A Classification of Variation Control Systems

Lukas Linsbauer Thorsten Berger Paul Griinbacher
CD Lab MEVSS Chalmers | University of Gothenburg CD Lab MEVSS
Johannes Kepler University Linz Sweden Johannes Kepler University Linz
Austria Austria

Abstract

Version control systems are an integral part of today’s soft-
ware and systems development processes. They facilitate
the management of revisions (sequential versions) and vari-
ants (concurrent versions) of a system under development
and enable collaboration between developers. Revisions are
commonly maintained either per file or for the whole sys-
tem. Variants are supported via branching or forking mecha-
nisms that conceptually clone the whole system under de-
velopment. It is known that such cloning practices come
with disadvantages. In fact, while short-lived branches for
isolated development of new functionality (a.k.a. feature
branches) are well supported, dealing with long-term and
fine-grained system variants currently requires employing
additional mechanisms, such as preprocessors, build systems
or custom configuration tools. Interestingly, the literature
describes a number of variation control systems, which pro-
vide a richer set of capabilities for handling fine-grained
system variants compared to the version control systems
widely used today. In this paper we present a classification
and comparison of selected variation control systems to get
an understanding of their capabilities and the advantages
they can offer. We discuss problems of variation control sys-
tems, which may explain their comparably low popularity.
We also propose research activities we regard as important
to change this situation.

CCS Concepts -« Software and its engineering — Soft-
ware configuration management and version control
systems;

Keywords Variability management, software product lines,
configuration management, software repositories

ACM Reference Format:
Lukas Linsbauer, Thorsten Berger, and Paul Griinbacher. 2017.
A Classification of Variation Control Systems. In Proceedings of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5524-7/17/10...$15.00
https://doi.org/10.1145/3136040.3136054

GPCE’17. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3136040.3136054

1 Introduction

Managing sequential and concurrent versions of software
artifacts of different types is a constant challenge in software
engineering. Version control systems, such as Subversion or
Git, are widely used for this purpose. They support handling
sequential revisions at the file or system level. Concurrent
versions—a.k.a. variants—of software systems are supported
by cloning entire systems or creating branches for specific
development tasks. However, variants are currently not hand-
led at the levels of files or features. This impedes flexibility,
since only a fixed set of variants may exist. Developers thus
need to use mechanisms and tools like preprocessors, build
systems such as Make, or even custom configuration so-
lutions as for example in the Linux kernel in addition to
version control systems. Such configurable systems (a.k.a.
software product lines [3]) manage variants in terms of fea-
tures—configuration options that are mapped to variation
points (e.g., preprocessor directives), which allows deriving
individual variants by selecting the desired features. It has
been pointed out, however, that managing variation points
manually is cumbersome and error-prone [19, 42, 56].

We consider variation control systems (VarCS) that aim at
overcoming these limitations. A VarCS supports creating and
editing views of development artifacts for specific system
variants based on features. It thus reduces the complexity
of changing variants and frees developers from manually
maintaining variation points. Existing work on VarCS is not
limited to product line research. We found that different re-
search communities have been developing a wide range of
VarCS solutions with capabilities for handling long-term and
fine-grained system variants. Often, these systems are not
widely known and there is also only little evidence demon-
strating their success in real-world scenarios. Obviously, the
terminology used to describe these approaches is often not
consistent across the different research communities, which
challenges their comparison.

We present a classification of existing VarCS to get an
understanding of their capabilities and the advantages they
offer. We further reveal possible reasons why VarCS never
became as widely used as version control systems and what
kind of research needs to be done to change this situation.
Our paper is intended for both researchers and practitioners


https://doi.org/10.1145/3136040.3136054
https://doi.org/10.1145/3136040.3136054
https://doi.org/10.1145/3136040.3136054

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

interested in what shortcomings prevented the success of
VarCS and what needs to be added to make them successful.

2 Background and Related Work

Software changes over time and often needs to exist in mul-
tiple variants to address varying stakeholder requirements,
such as different hardware, functionality, or energy consump-
tion. Versions represent states of evolving software artifacts
that are put under version control. Versions are created with
different intents: a version intended to supersede its prede-
cessor is commonly called revision, while versions intended
to coexist are called variants [13]. Two research communi-
ties have developed a wide range of approaches to handle
software revisions and variants.

2.1 Software Configuration Management

The research community of software configuration manage-
ment (SCM) distinguishes between extensional and inten-
sional versioning [13]: extensional versioning means that
previously constructed versions can be retrieved, e.g., by a
unique number. This means that all versions are explicit and
have been checked in once before. Intensional versioning is
used when consistent versions of large spaces are created
automatically in a flexible manner, that is, new combina-
tions may be constructed on demand. The SCM community
has mainly focused on managing the evolution of software
artifacts by tracking revisions, largely sidestepping variant
support [40, 41]. Although the community recognizes the
need [62], the actual variant-management support is still lim-
ited in contemporary SCM tools. Variants are supported per
system (i.e., per customer) via branching or forking mecha-
nisms that conceptually clone the whole system. However,
while such ad hoc management of variants using clone-and-
own [18] is simple and cheap, it does not scale with the
number of variants. Existing tools lack support for handling
variants at the level of files or features. This limits their
flexibility, as only a fixed set of variants can exist.

2.2 Software Variability Management

The need for managing variants has been recognized a long
time ago in research on program families [48], later leading to
the field of software product line engineering (SPLE) [12, 16],
which provides methods and tools to effectively manage
portfolios of system variants. In SPLE, variants are no longer
managed at the level of customers, but at the level of fea-
tures [3, 8, 27] with integrated and configurable platforms.
These platforms rely on variability mechanisms, such as con-
ditional compilation and configurable build systems, and
allow deriving new variants by selecting desired features.
This is achieved by mapping features to variation points,
which are commonly realized using annotations such as
conditional-compilation directives (e.g., #ifdefs). However,
in complex systems, such annotations significantly clutter

Lukas Linsbauer, Thorsten Berger, and Paul Griinbacher

1 uint8_t sort_order[SDSORT_LIMIT];

2

3 // Cache filenames to speed up SD menus.

4 | #if SDSORT_USES_RAM

5

6 // If using dynamic RAM for names, allocate on heap
7 #if SDSORT_CACHE_NAMES

8 char sortshort[SDSORT_LIMITJ[FILENAME_LENGTHI];
9 char sortnames[SDSORT_LIMITJ[FILENAME_LENGTHI];
10 #elif !SDSORT_USES_STACK

11 char sortnames[SDSORT_LIMITJ[FILENAME_LENGTH];
12 #endif

13

14 #if HAS_FOLDER_SORTING && SDSORT_CACHE_NAMES

15 uint8_t isDir[(SDSORT_LIMIT+7)>>3];

16 #endif

17

18 #endif // SDSORT_USES_RAM

Listing 1. Marlin code excerpt (slightly adapted from
its original).

source code. This challenges program comprehension when
many variants of the system need to be edited at the same
time [42]. Listing 1 shows a code excerpt of the 3D-printer
firmware Marlin, which exists in many variants. The ex-
cerpt shows code related to file and folder sorting on SD
cards (explained shortly). Editing the code becomes diffi-
cult for developers who are only interested in one feature.
Approaches such as C-CLR [54], CIDE [28], PEOPL [7], condi-
tional SDGs [2] or GUPRO [31] can filter out irrelevant code,
but do not consider the integrated handling of revisions and
variants, leaving it to the developers to edit variation points.
Notably, SCM researchers also recognized the need for
variant management, including the handling of variants at
the level of user-facing, high-level properties (i.e., features
in product-line terminology). For instance, Gulla et al. [24]
emphasize that “selection based on property” is beneficial for
non-developers (e.g., testers, customers, and sales experts).
In fact, some systems addressing variant-management needs
have been developed by SCM researchers, but without find-
ing widespread adoption. Yet, recognizing increasing inter-
est, these systems [25, 36, 60], referred to as VarCS in the
remainder, and their concepts deserve a fresh look.

2.3 Variation Control Systems

We therefore study VarCS that can manage features, variants,
and variation points in an integrated and uniform manner.
VarCS ease or even eliminate the need to directly edit varia-
tion points, such as C preprocessor directives. VarCS allow
working on one or multiple variants by providing views
(or projections) that filter irrelevant details of configurable
artifacts to facilitate their comprehension and to lower the
cognitive complexity of editing them. Without tool support, a
developer would be presented with all the code and presence
conditions at once (see Listing 1), including those irrelevant
to a given task, and also have to explicitly add or edit the
presence conditions manually in the code. A VarCS would,
for example, allow a developer to specify its intention once
(e.g., adding a new feature to a new variant), and not only
will all the irrelevant code for that intention be hidden, also
new presence conditions will automatically be added and



A Classification of Variation Control Systems

existing ones updated in accordance with the specified in-
tention. As such, VarCS aim at supporting the evolution
and maintenance of systems with many variants, including
software product lines and highly configurable systems [57].

2.4 Illustrative Example

To illustrate the use of a VarCS, we discuss the evolution
of the code excerpt shown in Listing 1, which was taken
from Marlin (slightly adapted from its original).! The devel-
oper wanted to add support for dynamic memory allocation
(feature SDSORT_DYNAMIC_RAM) when sorting files and
folders on SD cards. The final result is shown in Listing 4.
Instead of manually editing the source code, let us assume
that the developer uses a VarCS, such as one of our subjects,
VTS (cf. Section 4.4) [57].

To focus only on the relevant code, the developer chooses
in VTS to see only variants containing the features SD-
SORT_USES_RAM and SDSORT_CACHE_NAMES, since
she knows based on her domain knowledge that the new
feature SDSORT_DYNAMIC_RAM can only be realized in
these variants. So she defines the partial configuration SD-
SORT_USES_RAM A SDSORT_CACHE_NAMES to check
out the relevant code from VTS, which provides her with
the code in Listing 2.

uint8_t sort_order[SDSORT_LIMIT];
// Cache filenames to speed up SD menus.

// If using dynamic RAM for names, allocate on heap
char sortshort[SDSORT_LIMIT]LFILENAME_LENGTHI;
char sortnames[SDSORT_LIMIT]JLFILENAME_LENGTHI;

#if HAS_FOLDER_SORTING
uint8_t isDir[(SDSORT_LIMIT+7)>>3];
#endif

= OV 00U R W =

S

Listing 2. A subset of the variants from Listing 1.

The code that is non-optional in these variants (lines 6-7)
is shown without #if annotations, and the code that does
explicitly not belong to these variants is hidden. So when
editing, she can be sure that any modification of the code
subset can never interact with the hidden code. Code that is
optional in these variants (lines 9-11) remains wrapped by
#if (yet, the expression is simpler in these variants).

The developer now changes lines 1, 6 and 7 to implement
the new feature and obtains Listing 3.

uint8_t *sort_order;
// Cache filenames to speed up SD menus.

// If using dynamic RAM for names, allocate on heap
char xxsortshort, x*xsortnames;

#if HAS_FOLDER_SORTING
uint8_t isDir[(SDSORT_LIMIT+7)>>3];
#endif

SO U W =

=

Listing 3. Modification of Listing 2 for implementing a
new feature.

Thttps://github.com/MarlinFirmware/Marlin/commit/47f9883

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

1 // By default the sort index is static

2 | #if SDSORT_DYNAMIC_RAM

3 uint8_t xsort_order;

4 | #else

5 uint8_t sort_order[SDSORT_LIMIT];

6 | #endif

7

8 // Cache filenames to speed up SD menus.

9 | #if SDSORT_USES_RAM

10

11 // If using dynamic RAM for names, allocate on heap
12 #if SDSORT_CACHE_NAMES

13 #if SDSORT_DYNAMIC_RAM

14 char *xsortshort, **sortnames;

15 #else

16 char sortshort[SDSORT_LIMITI[FILENAME_LENGTH];
17 char sortnames[SDSORT_LIMITJ[FILENAME_LENGTH];
18 #endif

19 #elif SDSORT_USES_STACK

20 char sortnames[SDSORT_LIMITI[FILENAME_LENGTHI;
21 #endif

22

23 #if ! SDSORT_CACHE_NAMES && HAS_FOLDER_SORTING )

24 uint8_t isDir[(SDSORT_LIMIT+7)>>3];

25 #endif

26

27 #endif // SDSORT_USES_RAM

Listing 4. Marlin code excerpt after implementation of
the new feature SDSORT _DYNAMIC_RAM.

Finally, she specifies that the changes belong to the new
feature SDSORT_DYNAMIC_RAM and commits the code.
VTS handles all variation points and generates the new in-
ternal representation containing all variants that is shown in
Listing 4. Especially observe how the new feature code is re-
alized as an alternative (lines 2-6 and 13-14) to the previous
code, which is effective when SDSORT_DYNAMIC _RAM
is not enabled. Details about the exact mechanism are pro-
vided by Stanciulescu et al [57]. All VarCS follow roughly this
workflow, but differ in important characteristics we discuss
in the remainder.

3 Research Methodology

Our research was carried out in four steps.

Literature Study. Based on our experience in software
product lines and software configuration management, we
started our search with existing survey papers [13, 21, 40, 58]
and then used snowballing [11] to identify further relevant
papers. We investigated the reference lists of the papers to
identify possibly yet undiscovered papers we considered
as relevant for our context. This was useful as some of the
subject systems are only published in papers—some older
than 30 years—and not accessible via today’s digital libraries,
making a systematic literature review or mapping study
infeasible.

Selection of Subject Systems. We studied the collected
subject systems and selected six systems for our compari-
son. Following our definition of VarCS we included systems
capable of handling variants and variation points to hide
the complexity of low-level variant management from the
user. In several cases, the literature study revealed several
generations of subject systems, for instance, when a more
advanced system was developed based on a concept or early


https://github.com/MarlinFirmware/Marlin/commit/47f9883

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

prototype. In these cases, we chose the most mature gener-
ation for comparison. We excluded systems just providing
visualizations for variation points (e.g., #ifdefs) or better ed-
itor support (e.g., quick fixes, intentions, refactorings) for
manipulating variation points in software product lines. We
also excluded version control systems such as CVS, Subver-
sion, or Git as they do not allow to deal with concurrent
variants at the level of features. We furthermore excluded
several subject systems for which the publications were no
longer accessible or their description was too superficial for
the purpose of our comparison.

Definitions of Characteristics for Comparison. We
started this task by identifying a core set of characteristics
based on our experience as researchers in the subject matter.
We also consulted existing surveys [13, 58] and iteratively
refined our set of characteristics when reviewing and struc-
turing the subject systems’ capabilities. This also included
harmonising the terminology, which was necessary as the
papers are from different research communities. This pro-
cess was also inspired by existing approaches on developing
taxonomies (e.g., [46]). The main goal was to identify key
characteristics for comparing VarCS, particularly consider-
ing their practical adoption.

Classification of Subject Systems. All authors then individ-
ually assessed the subject systems using the characteristics
as a guideline. The individual classifications were then con-
solidated in a common classification. The authors carefully
discussed all cases of disagreement to achieve consensus on
the reported results. Often this required looking for addi-
tional background literature not found in the first round.

4 Subject Systems

We now introduce the VarCS selected for our study.

4.1 P-EDIT Editor

P-EDIT was presented in 1984 as a line-based editor for the
VM/370 operating system [30] to facilitate the development
of multi-version programs by supporting both ’sequences
of versions’ and ’concurrent versions’. It allows working
with one or multiple lines using commands such as LOCATE,
CHANGE, NEXT, UP, and INSERT. Line editors were origi-
nally developed for systems only providing a keyboard and a
printer, but continued to exist for early screen-based systems
due to their low memory footprint. P-EDIT used the screen
to show the lines surrounding the currently edited line. The
prime motivation for developing P-EDIT was the cluttering
of source code with preprocessor directives (e.g., #if, #ifdef,
#ifndef) [29]. The author also motivates the approach by ar-
guing that representing variants (called concurrent versions)
as deltas [49], i.e., instructions on how to modify a previ-
ous version, is not sufficient, as each variant would need
to be represented by a tree of deltas, leading to substan-
tial redundancy between variants. P-EDIT was implemented

Lukas Linsbauer, Thorsten Berger, and Paul Griinbacher

by Kruskal and Kosinski, both researchers at the IBM Wat-
son Research Center. A Boolean formula simplifier from
another IBM researcher, Sheridan, was incorporated. The
tool is not available anymore, but had a small community of
users at IBM. Apparently, an evaluation in a larger develop-
ment project was planned, but we did not find any report
about it. The author later described the concepts of P-EDIT
at a workshop on virtual separation of concerns [29].

4.2 EPOS Version Control System

Change-oriented versioning (CoV) focuses on managing "log-
ical changes’ of assets instead of managing whole versions
of assets or systems [24, 43, 45]. The approach follows the
intensional versioning paradigm (cf. Section 2.1) unlike most
of today’s version-control systems. According to Munch [43],
who provided the first implementation, the concept of CoV
was first described by Holager [26] in 1988 in a technical
report, followed by Lie et al. [32, 33], who extended the con-
cept and implemented CoV using a database, which became
the basis for Munch’s prototype. The EPOS? (Expert Sys-
tem for Program “og” System Development) prototype was
later extended and evaluated on the GNU C compiler, which
uses conditional-compilation directives to represent its many
variants. It later became part of the EPOS Configuration
Management (ECM) framework [44], where it was again ex-
tended (e.g., with cooperation support [61]) and combined
with process modeling and process execution techniques.

CoV follows the typical checkout/commit workflow of
version control systems, but instead of checking out revi-
sions of the system (or individual files), the user specifies a
configuration to checkout, internally handled by a configu-
rator, similar to configuration-based product derivation in
software product lines.

4.3 Leviathan File System

Software developers are using a wide range of development
tools that are in most cases not variability-aware and cannot
deal with variability mechanisms. Leviathan [25] addresses
this problem by providing VarCS support at the level of file
systems. Specifically, the authors present an implementation
of variant views in specific Leviathan file systems, which
can be mounted by developers working on specific variants.
Besides activating and deactivating features developers can
also express partial configurations by setting features as
undecided. This approach allows the use of arbitrary tools
without support for specific variability mechanisms, e.g.,
when debugging or maintaining different program variants.
A typical development workflow in Leviathan is to specify
a desired variant, to mount the Leviathan file system repre-
senting the variant, to modify the variant code, and to save
the changes in the editor. The approach also supports auto-
matically writing back changes to the configurable code base

Zhttp://www.idi.ntnu.no/~epos/EPOS.html


http://www.idi.ntnu.no/~epos/EPOS.html

A Classification of Variation Control Systems

after editing variant views if certain assumptions are satis-
fied. Otherwise developers need to double check if Leviathan
applied the changes correctly. The approach has further limi-
tations: for instance, it does not allow to change the inclusion
condition of a conditional block in a mounted view. Further,
Leviathan’s CPP only considers constructs for conditional
compilation, and cannot deal with expressions containing
macros.

4.4 VTS Command-Line Tool

The variation tracking system (VTS) was developed as a
prototype for evaluating various concepts of existing VarCS
[57]. Specifically, it extends an approach called projectional
editing of variational software [60] (not to be confused with
the projectional-editing paradigm [10] for direct AST editing,
a.k.a. structured editing or syntax-directed editing). Like its
conceptual predecessor [60], the VTS approach is formalized
using choice calculus, a formal representation of variation
points, similar to conditional-compilation directives.

VTS is realized as a command-line tool and realizes a
workflow known from version-control systems with a check-
out/commit cycle similar to CoV. The prototype’ can handle
individual text files that use C conditional-compilation di-
rectives. It allows creating views based on an expression
(similar to the choice expression of CoV), which are then
edited and committed back to the original file based on an-
other expression (similar to the ambition expression of CoV).
The prototype has been evaluated by replaying parts of the
history of the Marlin 3D-printer firmware, showing that the
tool’s capabilities are sufficient to handle a complex real-
world evolution process. At the same time the evaluation
revealed certain evolution scenarios that require multiple
checkout/commit cycles in VTS (cf. Section 6).

4.5 ECCO Version Control System

ECCO* realizes a feature-oriented, distributed version con-
trol system. It started out as an approach to re-engineering
variability from sets of cloned system variants [38, 39] by
identifying traces from features to implementation artifacts
in these variants, and then consolidating them into a product-
line platform. Later, the same approach was used for incre-
mental construction of product lines by supporting clone-
and-own development with systematic and automated reuse
[20, 37]. Similar to VTS, ECCO aims at combining the sim-
plicity and flexibility of clone-and-own with the efficiency
and scalability of structured product-line development. The
original ECCO approach supported feature-based variation
management. Later it was extended with revision support for
individual features, and now evolved into a feature-oriented
version and variation control system [34, 36]. Interestingly,

3https://bitbucket.org/modelsteam/2016-vcs-marlin/src/master/
prototype/
4http://jku-isse.github.io/ecco/

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

the ECCO core still relies on the original algorithms that
were used for re-engineering cloned variants.

ECCO now provides checkout and commit functionality
for retrieving and updating the contents of its repository.
Additionally, it has recently received experimental support
for distributed development via fork, push and pull function-
ality for transferring features between different repositories.
Developers can use a command-line tool and a graphical tool
(both implemented based on ECCO’s Java API) for accessing
and modifying its repository.

Checking out a configuration provides the respective code
and other artifacts in the file system. Developers can then
work with arbitrary tools when adding new features or
changing existing ones. Committing a new configuration
updates the contents of the repository by automatically com-
puting or updating the presence conditions of the affected
artifacts. Internally, ECCO stores implementation artifacts
as a generic tree structure where sub-trees are labeled with
presence conditions. ECCO supports variability in any type
of file for which a plugin is available that can translate it into
ECCO’s internal tree structure. In case of file types for which
no specific plugin is available, variability is only supported
at the level of entire files.

4.6 SuperMod Version Control System

SuperMod (Superimposition of Models)® [52, 53] aims at the
integration of revisions and variants (called 'variability in
time’ and ’variability in space’ by the authors) by integrating
temporal and logical versioning approaches. The approach
allows developers to better manage the complexity of hand-
ling logical variants for different revisions of a software
system. The authors pursue a model-driven approach and use
feature models to define logical variants and constraints in
addition to a revision graph covering the evolution over time.
SuperMod uses the well-known checkout/commit paradigm:
software variants can be specified and checked out using
feature configurations, which resolve the variability defined
in the models. Developers can then make changes in tools of
their choice. When committing changes developers need to
define an ambition, a partial feature configuration defining
the logical scope of the change. The approach is implemented
using the Eclipse Modeling Framework (EMF) and available
as a plugin® to the Eclipse IDE.

4.7 Excluded Subjects

We excluded several subject systems for which we could not
find the publications anymore or if the description lacked
details important for our classification and comparison. For
instance, Conradi et al. [13] and Munch [43] refer to the edi-
tor MVPE [50]. However, since both authors report MVPE
as an extension of P-EDIT, we believe that conceptually it

Shttp://www.ail.uni-bayreuth.de/de/projects/SuperMod
®http://btn1x4.inf.uni-bayreuth.de/supermod/update


https://bitbucket.org/modelsteam/2016-vcs-marlin/src/master/prototype/
https://bitbucket.org/modelsteam/2016-vcs-marlin/src/master/prototype/
http://jku-isse.github.io/ecco/
http://www.ai1.uni-bayreuth.de/de/projects/SuperMod
http://btn1x4.inf.uni-bayreuth.de/supermod/update

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

does not differ too much from the P-EDIT system included
in our comparison. Conradi et al. [13] also discuss PIE and
DaSC. PIE [23] is probably the oldest system supporting fine-
grained variability and was developed in the late 1970s [13].
DaSC [22, 40] is similar, relying on the concept of “selectors”
that compose variants based on concurrent versions of assets.
Developed for version and variation control of small teams, it
supports the typical functionality of modern version control
systems, including collaboration and consolidation, the latter
referring to merge support. However, we could not find a
detailed description and the tool is no longer available. Nev-
ertheless, it would be very valuable to understand whether
and how the consolidation support also covers integrating
variants. Aide-de-Camp is reported to be similar, but we also
could not find the papers [15, 55] anymore. Atkins et al. [6]
evaluate Labs’ VE (version editor) [5, 47], which reportedly
has similar functionality as P-EDIT. Specifically, it also cre-
ates variation points automatically. VE has its roots in the
so-called Delta System [14], which was also not accessible.

5 Classification of Variation Control
Systems

Following our research process, all authors independently
assessed the six identified subject systems. We then aligned
and consolidated the individual views and defined a common
set of characteristics and their possible values, sufficient to
characterize systems in the domain of VarCS.

We now describe the resulting characteristics and illus-
trate them with concrete realizations and examples of the
selected subject systems. We first discuss the general repre-
sentation of variability in the systems: which abstractions are
used to represent functionality belonging to different vari-
ants (commonly called features in SPLE)? Which artifacts can
be variable by extending them with variation points? What
are the general characteristics of these variation points? We
then discuss how variable artifacts are presented to its users
(external representation) and how the systems store all the
variants and potentially their history (internal representa-
tion). We then discuss how the selected VarCS create the
external from the internal representation, and how changes
made by the users in the external representation are per-
sisted in the internal representation. Table 1 illustrates these
characteristics for our subjects.

We then proceed with describing the support offered for
collaboration among developers and for aligning changes
with the source artifacts. Finally, we discuss how each subject
system was implemented and to what extent it was evaluated.
Table 2 summarizes these characteristics.

5.1 Variability Entities

The subject systems use different types of entities to ab-
stractly describe and express variants. These entities can take
values of different data types (Boolean, integer, enumerations,

Lukas Linsbauer, Thorsten Berger, and Paul Griinbacher

Table 1. Characteristics of the VarCS.

Subject Systems
=) )
Bl | & 3
= = o
2|52 |9]|%
BRIl >3 &
2 Boolean o o e o o o
‘:é Integer [ ] [ J
45 .
Enumeration [ J
2 | None ° o oo
3
= Set of Constraints [ J
2
S Variability Model [ J
Whole File [ BN ] [ N J
"
& Text (Lines) [ BN BN NN BN J
= ©
£ i3 Code (AST Nodes) [ J
; &
§ & | Models (Ecore) [ J
Any (Plugins) [ J
a None [ AN )
5
2 Whole System [ AN ®
1
~ Per Feature [ ]
o
% | File System [ ] L BK
— =
g e% Database [ [ BN
3
| § Annotative o o oo °
Modular [ J
_ ‘é Virtual [ J
<
g | Materialized o e o o o
L
o ¢ | Manual o o e o o o
Q.
@ | Automatic [ J
Téj g Partial Configuration [ ] [ AN
£
&~ | Consistency Check ()
- S Weaker [ J
=5 (7%
- 1]
g% | & | Same o e o o o o
£8 | &
- & | Stronger [ [ N B J

etc.). They are user-visible and mapped to variation points in
variable artifacts via a mapping. For instance, P-EDIT uses
options which can take Boolean, numeric, or enumerated
values. EPOS also uses options, but only allows Boolean val-
ues. Leviathan, SuperMod, VTS, and ECCO use the notion of
features, which are restricted to Boolean values. Despite the
different names we did not find any conceptual differences
between these entities, as they are all labels representing vari-
able functionality, which is either modularized (mapped to
one artifact) or cross-cutting (mapped to multiple artifacts).

5.2 Constraints over Variability Entities

This characteristic covers the different ways for declaring
constraints over the variability entities, a.k.a. configuration
constraints, composition constraints, or feature constraints.



A Classification of Variation Control Systems

None. Most of our systems do not support declaring con-
straints. This can be accounted for in smaller projects by
using experts for configuring the system, or by making the
mapping between features and artifacts more complex (see
presence conditions in Section 5.3).

Set of Constraints. CoV allows specifying constraints
among options, called rules (validities, constraints, prefer-
ences, defaults) [24]. Interestingly, these rules can also be
used to define access rights.

Variability Model. Feature models [9, 27] and decision
models [51] have been proposed for defining and manag-
ing the commonalities and variabilities in software product
lines [17]. Feature models allow organizing features and con-
straints graphically using elements such as feature groups,
hierarchy constraints, mandatory and optional features. This
helps developers to keep a better overview of the system
and to more easily evolve it. Only SuperMod currently uses
feature modeling to define logical variants and constraints.

5.3 Variable Artifacts

This characteristic addresses the types of artifacts that can
be managed by each VarCS. Specifically, this involves the
artifact types that can be made variable by introducing vari-
ation points and the granularity of these variation points.
Another distinguishing property is whether the VarCS also
supports non-variable artifacts.

Variation Granularity. This characteristic describes the
granularity at which variability in artifacts is supported.
Recall that we exclude the system level according to our def-
inition of VarCS. While file-level variability is independent
of the file type, we observe different file-format limitations
and variation granularities for variability within files.

File-Level Granularity. Except for P-EDIT and VTS, all
systems support file-level granularity for all kinds of files
(including binary). P-EDIT and VTS only handle variability
within text files and do not use a repository with folders and
files.

Sub-File-Level Granularity. This granularity is supported
by all our VarCS for different types of implementation arti-
facts. P-EDIT, Leviathan, VTS, and EPOS support variability
in arbitrary text files via variation points, regardless of the
actual text format (e.g., code in various programming lan-
guages, documentation, or help pages). The granularity is
text lines for VTS, EPOS, and P-EDIT. For EPOS, it could
potentially be at character-level, but we could not find de-
tailed information about the granularity of artifact fragments,
beyond some speculation from the main EPOS developer:
“There may be good arguments for trying smaller syntac-
tical units (words, statements, language tokens)” [43]. The
evaluation, however, is based on importing an #ifdef-based
system, indicating that at least text lines are the finest level
of granularity. SuperMod supports variation points within
Ecore models by annotating model elements with presence

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

conditions (cf. Section 5.5). ECCO can be extended with plu-
gins to support variability for different types of files. The
granularity of variation is determined by each respective
plugin. Currently, plugins exist for whole files (a fallback for
non-textual file types for which no specific plugin exists),
line-based text files (a fallback for textual files like source
code for which no specific plugin exists), and Java (based on
the AST nodes rather than lines of code). Other plugins for
C/C++, Ecore models, or STEP files (3D CAD drawings) are
under development.

5.4 Revisions

This characteristic addresses the support of the VarCS for
supporting revisions, i.e., versions intended to represent the
sequential evolution, at different levels of granularity. The
latter classifies into system level (to track changes of the
whole system), feature level (to track changes of individual
features), or no revisions at all.

All systems except Leviathan and ECCO allow creating
revisions of the whole system. For instance, P-EDIT allows
revisions of the whole system via artificial integer options
(VERSION, TIME, RELEASE) that store the revision number.
A similar approach also works for VTS, although the system
lacks dedicated support. ECCO supports revisions at the level
of individual features, thus allowing versions of "snippets’
within files.

5.5 Internal Representation

This characteristic describes the internal representation the
subject systems use for storing artifacts, variation points,
and the mapping to variability entities.

Artifact Storage. The selected VarCS use different ways
to store the artifacts and their variants: EPOS and ECCO use
a database, while Leviathan, VTS, and P-EDIT rely on the
file system for loading and saving artifacts. ECCO’s mod-
ular architecture provides more flexibility and additional
persistency mechanisms can easily be added.

Variation Points. All systems use the notion of pres-
ence condition to represent variation points. Specifically, a
presence condition is a Boolean expression over variability
entities declared for artifacts (or parts of these). It specifies
to which variant an artifact belongs to, thus controlling if it
should be included when obtaining an external representa-
tion.

P-EDIT uses custom annotations inside text files that con-
tain variability. In a variable text file the presence condition
expressions are appended at the end of each line, delimited
by special characters (double blank), to determine in which
variants the line is to be included. VTS relies on standard
C-preprocessor’ directives for conditional compilation (e.g.,
#ifdef or #if) to annotate textual artifacts. Leviathan can use

"https://gcc.gnu.org/onlinedocs/cpp/


https://gcc.gnu.org/onlinedocs/cpp/

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

both C-preprocessor directives and M4® macros. SuperMod
also uses custom annotations within Ecore model files.

EPOS does not annotate variable artifacts directly in their
files. Instead, it decomposes files into fragments (e.g., con-
secutive text lines) that are then stored in a database. These
fragments are mapped to presence conditions (called visi-
bility conditions [45]), i.e., propositional logic expressions
over options that are also stored in the database. This could
be seen as a kind of custom annotation, but since fragments
with the same presence condition are arranged close to each
other in the database, it could also be seen as a kind of mod-
ularized storage, similar to feature modules.

ECCO has a custom data model resembling feature mod-
ules known from the paradigm of Feature-Oriented Software
Development [4]. The model uses a generic tree structure
for representing artifacts. Sub-trees of the implementation
of a system under development are labeled with presence
conditions (Boolean expressions over features).

5.6 External Representation

This characteristic describes the interface the VarCS offer to
the user—in other words, how artifacts of a software system
are presented. For instance, a VarCS might resolve all vari-
ability in the software system and only show full variants
(with all artifacts being non-optional) or allow unresolved
variability, meaning that multiple system variants will be
shown to the user with variation points exposed.

Type. A core characteristic is whether the external repre-
sentation (a variant or multiple variants) is materialized—that
is, copied to a file system where it can be edited like ordi-
nary files—or virtual—that is, the individual variants are only
shown in the editor but need to be saved to be materialized.

Leviathan, EPOS, VTS, ECCO, and SuperMod produce a
materialized external representation, while P-EDIT’s exter-
nal representation is virtual.

Specification. In all systems, the external representation
is specified by a logical expression over the variability enti-
ties, a.k.a. configuration. This expression is commonly spec-
ified manually by the developer. A configuration is fully
specified if all entities are decided. It is partially specified if
variability is still left undecided in the external representa-
tion.

Different terms are used to denote a configuration in the
VarCS and the syntactic rules slightly differ. Leviathan calls
it variant (conjunction of features), EPOS and SuperMod call
it choice (conjunction of options/features), VTS calls it projec-
tion expression (arbitrary Boolean expression over features),
while ECCO uses the term configuration (conjunction of fea-
tures). Note that SuperMod provides graphical support by
allowing to manually create a configuration expression by
selecting features in the graphical feature model. In P-EDIT a
configuration is an expression over options. It is named mask

8https://www.gnu.org/software/m4/mé.html

Lukas Linsbauer, Thorsten Berger, and Paul Griinbacher

and also allows arithmetic comparison operators, which can
be used for selecting versions.

Interestingly, P-EDIT is the only subject system that does
not require the users to specify the externalization expression
manually. Instead, users can point to text lines and use them
as a reference to automatically use their mask, thus obtaining
the external representation “through the text” [29]. P-EDIT in
this way specifies the external representation automatically
by generating it from the users’ artifact selections.

5.7 Externalization

This characteristic refers to the strategy of obtaining an ex-
ternal representation from the internal one. A core discrimi-
nator among the systems is whether partial configurations
are supported. This influences the mechanism for obtaining
and presenting the external representation to the user.

Partial Configuration. ECCO, EPOS, and SuperMod re-
quire a full configuration with all variability entities (e.g.,
features) decided. In this case, the external representation
does not contain any remaining variation points.

Leviathan, VTS and P-EDIT support partial configura-
tions, leaving variation points in the external representation.
Variation points are then represented using conditional com-
pilation directives, as in VTS, or using text highlighting, as
in P-EDIT. Let us illustrate both mechanisms.

P-EDIT checks for every artifact with a variation point in
the internal representation if its presence condition is incom-
patible with the mask (i.e., the conjunction of both is false).
In this case, the asset is completely invisible (“as though its
code did not exist” [30]). If the presence condition is implied
by the mask (i.e., their conjunction evaluates to true), it is
shown as ordinary text (called “fixed” by the author [30]).
If the conjunction of the mask and the presence condition
evaluates to neither true nor false, the artifacts are “displayed
bright” (called “unfixed” by the author [30]).

VTS has a similar approach. An artifact becomes invis-
ible, if the projection expression is incompatible with the
artifact’s presence condition. If the presence condition is not
determined, then the conditional-compilation directives (e.g.,
#if) remain visible; yet, they are simplified by removing the
part of the projection expression. If the presence condition is
implied by the mask, then the artifact is shown as ordinary
text not wrapped by conditional-compilation directives.

Consistency Checking. Finally, recall that concrete vari-
ants (external representations) could be inconsistent. Such in-
consistencies can be caused by specifying invalid externaliza-
tion expressions that violate constraints over the variability
entities. For instance, a variable declaration might be miss-
ing if the feature containing it has not been included in the
externalization expression. A VarCS could check the consis-
tency upon obtaining the external representation. However,
the VarCS aim at being oblivious to the underlying artifact
formats and do not perform such consistency checks. An


https://www.gnu.org/software/m4/m4.html

A Classification of Variation Control Systems

exception is ECCO, which can use the knowledge available
in file-type-specific plugins for simple checks.

5.8 Internalization

This characteristic describes the mechanism by which an
external representation can be transitioned into and merged
with the current internal representation, or in other words,
how an internal representation can be refined based on an
external representation.

Internalization Expression. The most important and
distinguishing characteristic is how changes made by modi-
fying the external representation are applied to the internal
representation. All VarCS follow a typical workflow: exter-
nalization (i.e., creating a view representing one or multiple
variants), editing (changing the artifacts belonging to the
view), and internalization (applying changes back consis-
tently). While all VarCS represent the application of changes
as an expression (full or partial configuration), they mainly
differ in the freedom of specifying this expression in relation
to the externalization expression.

Restrictions on Internalization Expression. In P-EDIT
and Leviathan, the internalization expression, which repre-
sents the scope of changes, cannot be set by the user. It is
the same as the externalization expression and therefore de-
termined during externalization. Changing it requires a new
cycle in the VarCS workflow.

EPOS, VTS, and SuperMod are more flexible and allow
the user to set the internalization expression. All three ap-
proaches call this expression “ambition,” obviously inspired
by the CoV paradigm. However, the ambition can only be
stronger or the same as the externalization expression, which
is a limitation. In fact, being able to specify a weaker expres-
sion, which would allow to apply changes to variants not
visible in the view, is an unsolved problem requiring further
investigation. Also recall that EPOS and SuperMod require
full configurations, while only VTS allows the ambition to
be partial. ECCO allows arbitrary internalization expression
regardless of the previously used externalization expression.

5.9 Alignment Strategy

This characteristic describes the strategies our VarCS em-
ploy for aligning changes with the existing artifacts (which
potentially belong to different variants) upon internalization.

We learned that alignment can be difficult based on the ex-
ternalization and internalization strategy employed. Specifi-
cally, alignment problems can occur when the externalization
is hiding artifacts that are not contradicted by the internaliza-
tion expression used to insert artifacts at the same location
where the hidden artifacts would be. This can happen in
any VarCS that does not enforce internalization expressions
that are at least as strong as the externalization expression
that was used to produce the current view. In this case, if a
developer adds new code, this code could affect variants that
are currently not visible. A consequence of this could for

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

Table 2. Characteristics of the VarCS.

Subject Systems
e § B
A g = 55‘;
% | Not Necessary [ J [ J [ J
go Textual [ BN ]
< Structural [ J
g None/Local [ J [ BN J
% Centralized [ J
§ Distributed [ N )
2 | Editor [ J
:g Version Control [ J o o o
= File System [ J
é é Textual [ BN [ BN ]
2| £ | Graphical oo
EJ % 2 | Internal (K LK
g ég External [ J
E: Binary o o o
S Source [ J
£ Exemplary [ J [ J [ J
§ Qualitative [
L%’ Quantitative [ J
Formal

example be that surrounding code which is active in other
variants might be hidden in the developer’s view, making
the position of the new code ambiguous in those variants.
In this case, manual or automated alignment needs to be
performed. If the alignment is done in the wrong way the
syntax or semantics of the artifact could be violated (e.g.,
statements would be put in the wrong order).

Leviathan performs such alignment based on heuristics
and, if specified, on manual annotations that can be created
by users to instruct Leviathan on aligning changes. ECCO
performs structured merging during internalization based
on its internal tree structure in combination with partial-
order-relations for merging nodes on the same tree level. For
EPOS and SuperMod, we could not identify any alignment
strategy.

P-EDIT and VTS do not need dedicated alignment sup-
port, given their externalization strategy. Specifically, only
artifacts that contradict the externalization expression are
hidden. So, the hidden artifacts can never appear together
with the current changes. Artifacts that are still variable are
just highlighted (P-EDIT) or still appear within conditional-
compilation directives (VTS). This, of course, only works
when the internalization expression cannot be weaker than



GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

the externalization expression, which is enforced by both sys-
tems. In fact, it is not clear whether allowing weaker internal-
ization expressions can be realized together with respective
alignment strategies, and what the benefit of this flexibility
would be. Investigating this is valuable future work.

5.10 Collaboration

This characteristic describes how the subject systems sup-
port collaboration: not at all (local), centralized, or decentral-
ized/distributed.

P-EDIT supports no collaboration and works only locally.
Leviathan also does not support collaboration, however, it is
implemented as a file system and could in principle support
centralized collaboration if implemented similar to a network
file system. EPOS behaves similarly to a database system
and thus supports centralized collaboration. VTS does not
support any collaboration. ECCO and SuperMod allow for
decentralized (i.e., distributed) collaboration.

5.11 Implementation and Tool Support

We also investigated if the subject systems currently have—
or at some point had—an implementation or tool support for
their theoretical concepts. This is important as many of the
other characteristics require a concrete implementation of a
concept to be answered. However, many papers provide no
or only limited information to what extent they have been
implemented and if tools supporting the approach are (pub-
licly) available. As some of the VarCS were first published
long time ago, most of the tools and frameworks discussed
in the papers are not available to the public. In several cases
tools existed at some point in time, which are no longer
available or maintained.

We also compared the tools regarding their nature, kind
of user interface, and integration in the development envi-
ronment.

Modality. We distinguish different modalities of the tools,
for example editor, version control system, or file system. For
instance, P-EDIT was implemented as an editor. Leviathan
has been realized as a virtual file system. EPOS, VTS, ECCO,
and SuperMod use the checkout and commit metaphor from
current version control systems. Yet, although less explicit for
the latter three, all follow the same workflow (cf. Section 5.8).

User Interface. We distinguish textual and graphical user
interfaces. All subject systems except SuperMod have a tex-
tual interface in form of a CLI or query language. In addition,
ECCO also provides a graphical interface to navigate in the
version control space. SuperMod is available as an Eclipse
plugin with a focus on rich and interactive feature modeling,
so no CLI is provided.

Intrusive. This characteristic addresses how the subject
systems integrate into the development process, i.e. how
intrusive the tools are when it comes to editing their in-
ternal and external representations. P-EDIT is intrusive on
both internal and external representation. It assumes using

Lukas Linsbauer, Thorsten Berger, and Paul Griinbacher

its specific editor and does not allow any other editor or
tool to modify the system artifacts (which would need to
be exported first). EPOS stores the source code in its data-
base and full variants can only be checked out using the
tool. However, once a variant has been checked out it can
be edited using existing tools. Leviathan and VTS are both
non-intrusive as they use common annotations (C prepro-
cessor or M4 macros) in both their internal and external
representations. They do not require any specific tools for
editing their internal or external representations. In case of
ECCO, it depends on the storage plugin. The storage can
be implemented using a database, but its feature modules
could also be transformed into an annotative, file-based rep-
resentation compatible with the C preprocessor, for instance.
SuperMod requires its Eclipse based feature model editor to
be used when performing its versioning operations. It is thus
intrusive regarding the internal representation. However,
after a version has been retrieved, existing tools can be used
for editing the files in the retrieved external representation.

Availability. We checked if and in what form the im-
plementation is available. ECCO’s source code is publicly
available on GitHub, but no precompiled binaries are pro-
vided. SuperMod is available as a binary plugin to the Eclipse
IDE, but we could not find the sources. The VTS prototype
is available as a binary, but the publication of its sources is
planned. For all other subject systems the implementation
was not available.

5.12 Evaluation

This characteristic assesses the degree and rigor of the sci-
entific evaluation of the subject systems. This assessment
is important for identifying shortcomings of VarCS and un-
derstanding the reasons for their limited impact on practice.
The investigated VarCS are research-oriented prototypes and
thus their validation must be framed in this context. Differ-
ent kinds of evaluations are reported in the survey literature
including exemplary, qualitative, quantitative, and formal
methods, which we adopt for our classification. Many ap-
proaches have only been assessed through simple examples
or through “friendly-enough” systems. Only in a few cases
the evaluations were conducted on realistic open source
systems. Specifically, VTS was evaluated by replaying the
evolution of the open-source project Marlin (cf. Section 2),
showing the applicability of the approach, although multi-
ple checkout/commit cycles were required to realize certain
kinds of variability. This was the case, for example, when at
the same time adding two variants, which are represented
by a conditional-compilation directive with an else branch.
The correctness of ECCO was evaluated by replaying the
development and evolution of open source product lines and
measuring the correctness and usefulness of the results. It
was also evaluated using an industrial system [35]. EPOS



A Classification of Variation Control Systems

was evaluated by importing the sources of the GNU C com-
piler into the EPOS database, and processing the conditional-
compilation directives defining its many variants.

6 Discussion

A key motivation of our work was to better understand
why VarCS, despite their advanced support for managing
variants, did not achieve wide-spread adoption. We discuss
problems of VarCS, which may have prevented their success.
We further derive research activities.

Cognitive complexity. VarCS use logical expressions to
handle variants of a system with different variability entities
(e.g., features). Due to the high number of revisions and vari-
ants, this task becomes cognitively extremely demanding.
For instance, creating externalization expressions is difficult
for developers who think in terms of code and not in terms
of variation points. A key for success is to improve devel-
oper support for working with complex logical expressions.
Partial configurations, for instance, as supported by several
VarCS, may help. Likewise, generating the externalization
expression by letting users point to artifacts that should be in
the variant, likely also helps, as the example of P-EDIT shows.
This allows developers to avoid going via the abstraction (i.e.,
thinking in terms of options instead of code), which can be
demanding even for small changes only affecting one or few
artifacts. Furthermore, useful abstractions seem essential to
facilitate the use of VarCS in this regard. For instance, feature
models may help to significantly reduce the cognitive load by
providing a higher-level and hierarchically-organized graph-
ical perspective on a system. Developers can be supported by
creating externalization expressions based on feature models,
as the SuperMod system shows. However, besides the tech-
nical challenges of creating such a feature-based front-ends,
user studies are needed to better understand how developers
can cope with the complexity.

Change impact of updating variants. VarCS support devel-
opers by filtering details of configurable artifacts that are not
part of the variant a developer is working on. Such views (or
projections) ease the comprehension of these artifacts. At
the same time it is very challenging to understand the scope
of changes made in such views on other variants not shown
in the view. Our study showed that while the investigated
systems have found different solutions for this issue, the
workflow is still rather complex from a developer’s point
of view. Although for VTS the evaluation confirmed that
the capabilities are sufficient to handle a complex real-world
evolution, the updating of variants was still complicated and
sometimes required multiple checkout/commit cycles in the
tool. In case of Leviathan changes to variants can be writ-
ten back to the configurable code base automatically only if
certain assumptions are met, meaning that developers need
to manually double check if Leviathan applied the changes
correctly. These findings suggest the integration of existing

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

research on variability-aware change impact analysis that
exists for instance in the area of program analysis [1]. Such
techniques allow the development of tools visualizing the
variants affected by a change to understand and assess its
impact.

Locked-in syndrome. Developers are usually reluctant to
commiit to a proprietary repository technology for managing
their software artifacts. Existing implementations of VarCS
use diverse model-based approaches, various database tech-
nologies, and a wide range of mechanisms for representing
variation points to manage the complex version space and
artifacts. Overall, this increases the risk of becoming locked-
in with no easy way to escape if technologies evolve. This
problem may explain why the annotation-based preproces-
sors are still the most popular variability mechanism. A basic
requirement for every VarCS should thus be the ability to
export its content to such an annotation-based representa-
tion, and to populate its repositories by importing content
from such a format. For systems such as VTS and Leviathan,
which already use such formats as their internal represen-
tation, this should be possible with minimal effort. An even
more advanced approach would be to use transformations
to and from artifact-specific representations that require no
additional variability mechanism at all. An example is the
variability-encoding approach by Rhein et al., which trans-
forms compile-time variability into load-time variability [59].

Adoption and migration barrier. In practice, systems are
rarely planned with a high degree of variability from the
beginning. In ad hoc reuse developers use available variabil-
ity mechanisms (e.g., C-preprocessor when writing C code)
or clone-and-own practices, usually leading to many inde-
pendently maintained variants. By the time a VarCS system
would pay off, migrating a system may already be difficult.
VarCS systems should thus offer a mechanism to populate a
repository from a set of clone-and-own variants to ease adop-
tion and to enable migration from systems like Subversion or
Git, where variants are maintained in separate branches. The
same mechanism could be used to migrate between different
VarCS systems by first creating all variants from one VarCS
system (assuming they are not too many) and then importing
them into another, thus reducing the locked-in syndrome
mentioned above. Similarly, as already mentioned for the
locked-in syndrome, artifact-specific options for migrating
from common variability mechanisms would be beneficial,
such as importing from preprocessor annotated text files.

Lack of collaboration support. The studied VarCS signifi-
cantly improve the variation aspects regular version control
systems are lacking. However, at the same time, many of
the subject systems seem to neglect equally important as-
pects existing version control systems already support very
well. In particular, an important aspect of version control
systems is their support for collaboration among developers.
Distributed development has become very popular in mod-
ern version control systems, especially in the development



GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

of open source software. This could be a great opportunity
for variation control systems to shine, as the independent
development of individual functionality (i.e., features) is well
suited for distributed development. This becomes evident
when looking at popular Git branching models that already
facilitate so-called feature branches’, i.e., temporary branches
that live as long as it takes to develop a new feature until they
are eventually merged back into their parent branches. VarCS
need to evolve towards distributed platforms for develop-
ment and evolution support. Current version control systems
support cloning of entire repositories, but lack support for
handling variants at the level of features. We envision clone
operations that will be based on specific feature selections
and include only the features needed for a specific devel-
opment task. Further, it should be possible to push, pull, or
transfer features between platforms. For instance, a push
feature operation may allow transferring a feature back to
its original platform to make it generally available.

Low tool maturity, availability, and rigor of evaluations.
Finally, our study showed that a lot needs to be done regard-
ing the availability and maturity of the VarCS tools. ECCO,
VTS, and SuperMod are the only implementations currently
available. Another issue is the low maturity of the reported
evaluations. Although replaying existing version histories of
open source systems is a promising first step to demonstrate
the feasibility of VarCS there is a strong need for case studies
with industrial partners, which also need to elicit relevant
usage scenarios of VarCS to measure their benefits.

7 Threats to Validity

A threat to the external validity of our study is that we might
have missed important VarCS. To mitigate this problem, we
studied the literature, starting with well-cited and large sur-
veys of the SCM literature [13]. One author also talked to
SCM researchers to make sure that we did not miss any
VarCS relevant for our work. Another threat to the external
validity is that the systems unavailable for our classification
encompass important concepts and technologies. To mitigate
this issue, we consulted secondary literature describing these
systems to get a coarse overview and to understand their key
ideas. We did not find any hints to concepts not supported
by the other investigated systems. As such, we are confi-
dent that our studied systems are characteristic examples of
VarCS.

A threat to the internal validity is that we might have
misclassified the systems, especially those that have been
developed by SCM researchers. Given that some papers were
almost 40 years old, it was not always easy to understand the
terminology used by the community at that time [23]. We
therefore started with individual classification and worked
to achieve consensus on the degree of support of features,
often in several rounds. Finally, our classification might not

%http://nvie.com/posts/a-successful-git-branching-model/

Lukas Linsbauer, Thorsten Berger, and Paul Griinbacher

be complete, i.e., we might have missed important concepts
that are needed to realize new and better systems. However,
we created the classification with the clear goal to identify
concepts that are important for the practical use and adop-
tion of VarCS, so overall we are confident that we identified
the most relevant concepts. Still, contrasting it with systems
that will be developed in the future is valuable further work.
Finally, we were ourselves involved in the development of
VTS and ECCO, which could potentially bias our classifica-
tion. However, one author started surveying existing VarCS
before either of both systems was developed, thus mitigating
this potential bias.

8 Conclusion

This paper presented a classification of VarCS, which aim to
integrate the management of revisions of software artifacts
and the handling of software variants at different levels of
granularity. Our study provides a classification of six VarCS
and shows that they use concepts and approaches developed
in the areas of both software configuration management and
software product line engineering. The results show that
the investigated VarCS share a common core of capabilities
although they were developed in different research commu-
nities, for a different purpose, and in a time span covering
several decades. The results also reveal particular strengths
of individual VarCS.

Based on these findings, we discussed reasons that may
have prevented the wide-spread use of VarCS: these include
the cognitive complexity of handling logical variants for dif-
ferent revisions of features, the complex workflow needed
to consistently write back changes made to variants to the
shared artifact repository, and the risk of become locked-in
a particular style of artifact repository. Only some evalua-
tions of existing VarCS are convincing. Furthermore, only
few robust implementations exist today, which makes the
transition to industrial practice difficult.

Acknowledgments

This work has been supported by the Christian Doppler For-
schungsgesellschaft Austria, KEBA AG Austria, the Swedish
Research Council, and Vinnova Sweden.

References

[1] Florian Angerer, Andreas Grimmer, Herbert Prahofer, and Paul Griin-
bacher. 2015. Configuration-Aware Change Impact Analysis. In Pro-
ceedings of the 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’15). 385-395.

Florian Angerer, Herbert Prihofer, Daniela Lettner, Andreas Grimmer,
and Paul Griinbacher. 2014. Identifying Inactive Code in Product Lines
with Configuration-Aware System Dependence Graphs. In Proceedings
18th International Software Product Line Conference (SPLC 2014). ACM,
New York, NY, USA, Florence, Italy, 52-61.

Sven Apel, Don Batory, Christian Kastner, and Gunter Saake. 2013.
Feature-Oriented Software Product Lines. Springer, Berlin Heidelberg.

—
Do
—

3

—_


http://nvie.com/posts/a-successful-git-branching-model/

A Classification of Variation Control Systems

(4]
5]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

[18

—

(19]

[20]

Sven Apel and Christian Késtner. 2009. An Overview of Feature-
Oriented Software Development. 7. Object Techn. 8, 5 (2009), 49-84.
David L. Atkins. 1998. Version Sensitive Editing: Change History As a
Programming Tool. In Proceedings of the SCM-8 Symposium on System
Configuration Management (ECOOP *98). Springer Verlag, London, UK,
146-157.

David L. Atkins, Thomas Ball, Todd L. Graves, and Audris Mockus. 2002.
Using Version Control Data to Evaluate the Impact of Software Tools:
A Case Study of the Version Editor. IEEE Transactions on Software
Engineering 28, 7 (2002), 625-637.

Benjamin Behringer, Jochen Palz, and Thorsten Berger. 2017. PEoPL:
projectional editing of product lines. In Proceedings of the 39th Inter-
national Conference on Software Engineering, ICSE 2017, Buenos Aires,
Argentina, May 20-28. 563-574.

Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Griinbacher, Ade-
line Silva, Martin Becker, Marsha Chechik, and Krzysztof Czarnecki.
2015. What is a Feature? A Qualitative Study of Features in Indus-
trial Software Product Lines. In Proceedings 19th International Software
Product Line Conference (SPLC’15). ACM, 16-25.

Thorsten Berger, Divya Nair, Ralf Rublack, Joanne M. Atlee, Krzysztof
Czarnecki, and Andrzej Wasowski. 2014. Three Cases of Feature-Based
Variability Modeling in Industry. In Proceedings 17th International Con-
ference Model-Driven Engineering Languages and Systems (MODELS’14),
Valencia, Spain, September 28 — October 3. Springer International Pub-
lishing, 302-319.

Thorsten Berger, Markus Voélter, Hans Peter Jensen, Taweesap Dang-
prasert, and Janet Siegmund. 2016. Efficiency of Projectional Editing:
A Controlled Experiment. In Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE
2016, Seattle, WA, USA, November 13-18, 2016. 763-774.

David Budgen, Mark Turner, Pearl Brereton, and Barbara Kitchenham.
2008. Using mapping studies in software engineering. In Proc. of PPIG,
Vol. 8. Lancaster University, 195-204.

Paul Clements and Linda Northrop. 2001. Software Product Lines:
Practices and Patterns. Addison-Wesley, Boston, MA.

Reidar Conradi and Bernhard Westfechtel. 1998. Version Models for
Software Configuration Management. ACM Comput. Surv. 30, 2 (1998),
232-282.

J. O. Coplien, D. L. DeBruler, and M. B. Thompson. 1987. The Delta
System: A Nontraditional Approach to Software Version Management.
In AT&T Technical Papers, International Switching Symposium.
Randall D. Cronk. 1992. Tributaries and Deltas. BYTE 17, 1 (1992),
177-186.

Krzysztof Czarnecki and Ulrich W. Eisenecker. 2000. Generative Pro-
gramming: Methods, Tools, and Applications. Addison-Wesley, Boston,
MA.

Krzysztof Czarnecki, Paul Griinbacher, Rick Rabiser, Klaus Schmid,
and Andrzej Wasowski. 2012. Cool Features and Tough Decisions:
A Comparison of Variability Modeling Approaches. In Proceedings of
the Sixth International Workshop on Variability Modeling of Software-
Intensive Systems (VaMoS ’12). ACM, New York, NY, USA, 173-182.

Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czar-
necki. 2013. An Exploratory Study of Cloning in Industrial Software
Product Lines. In Proceedings 17th European Conference on Software
Maintenance and Reengineering. 25-34.

J. M. Favre. 1996. Preprocessors from an abstract point of view. In
Proceedings of the Third Working Conference on Reverse Engineering.
287-296.

Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and
Alexander Egyed. 2014. Enhancing Clone-and-Own with Systematic
Reuse for Developing Software Variants. In Proceedings 30th IEEE In-
ternational Conference on Software Maintenance and Evolution, Victoria,
BC, Canada, September 29 - October 3. 391-400.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

Christopher W. Fraser and Eugene W. Myers. 1987. An Editor for
Revision Control. ACM Trans. Program. Lang. Syst. 9, 2 (March 1987),
277-295.

W. M. Gentleman, A. MacKay, and D. A. Stewart. 1989. Commercial
Realtime Software Needs Different Configuation Management. In Pro-
ceedings of the 2nd International Workshop on Software Configuration
Management (SCM °89). ACM, New York, NY, USA, 152-161.

Ira P Goldstein and Daniel G Bobrow. 1980. A layered approach to
software design. Technical Report CSL-80-5. Xerox. Palo Alto Research
Center.

Bjorn Gulla, Even-André Karlsson, and Dashing Yeh. 1991. Change-
oriented Version Descriptions in EPOS. Softw. Eng. 7. 6, 6 (Nov. 1991),
378-386.

Wanja Hofer, Christoph Elsner, Frank Blendinger, Wolfgang Schroder-
Preikschat, and Daniel Lohmann. 2010. Toolchain-independent Variant
Management with the Leviathan Filesystem. In Proceedings of the
2nd International Workshop on Feature-Oriented Software Development
(FOSD ’10). ACM, New York, NY, USA, 18-24.

Per Holager. 1988. Elements of the design of a change oriented con-
figuration management tool. Technical Report STF44-A88023. ELAB,
SINTEF, Trondheim, Norway.

Kyo Kang, Sholom Cohen, James Hess, William Nowak, and Spencer
Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report SEI-90-TR-21. CMU.

Christian Kastner, Sven Apel, and Martin Kuhlemann. 2008. Granular-
ity in Software Product Lines. In Proceedings of the 30th International
Conference on Software Engineering (ICSE "08). ACM, New York, NY,
USA, 311-320.

Vincent Kruskal. 2000. A blast from the past: Using P-EDIT for multi-
dimensional editing. In Workshop on Multi-Dimensional Separation of
Concerns in Software Engineering.

Vincent J. Kruskal. 1984. Managing Multi-Version Programs with an
Editor. IBM Journal of Research and Development 28, 1 (1984), 74-81.
B. Kullbach and V. Riediger. 2001. Folding: an approach to enable
program understanding of preprocessed languages. In Proceedings of
8th Working Conference on Reverse Engineering (WCRE).

Anund Lie. 1990. Versioning in Software Engineering Databases. Ph.D.
Dissertation. The Norwegian Institute of Technology.

Anund Lie, Reidar Conradi, Tor Didriksen, and Even-André Karls-
son. 1989. Change Oriented Versioning in a Software Engineering
Database. In Proceedings of the 2nd International Workshop on Soft-
ware Configuration Management (SCM), Princeton, N, USA, October 24.
56-65.

Lukas Linsbauer. 2016. Managing and Engineering Variability Intensive
Systems. Ph.D. Dissertation. Johannes Kepler University Linz.

Lukas Linsbauer, Florian Angerer, Paul Griinbacher, Daniela Lettner,
Herbert Prahofer, Roberto Lopez-Herrejon, and Alexander Egyed. 2014.
Recovering Feature-to-Code Mappings in Mixed-Variability Software
Systems. In Proceedings of the 30th International Conference on Software
Maintenance and Evolution (ICSME’14). 426-430.

Lukas Linsbauer, Alexander Egyed, and Roberto Erick Lopez-Herrejon.
2016. A variability aware configuration management and revision
control platform. In Proceedings of the 38th International Conference on
Software Engineering, Austin, TX, USA, May 14-22, 2016 — Companion
Volume (ICSE 2016). 803-806.

Lukas Linsbauer, Stefan Fischer, Roberto E. Lopez-Herrejon, and
Alexander Egyed. 2015. Using Traceability for Incremental Con-
struction and Evolution of Software Product Portfolios. In Proceedings
IEEE/ACM 8th International Symposium on Software and Systems Trace-
ability (SST). IEEE Computer Society, 57-60.

Lukas Linsbauer, E. Roberto Lopez-Herrejon, and Alexander Egyed.
2013. Recovering Traceability Between Features and Code in Product
Variants. In Proceedings of the 17th International Software Product Line
Conference (SPLC’13). ACM, New York, NY, USA, 131-140.



GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

[39] Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander Egyed.
2016. Variability extraction and modeling for product variants. Soft-
ware & Systems Modeling (29 Jan 2016).

[40] Stephen A. MacKay. 1995. The State of the Art in Concurrent, Dis-
tributed Configuration Management. In Selected Papers from the ICSE
SCM-4 and SCM-5 Workshops on Software Configuration Management.

[41] Axel Mahler. 1995. Configuration Management. John Wiley & Sons,
Inc., New York, NY, USA, Chapter Variants: Keeping Things Together
and Telling Them Apart, 73-97.

[42] Jean Melo, Claus Brabrand, and Andrzej Wasowski. 2016. How Does
the Degree of Variability Affect Bug Finding?. In Proceedings of the
38th International Conference on Software Engineering (ICSE ’16). ACM,
New York, NY, USA, 679-690.

[43] Bjern P. Munch. 1993. Versioning in a Software Engineering Database —
The Change Oriented Way. Ph.D. Dissertation. The Norwegian Institute
of Technology.

[44] Bjern P. Munch, Reidar Conradi, Jens-Otto Larsen, Minh N. Nguyen,
and Per H. Westby. 1996. Integrated Product and Process Management
in EPOS. Integr. Comput.-Aided Eng. 3, 1 (1996), 5-19.

[45] Bjern P. Munch, Jens-Otto Larsen, Bjern Gulla, Reidar Conradi,
and Even-André Karlsson. 1993. Uniform Versioning: The Change-
Oriented Model. In Proceedings of the Fourth International Workshop
on Software Configuration Management (SCM-4), May 21-22. 188-196.

[46] Robert C. Nickerson, Upkar Varshney, and Jan Muntermann. 2013. A
method for taxonomy development and its application in information
systems. EJIS 22, 3 (2013), 336-359.

[47] A. A. Pal and M. B. Thompson. 1989. An advanced interface to a
switching software version management system. In Proceedings of the
7th International Conference on Software Engineering for Telecommuni-
cation Switching Systems (SETSS).

[48] David Parnas. 1976. On the design and development of program
families. IEEE Transactions on Software Engineering SE-2, 1 (July 1976),
1-9.

[49] Marc J. Rochkind. 1975. The Source Code Control System. IEEE Trans.
Softw. Eng. 1, 1 (March 1975), 364-370.

[50] N. Sarnak, R. Bernstein, and V Kruskal. 1988. Creation and main-
tenance of multiple versions. In Workshop on Software Version and
Configuration Control.

[51] Klaus Schmid, Rick Rabiser, and Paul Griinbacher. 2011. A Comparison
of Decision Modeling Approaches in Product Lines. In Proceedings of
the 5th Workshop on Variability Modeling of Software-Intensive Systems
(VaMoS ’11). ACM, New York, NY, USA, 119-126.

Lukas Linsbauer, Thorsten Berger, and Paul Griinbacher

[52] Felix Schwégerl and Bernhard Westfechtel. 2016. Collaborative and
Distributed Management of Versioned Model-driven Software Prod-
uct Lines. In Proceedings of the 11th International Joint Conference on
Software Technologies (ICSOFT 2016) — Volume 2: ICSOFT-PT, Lisbon,
Portugal, July 24-26. 83-94.

[53] Felix Schwigerl and Bernhard Westfechtel. 2016. SuperMod: tool
support for collaborative filtered model-driven software product line
engineering. In Proceedings of the 31st IEEE/ACM International Con-
ference on Automated Software Engineering, Singapore, September 3-7
(ASE 2016). 822-827.

[54] Nieraj Singh, Celina Gibbs, and Yvonne Coady. 2007. C-CLR: A Tool for
Navigating Highly Configurable System Software. In Proceedings of the
6th Workshop on Aspects, Components, and Patterns for Infrastructure
Software (ACP4IS).

[55] Software Maintenance & Development Systems, Inc. 1990. Aide de
Camp Product Overview. Concord, Massachusetts. (Sept. 1990).

[56] Henry Spencer and Collyer Geoff. 1992. #ifdef Considered Harmful,
or Portability Experience With C News. In USENIX Summer Technical
Conference. 185-198.

[57] Stefan Stanciulescu, Thorsten Berger, Eric Walkingshaw, and Andrzej
Wasowski. 2016. Concepts, Operations, and Feasibility of a Projection-

Based Variation Control System. In Proceedings IEEE International
Conference on Software Maintenance and Evolution, Raleigh, NC, USA,

October 2-7 (ICSME 2016,). 323-333.

[58] Walter Tichy. 1988. Software Configuration Management Overview.
Technical Report.

[59] Alexander von Rhein, Thomas Thiim, Ina Schaefer, Jorg Liebig, and
Sven Apel. 2016. Variability encoding: From compile-time to load-time
variability. Journal of Logical and Algebraic Methods in Programming
85, 1 (2016), 125-145. Formal Methods for Software Product Line
Engineering.

[60] Eric Walkingshaw and Klaus Ostermann. 2014. Projectional editing of
variational software. In Generative Programming: Concepts and Experi-
ences, GPCE’14, Visteras, Sweden, September 15-16. 29-38.

[61] Alf Inge Wang, Jens-Otto Larsen, Reidar Conradi, and Bjern P. Munch.
1998. Improving Cooperation Support in the EPOS CM System. In
Proceedings 6th European Workshop on Software Process Technology,
Weybridge, UK, September 16—18 (EWSPT’98). Springer Berlin Heidel-
berg, 75-91.

[62] Bernhard Westfechtel, Bjorn P. Munch, and Reidar Conradi. 2001. A
Layered Architecture for Uniform Version Management. IEEE Trans.
Software Eng. 27, 12 (2001), 1111-1133.



	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Software Configuration Management
	2.2 Software Variability Management
	2.3 Variation Control Systems
	2.4 Illustrative Example

	3 Research Methodology
	4 Subject Systems
	4.1 P-EDIT Editor
	4.2 EPOS Version Control System
	4.3 Leviathan File System
	4.4 VTS Command-Line Tool
	4.5 ECCO Version Control System
	4.6 SuperMod Version Control System
	4.7 Excluded Subjects

	5 Classification of Variation Control Systems
	5.1 Variability Entities
	5.2 Constraints over Variability Entities
	5.3 Variable Artifacts
	5.4 Revisions
	5.5 Internal Representation
	5.6 External Representation
	5.7 Externalization
	5.8 Internalization
	5.9 Alignment Strategy
	5.10 Collaboration
	5.11 Implementation and Tool Support
	5.12 Evaluation

	6 Discussion
	7 Threats to Validity
	8 Conclusion
	Acknowledgments
	References

