Feature-Oriented Traceability

Thorsten Berger
Chalmers | University of Gothenburg

Context and Motivation. Features are commonly used to
describe the functional and non-functional aspects of a sys-
tem. Features are abstractions over implementation assets and
understood by many different roles, including domain experts,
architects, and developers. As such, features are often used
for communication, planning, and keeping an overview un-
derstanding of a system. Some software-engineering methods
advocate the explicit use of features, such as feature-driven de-
velopment (FDD) and software product line engineering with
feature modeling. Especially the latter requires abstractions
(features) to cope with complex product lines—portfolios of
system variants tailored towards specific requirements, such
as different market segments, hardware, or non-functional
properties (e.g., performance or energy consumption).
Variants are typically developed using clone&own [1]—that
is, copying and adapting existing variants to new requirements.
This strategy is simple and allows experimenting with new
ideas and rapidly prototyping variants. However, it does not
scale well, and maintaining variants quickly becomes costly.
Then, variants often need to be migrated to an integrated
product-line platform. Such a platform is often configurable
and allows deriving variants by selecting dedicated features in
a configurator tool. Unfortunately, the product-line migration
is costly and risky, requiring architectural and organizational
changes, as well as recovering features and their locations.
We believe that recording features and their locations early
during clone&own facilitates feature maintenance and evolu-
tion, including a later platform migration. Established feature
traceability would avoid the expensive recovery of feature
traces (e.g., when modifying, removing or reusing features)
or allow analyzes and predictions on the level of features.
Questions. Our past and current work targets three questions.
Q1: What are effective feature-traceability methods? Most
established methods retroactively recover feature traces and
are heavyweight, imposing significant setup (e.g., creating
a traceability database) and ongoing costs (e.g., updating
traces in the database). We believe that effective methods
should encourage developers to continuously record features
during development and should be lightweight, facilitating
easy integration into engineering processes with low overhead.
Q2: What are the benefits and costs of feature traceability?
The cost of creating and maintaining traceability links should
be lower than the expected benefit. We conjecture that feature
traceability does not only enhance feature-oriented engineering
activities and analyzes, but also support traceability tasks
not related to features, such as change-impact analysis of
requirements. We believe that some of the low-level and fine-
grained traceability links (e.g., between requirements and test
cases) can be replaced by fewer, but higher-level traceability
links based on features as pivotal (and intuitive) elements.

Q3: How to leverage expert knowledge? Most feature-
traceability techniques focus on the fully automated recov-
ery of feature locations, typically using information-retrieval
techniques. Yet, these techniques are inaccurate and have not
found widespread adoption. Since features are highly domain-
specific [2], expert (developer) knowledge should be taken into
account. We believe that effective feature-traceability methods
are hybrid, supporting developers with partial automation.
Principal Ideas. Towards QI, we conceived a lightweight
feature-traceability approach relying on embedded annota-
tions. During implementation, developers record features and
the feature locations as annotations in code [3]. Our feature
dashboard tool allows exploiting annotations by extracting
and visualizing them [4]. Towards Q2, we studied costs and
benefits of embedded annotations [3], which showed that their
cost is low compared to their benefit for feature maintenance
and evolution. We currently investigate the benefit of feature
traceability for other traceability tasks, such as change-impact
analysis for requirements. We strive to conduct user studies
on feature traceability compared to traditional traceability,
investigating how the notion of features is perceived and under
what conditions feature traceability is beneficial. Towards
Q3, we currently conceive a hybrid approach that learns
from past annotations and recommends new ones. Developers
should proactively record annotations, but should be reminded
about potentially forgotten traces (e.g., upon commit). We
systematically experiment with machine-learning techniques
by replaying the history of feature annotations in a case study.
Contributions. We contribute to the grand challenges of
traceability by raising the abstraction level of traceability to the
(intuitive) notion of features, by arguing for feature traceability
as a way to provide more short-term benefits of traceability
in order to improve its general acceptance, and by providing
empirical data on the costs and benefits of feature traceability.
Future Directions. While our work is motivated by the needs
of variant engineering in clone-based development, we believe
that making features explicit and establishing feature trace-
ability also enhances single-system engineering. Investigating
traceability strategies around the notion of features in single
systems is a valuable future research direction.

REFERENCES

[1] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki,
A. Wasowski, A survey of variability modeling in industrial practice, in:
VaMoS, 2013.

[2] T. Berger, D. Lettner, J. Rubin, P. Griinbacher, A. Silva, M. Becker,
M. Chechik, K. Czarnecki, What is a feature? A qualitative study of
features in industrial software product lines, in: SPLC, 2015.

[3]1 W. Ji, T. Berger, M. Antkiewicz, K. Czarnecki, Maintaining feature
traceability with embedded annotations, in: SPLC, 2015.

[4] B. Andam, A. Burger, T. Berger, M. Chaudron, Florida: Feature location
dashboard for extracting and visualizing feature traces, in: VaMoS, 2017.



	References

