
assisted feature-traceability technique that allows developers
to continuously record feature-traceability information while
being supported by recommendations about missed locations. We
show the accuracy of our proposed technique in a preliminary
evaluation, simulating the engineering of an open-source web-
application that evolved in different, cloned variants.

Index Terms—software evolution, clone&own, variability, fe-
ature annotations, feature traceability, recommendation system,
feature location, machine learning

I. INTRODUCTION

Engineering software is a process of developing and evolving
the features of a system. Features abstractly represent the
functional and non-functional aspects of a system. They are
intuitive entities understood by many different roles involved
in the development. Developers, project leads, marking experts,
and customers, among others, use them for communication
and planning. Many different definitions of feature exist [1].
For instance, a feature can be seen as a “logical unit of
behavior specified by a set of functional and non-functional
requirements” [2] or as a “distinguishable characteristic of a
concept (system, component, etc.) that is relevant to some
stakeholder of the concept” [3]. While various software-
engineering methods advocate the use of features, such as
feature-driven development, features are especially important
in variant-rich systems, such as software product lines [4].

Evolving and maintaining features—such as adding, remo-
ving, extending or propagating features—requires knowing the
features and their (potentially scattered [5]) locations in the
software artifacts. Unfortunately, recording and maintaining
feature locations is tedious and error-prone [6], often requi-
ring heavyweight tooling, such as traceability databases [7].
Traceability is even more problematic in long-living and large
systems, especially when many variants exist that have been
cloned [8]–[10] and need to be maintained in parallel.

Without recording and maintaining feature locations, they
need to be recovered. Since manual recovery is laborious [11],

[12], many automated feature-location techniques have been
proposed [13]–[15]. These classify into static, dynamic or
textual approaches, providing different degrees of accuracy.
Unfortunately, such automated techniques are considered
expensive, difficult to setup, and rather inaccurate when used
in practice [13]. Therefore, it is helpful to have techniques
that support traceability between features and their locations in
software artifacts during system development and maintenance.

We believe that documenting features and their locations
immediately and continuously during development benefits
from the developers’ fresh knowledge. Researchers [16]–[18]
have proposed using embedded feature annotations, which
evolve smoothly with the software artifacts they are embedded
in. This method is cheap with low maintenance effort. As
shown in a simulation study [16], continuously annotating
artifacts is robust, and the benefits outweigh the costs of
recording annotations, especially for variant-rich systems with
many cloned variants. Yet, this method requires that developers
annotate continuously and do not forget too many annotations,
which typically requires an incentive for them.

We propose to semi-automate the continuous feature-
annotation process with a recommender system. It learns from
previous annotations done by the developers and reminds them
when they forgot to annotate newly written code. As such, the
recommender system is an incentive for developers to record
features continuously, while it catches the cases in which the
annotations are missed. To this end, we use machine learning
(ML) to analyze source code changesets that are committed to
the version-control system. The ML algorithm learns the system
features along the commits, then it proposes the developer who
commits a changeset without annotations to which features
it may belong. In this case, a developer can decide to put
annotations or ignore the recommendation.

We present the implementation of our recommender system
and preliminary evaluation results that show a promising
accuracy when simulating the history of an open source system
with four cloned variants. We also present our plans of further
validation on another open source system and a commercial
firmware for a smart motor controller.

II. FEATURE ANNOTATION RECOMMENDER SYSTEM

We briefly describe the annotation system we use and how our
proposed recommender system supports it.



1 ////&line[System Monitor]
2 void HEAPUTILModuleOp ( tModOp ModOp)
3 {
4 //&begin[State Visualizer]
5 i f (ModOp == CloseModOp )
6 {
7 / / #12024−Remove w a r n i n g s
8 / / f o r GNU c o m p i l e r
9 }

10 //&end[State Visualizer]
11 }
12 ////&line[Report Maker]

Listing 1. Example of embedded feature annotations (from [20])

A. Embedded Feature Annotations

We rely on the simple feature-annotation technique of Ji et al.
[16]. It comprises: a syntax for feature annotations, which are
put as comments into artifacts (regardless of the programming
language); textual mapping files that annotate whole files or
folders and which are put into the folder hierarchy; and a textual
feature model in Clafer [19] syntax, which is put into the root
folder. The latter just contains feature names, one per line, with
indentation representing the feature hierarchy. Listing 1 shows
an example of embedded annotations in source code. Using
the system, the developer records feature annotations during
development. For instance, when adding a feature, she adds it
to the feature model and puts feature annotations around the
new code. When removing a feature, she removes it from the
feature model and can immediately locate its code for removal.

B. Recommender Scenario

Our recommender system supports the following traceability
scenario. Developers continuously create and maintain feature
traceability using the embedded feature annotations during
development. These manual annotations are used by our
recommender system to learn feature locations. When the
developer commits new code to a version-control system, our
recommender system analyzes the changeset, divides it into
smaller chunks, and predicts feature locations. If a chunk is
classified to belong to a feature and is not annotated as such,
the recommender asks her whether she forgot to annotate the
code. The developer can then decide to add annotations, thereby
putting it to the exact location, or ignore the recommendation.
Figure 1 illustrates this scenario, with our recommender system
integrated with a version control system.

The advantage over other feature-location techniques is that
the recommender learns from previous annotations, whose
characteristics can be specific to the system, the development
practices or the feature notion according to the developer. Note
our recommender only predicts locations, not features itself.
So, a new feature must be recorded by the developer with at
least one location once in order to allow our recommender
predicting locations in newly added code.

For machine learning algorithms, identifying features in
source code is a multi-label classification problem, as a code
snippet may belong to more than one feature. Thus, our feature
traceability system must be able to assign multiple labels to
code snippets if needed. To achieve this, each code snippet that

Fig. 1. Our recommender system integrated with a version-control system

needs to be classified or used for training the system should
be formalized as we describe shortly in Sec. III-C.

III. RESEARCH METHODOLOGY

Our goal is to explore and evaluate the ML-based recommender
system we proposed above. We strive to evaluate its prediction
accuracy with experiments that simulate real development from
the viewpoint of developers who use the recommender.

A. Research Questions

RQ1. What is the most accurate ML classification algorithm
in predicting feature locations within source code based
on previous feature annotations? We explore different ML
algorithms in terms of their precision and recall in predicting
features. The result is an ML classification model that is used
as a base for software tools for recommending annotations.
RQ2. How many feature-location examples must be available
to give the most accurate ML prediction results? We explore
the required amount of training data for the ML classification
algorithm in order to achieve an acceptable prediction accuracy.
This helps to understand after how much development effort
the recommender can be become effective. We investigate this
question after selecting the most accurate ML algorithm with
the best code granularity.

B. Subject System

We conduct experiments that simulate the development history
of a variant-rich system. Specifically, we need a project that
is available with its source and that has recorded features and
feature annotations over its development history, which we
can use as a ground truth. We select Clafer Tools [20], whose
source code has been annotated with feature annotations over
its whole history [16]. Clafer Tools is a portfolio of web
applications written in Javascript supporting the use of the
Clafer modeling language [19]. It has four variants developed
using cloning. It has around 10K lines of code, 20 annotated
features (i.e., the ML classification classes) and in total 14,000
feature annotations (i.e., ground truth size). We had access to
its version control history consisting of commits of feature-
annotated code over the development lifecycle. We could
therefore replay the control version history to simulate the
prediction of feature locations during development.

In the future, we also plan to simulate our proposed recom-
mender on an industrial firmware for a smart motor controller



and further open-source systems with feature annotations [21],
[22]. This will also allow us to compare our recommender
system across different domains.

C. Recommender Simulation

Our experiments simulate the development history of Clafer
tools until its release 0.3.5, along which developers add new
code to a system upon which a trained ML algorithm predicts
feature locations in the newly added code. The consecutive
experiments simulate the ML performance over time as the
system evolves (i.e., from the beginning of development when
the system has few lines of code, to the end, when it is fully
developed with thousands of lines of code).

Dataset preparation. As depicted in the upper part of Fig. 2,
our data preparation includes the following steps.

Identifying feature-related code in changeset. We defined
stage N of a code as its version at the Nth commit in the change
repository. Thus, we identified the delta code between two
consequent stages (e.g., between stage N+1 and the previous
stage N). Subsequently, we extracted the feature-related code
pieces from the delta using pattern matching that analyzes the
embedded comments in the code that include feature names. For
example, if an annotation is found in the code change set (e.g.,
//&line[System Monitor]), the code block containing it gets
associated with the respective feature (i.e., System Monitor).

Classification granularity. This represents the level of
abstraction used for classifying the feature-related code. After
evaluating different abstraction levels (i.e., consecutive lines,
entire files, or entire folders), we decided to chunck the chan-
geset on the line level due to observed prediction improvement.
Hence, the smallest possible chunk is a single line of code and
the largest is an entire file as a block of consecutive lines. If
the changeset contains an entire folder, all source code files
are abstracted as a single block of lines. Afterwards, we label
the chunks with the name of their related features and save
them in the Feature Corpus (i.e., ground truth dataset).

Similarity calculation and classification model. Identifying
the feature location in source code is considered as a
multi-label classification problem, in which the set of features
of the system are the classes that the ML algorithm is
trained on. Accordingly, each saved block in the corpus gets
formalized as a data vector D using the following metrics:
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Fig. 2. ML simulation experiments
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whereby x = |Feature| is the feature name; ~f = Feature
Presence Condition metric, which indicates if a certain code
block belongs to the feature or not by 1 or 0; ~c = Cosine Text
Similarity metric, which represents the similarity between two
vectors of an inner product space that measures the cosine of
the angle between them; ~s = Source Code Location Distance
metric, which calculates the relative distance of the code block
to known feature locations in the project; and ~n = Number
of Already Existing Annotations metric, which sums up the
number of existing annotations for a feature. Calculating D
for each block in the corpus builds up the feature vector model
that is used for training the ML algorithms.

ML training and evaluation. The ML algorithm is trained
on the feature vector model and evaluated on newly added
code as depicted in the lower part of Fig. 2. We repeat this
process for each stage simulating the software evolution.

Experimental setup. Our experimental goal is to determine
the best way to utilize the ML capability in predicting features
in source code. Hence, we run a set of experiments, in which
we alternate different well-known binary classification ML
algorithms including Support Vector Machine (SVM), k-Nearest
Neighbor (kNN), and Decision Tree (DT).

Evaluation method and metrics. Each ML classification
algorithm is trained on the feature vector model of stage N
results in a classifier model that we test on data vectors for
new code blocks from stage N+1. As seen in the right of Fig. 1,
the input for a classifier test is a new set of data vectors for an
unclassified code blocks. The classifier output then indicates to
which features a code block may belong to. For each stage in
the code change repository, we run the designed experiments
and record the performance for each algorithm on the different
classification granularities. The overall performance of each
algorithm is calculated as an average of its individual scores.

To quantify the performance, we use the well-known
classification accuracy metrics: precision (i.e., the ratio of
correctly identified and labeled code blocks by the algorithm to
the total number of code blocks it identifies and labels), recall
(i.e., the ratio of correctly identified and labeled code blocks by
the algorithm to the total number of existing code blocks) and
the F-measure (i.e., the harmonic mean of precision and recall
that is calculated as: (2*Precision*Recall)/(Precision+Recall)).

IV. EMERGENT RESULTS AND DISCUSSION

We now report the emergent results of the first executed case
and postulate answers to the research questions.
Execution implementation. We developed a Java tool that
performs the data pre-processing, generates the ML classifica-
tion model, and creates the evaluation results. The tool reuses
information retrieval libraries from the Lucene search engine
and ML libraries from the WEKA toolkit.
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Fig. 3. Accuracy of kNN for the simulated development stages

RQ1 and RQ2. The best performing algorithm is the kNN, in
which the F-measure ranges between 50 % and 60 % after
a certain training phase (see Fig. 3). In fact, the accepted
classification accuracy depends on the domain. For reminding
developers about missing annotations in changesets of source
code, we believe 60 % accuracy is good, especially that there
are influencing factors that are out of control and further
information unavailable (e.g., the experience of the developer
who writes the code, the complexity of the implemented feature,
the dependency between features, etc.). The drops in the kNN
classification accuracy, after reaching a stable range, are due
to major code refactorings that introduced new features that
required more training for the algorithm. As seen, the size of
the initial training set required for achieving stable range of
prediction results for the kNN algorithm is about 60 commits
with an average of 5 annotations or data vectors each. For the
SVM algorithm, the prediction results are not promising, as
the F-measure stables at a range between around 7 % and 15 %.
The DT algorithm results are even lower, making it unusable.
Discussion. Despite the promising results of the preliminary
case study, we plan to validate the method more thoroughly.
The data preparation stage, in this case, included code blocks
of annotated features only (40 % of the total code). However, in
real life, there are code blocks that do not belong to any feature
(e.g., system code or configuration code). Accordingly, these
blocks will be raised up frequently by the recommender that
will try to classify them under irrelevant features. Hence, we
plan to extend the ground truth dataset with code blocks that
do not belong to features and label them with a new label (e.g.,
“common code”). Then, we plan to retrain the ML algorithm on
the extended dataset and retest the feature prediction accuracy.
We expect this to significantly improve our results.

Our recommender expects that every ML prediction is
assessed by the person who commits the code change. So far,
the required assessment frequency is not clear. To determine
adequate frequency, it may be necessary to evaluate the
recommender in an industrial case. Indeed, for the first number
of commits (∼70% in our case study), the recommender
requires more assessments, as the system is still in the learning
phase and with a lot of false positives. Nevertheless, the
assessment frequency is expected to decrease over time as
reminding developers frequently to add feature tags will
decrease the number of cases in which they forget to annotate.

Moreover, our approach is sensitive to the content of the
ground truth dataset (i.e., the existing examples of labeled

source code blocks). Therefore, we plan to literally replicate
the case study on three unique cases, outlined in II. This
facilitates obtaining more significant results and drawing
generalizable conclusions on the cross-case level. Although, the
first case results show that our approach works with room for
improvements, replicating cases brings up more observations
about the approach potentials and limitations.

In our experiments, we used the default parameter values for
all algorithms. Accordingly, we see a potential improvement for
the prediction results by tuning the parameters of the algorithms.
We also did not optimize the code chunks extracted from the
change dataset repository. Thus, we see more optimization
potential by removing programming-language-specific syntax.

V. RELATED WORK

Many feature location techniques were conceived: static [6],
[23], [24], dynamic [25] and textual techniques [26], [27].
Additionally, there are techniques that use textual similarity,
analyze static dependencies or use call graphs [6], [15], [23],
[24], [26], and program traces [25]–[28]. A good overview on
these different techniques is provided by Cornelissen et al. [25]
and Robillard [23]. These techniques try to retroactively recover
features or feature locations—information in the developers’
minds during development that was lost. As a survey shows
[13] it is intrinsically difficult to automatically recover this
information. We propose a different route: We encourage
developers to continuously record features and we support them
with a traceability system that learns from previous annotations.

Ji et al. [16] propose feature traceability using embedded
annotations. We build our recommender upon theri work by
using their annotation system for recording feature locations.

LEADT [29] is an Eclipse plug-in used to manually annotate
variable code. LEADT also provides a kind of recommender
system for feature location in legacy code, yet, its use case is
different. It focuses on retroactive feature location in legacy
code by exploiting the extraction of feature dependencies.
LEADT supports only JAVA, while our feature recommendation
system is programming-language-independent. LEADT focuses
solely on optional features (i.e., when a product line is adopted)
while we strive to support single-system development and
clone&own-based development for many variants. Of course,
the feature annotations are especially helpful for adopting a
product line by integrating the cloned variants [16].

The Suade tool [30] offers suggestions for software in-
vestigations. Developers trigger recommendations on what
code elements to investigate among all related ones. They
explicitly specify the set of relevant fields and methods (i.e.,
the context elements), and Suade uses method-call and field-
access relations to automatically retrieve related elements. It
finally ranks the retrieved elements by extracting a dependency
graph of all their static dependencies from the source code to
the context elements. In our approach, developers do not need
manual triggering for the system as it acts autonomously during
development. Also, developers do not specify the context as
the system learns the different features independently.



Guo et al. present an approach [31] that focuses on deep
learning (an Recurrent Neural Network model) to incorporate
requirements artifact semantics and domain knowledge into the
tracing solution. This approach does not take into account an
interactive feedback-driven step. It is also shown that neural
networks are not fast enough to provide instant feedback to
developers once they forget to annotate a code snippet.

Recommendation systems are widely used. Robillard et
al. [32] and Pakdeetrakulwong et al. [33] summarize and
categorize some of the available approaches, finding that all
listed recommendation systems do not focus on feature identi-
fication, tracing, or documentation. Instead, they recommend
associated requirements, similar source code snippets, bug-
fixing suggestions, or comments published on internet forums
related to a particular source code by other developers. None
of these recommendation systems addresses our use case.

VI. CONCLUSION

We proposed a feature-traceability recommender system that
can be integrated seamlessly in an off-the-shelf version control
system. It relies on the idea of tagging source code with
feature annotations continuously during development [16],
enabling traceability between the implementation artifacts and
the features of the system. By analyzing and formalizing the
different annotated source code blocks, the traceability system
autonomously learns the features of the software system.

The feature traceability recommender is not a fully automatic
solution for tagging source code with feature information, but
it provides recommendations on the feature affinity for new
source code blocks once a developer forgets to annotate it. Our
preliminary case study shows promising results, even though,
our implementation does not contain all possible optimizations.
We reached an overall accuracy of about 50 %. In the future,
we plan for more case studies with optimizations for the
configurations of the used machine learning algorithm and the
handling of the source code blocks. Additionally, evaluating
the technique acceptance by practitioners in terms of usefulness
and ease-of-use will be taken into account.
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